Abstract
Sexual maturation and olfactory bulb defects found in prokineticin 2 (Pk2) and prokineticin receptor 2 (Pkr2) mutant mice resembling the phenotypic characteristics of Kallmann syndrome (KS), gave rise to the question of whether these genes would have a role in KS pathogenesis. Later, mutations in both genes were identified in patients suffering from KS. The gene responsible for the Xlinked form of KS, ANOS1, encodes the ECM protein anosmin 1. Among other functions, anosmin 1 can regulate the activity of FGFR1, encoded by one of the genes involved in the autosomal transmission of KS. Therefore, it has been proposed that anosmin 1 could interact with PKR2 to modulate its activity. We present the first evidence supporting this hypothesis and report the interaction of full-length anosmin 1 with three extracellular domains of PKR2. A truncated anosmin 1 protein comprising the first three domains of the protein interacts with the second extracellular loop of PKR2, involved in PK2 binding. Finally, last three FnIII repeats of anosmin 1 also interacted with the PKR2 domains that interacted with full-length anosmin 1. Our data represent a molecular link between two of the genes involved in KS pathogenesis.
Keywords: Anosmin 1, Kallmann syndrome, prokineticin receptor 2 (PKR2), molecular pathogenesis.
Graphical Abstract