Abstract
Dietary protein is the main source of the body needed protein for animals. A great number of domestic animals including cattle, sheep, goats, pigs and chicken and other species are raised in the world to supply meat, milk and eggs that contain high quality of protein for human consumption. Domestic animals consume a great amount of feeds and water and excrete a large amount of faeces and urine. The conversion rate of dietary nitrogen (N, mainly dietary protein) to product N in livestock is low and the amount of N excretion is high and the nitrogenous compounds in excreta can be used as materials for nitrous oxide (N2O) formation in the processes of nitrification and denitrification in storage of excreta. Hence livestock farms and grazing pastures are important sources of N2O. N2O is a potent greenhouse gas and the key factor that damages the ozonosphere of the earth. Therefore, it is urgent to reveal the dietary protein metabolism processes and the regulation mechanism, which will help to reduce N2O emission. The nutritional options to reduce N excretion from livestock and consequently N2O emission include feeding low N rations and supplementing essential amino acid (AA) such as lysine and methionine to balance the AA profile of rations for pigs and ruminants. Other options include regulating partition of N excretion from urine to faeces and urinary nitrogenous constituents by decreasing urea N and increasing hippuric acid in ruminants. Supplementing tannic acid in the ration of ruminants has the potential to decrease the ratio of urinary N/faecal N and regulate the urinary nitrogenous components of ruminants and possibly reduce N2O emission in storage of excreta.
Keywords: Nitrous oxide, protein metabolism, excreta, livestock, domestic animals.
Graphical Abstract