Abstract
Hypoxia is a fetal stressor that leads to the production of endothelin-1 (ET-1). Previous work has shown that ET-1 treatment leads to the premature terminal differentiation of fetal cardiomyocytes. However, the precise mechanism is unknown. We tested the hypothesis that the fetal cardiomyocyte proteome will be greatly altered due to ET-1-treatment, which reveals a potential molecular mechanism of ET-1-induced terminal differentiation. Over a thousand proteins were detected in the fetal cardiomyocytes and among them 75 proteins were significantly altered due to ET-1 treatment. Using IPA pathway analysis, the merged network depicted several key proteins that appeared to be involved in regulating proliferation, including: EED, UBC, ERK1/2, MAPK, Akt, and EGFR. EED protein, which is associated with regulating proliferation via epigenetic mechanisms, is of particular interest. Herein we propose a model of the molecular mechanism by which ET-1 induced cardiomyocyte terminal differentiation occurs.
Keywords: Cardiomyocyte, Endothelin-1, EED, Fetal, Heart, Proliferation, Proteome.
Graphical Abstract
Current Topics in Medicinal Chemistry
Title:Proteomic Analysis of Endothelin-1 Targets in the Regulation of Cardiomyocyte Proliferation
Volume: 17 Issue: 15
Author(s): Alexandra N. Shin, Chiranjib Dasgupta, Guangyu Zhang, Kala Seal and Lubo Zhang*
Affiliation:
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350,United States
Keywords: Cardiomyocyte, Endothelin-1, EED, Fetal, Heart, Proliferation, Proteome.
Abstract: Hypoxia is a fetal stressor that leads to the production of endothelin-1 (ET-1). Previous work has shown that ET-1 treatment leads to the premature terminal differentiation of fetal cardiomyocytes. However, the precise mechanism is unknown. We tested the hypothesis that the fetal cardiomyocyte proteome will be greatly altered due to ET-1-treatment, which reveals a potential molecular mechanism of ET-1-induced terminal differentiation. Over a thousand proteins were detected in the fetal cardiomyocytes and among them 75 proteins were significantly altered due to ET-1 treatment. Using IPA pathway analysis, the merged network depicted several key proteins that appeared to be involved in regulating proliferation, including: EED, UBC, ERK1/2, MAPK, Akt, and EGFR. EED protein, which is associated with regulating proliferation via epigenetic mechanisms, is of particular interest. Herein we propose a model of the molecular mechanism by which ET-1 induced cardiomyocyte terminal differentiation occurs.
Export Options
About this article
Cite this article as:
Shin N. Alexandra, Dasgupta Chiranjib, Zhang Guangyu, Seal Kala and Zhang Lubo*, Proteomic Analysis of Endothelin-1 Targets in the Regulation of Cardiomyocyte Proliferation, Current Topics in Medicinal Chemistry 2017; 17 (15) . https://dx.doi.org/10.2174/1568026617666161116142417
DOI https://dx.doi.org/10.2174/1568026617666161116142417 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Acute Physical Stress Increases Serum Levels of Specific microRNAs
MicroRNA Ultrasound Techniques for Drug Delivery in Cardiovascular Medicine
Current Drug Discovery Technologies Cardioprotective Potential of Iron Chelators and Prochelators
Current Medicinal Chemistry Remediation of Cellular Hypoxic Damage by Pharmacological Agents
Current Pharmaceutical Design Preface
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry TSH Variations in Chronic Heart Failure Outpatients: Clinical Correlates and Outcomes
Endocrine, Metabolic & Immune Disorders - Drug Targets Susceptibility Risk Alleles of -238G/A, -308G/A and -1031T/C Promoter Polymorphisms of TNF-α Gene to Uterine Leiomyomas
Recent Advances in DNA & Gene Sequences (Discontinued) The Role of Autophagy in Subarachnoid Hemorrhage: An Update
Current Neuropharmacology Cardiovascular Pharmacogenetics of Antihypertensive and Lipid- Lowering Therapies
Current Molecular Medicine Neuropeptide Y Induces Cardiomyocyte Hypertrophy <i>via</i> Attenuating miR-29a-3p in Neonatal Rat Cardiomyocytes
Protein & Peptide Letters Genetically Modified Endothelial Progenitor Cells in the Therapy of Cardiovascular Disease and Pulmonary Hypertension
Current Vascular Pharmacology Contrast Echocardiography: An Update on Clinical Applications
Current Pharmaceutical Design Flavones as a Privileged Scaffold in Drug Discovery: Current Developments
Current Organic Synthesis MicroRNAs in Atrial Fibrillation
Current Medicinal Chemistry Clinical Characteristics and Treatment of Cardiomyopathies in Children
Current Cardiology Reviews Cell Biological Consequences of Mitochondrial NADH: Ubiquinone Oxidoreductase Deficiency
Current Neurovascular Research Chest Pain in Children
Current Pediatric Reviews Pathophysiology of Coronary Collaterals
Current Cardiology Reviews Fused 1,4-Dihydropyridines as Potential Calcium Modulatory Compounds
Mini-Reviews in Medicinal Chemistry Polymorphism Gln27Glu of β2 Adrenergic Receptors in Patients with Ischaemic Cardiomyopathy
Current Vascular Pharmacology