Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Inhibitors of the Metalloproteinase Anthrax Lethal Factor

Author(s): Allison B. Goldberg and Benjamin E. Turk

Volume 16, Issue 21, 2016

Page: [2350 - 2358] Pages: 9

DOI: 10.2174/1568026616666160413135732

Price: $65

Abstract

Bacillus anthracis, a rod shaped, spore forming, gram positive bacteria, is the etiological agent of anthrax. B. anthracis virulence is partly attributable to two secreted bipartite protein toxins, which act inside host cells to disrupt signaling pathways important for host defense against infection. These toxins may also directly contribute to mortality in late stage infection. The zinc-dependent metalloproteinase anthrax lethal factor (LF) is a critical component of one of these protein toxins and a prime target for inhibitor development to produce anthrax therapeutics. Here, we describe recent efforts to identify specific and potent LF inhibitors. Derivatization of peptide substrate analogs bearing zinc-binding groups has produced potent and specific LF inhibitors, and X-ray crystallography of LFinhibitor complexes has provided insight into features required for high affinity binding. Novel inhibitor scaffolds have been identified through several approaches, including fragment-based drug discovery, virtual screening, and highthroughput screening of diverse compound libraries. Lastly, efforts to discover LF inhibitors have led to the development of new screening strategies, such as the use of full-length proteins as substrates, that may prove useful for other proteases as well. Overall, these efforts have led to a collection of chemically and mechanistically diverse molecules capable of inhibiting LF activity in vitro and in cells, as well as in animal models of anthrax infection.

Keywords: Protease inhibitors, High throughput screening, Drug discovery, Infectious disease.


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy