Abstract
A key challenge in pulmonary gene therapy for cystic fibrosis is to provide long-term correction of the genetic defect. This may be achievable by targeting airway epithelial stem/progenitor cells with an integrating vector. Here, we evaluated the ability of a lentiviral vector, derived from the simian immunodeficiency virus and pseudotyped with F and HN envelope proteins from Sendai virus, to transduce progenitor basal cells of the mouse nasal airways. We first transduced basal cell-enriched cultures ex vivo and confirmed efficient transduction of cytokeratin-5 positive cells. We next asked whether progenitor cells could be transduced in vivo. We evaluated the transduction efficiency in mice pretreated by intranasal administration of polidocanol to expose the progenitor cell layer. Compared to control mice, polidocanol treated mice demonstrated a significant increase in the number of transduced basal cells at 3 and 14 days post vector administration. At 14 days, the epithelium of treated mice contained clusters (4 to 8 adjacent cells) of well differentiated ciliated, as well as basal cells suggesting a clonal expansion. These results indicate that our lentiviral vector can transduce progenitor basal cells in vivo, although transduction required denudation of the surface epithelium prior to vector administration.
Keywords: Cystic fibrosis, Gene therapy, Lentivirus, Progenitor basal cells, Polidocanol.
Current Gene Therapy
Title:Ex Vivo and In Vivo Lentivirus-Mediated Transduction of Airway Epithelial Progenitor Cells
Volume: 15 Issue: 6
Author(s): Giulia Leoni, Marguerite Y. Wasowicz, Mario Chan, Cuixiang Meng, Raymond Farley, Steven L. Brody, Makoto Inoue, Mamoru Hasegawa, Eric W.F.W. Alton and Uta Griesenbach
Affiliation:
Keywords: Cystic fibrosis, Gene therapy, Lentivirus, Progenitor basal cells, Polidocanol.
Abstract: A key challenge in pulmonary gene therapy for cystic fibrosis is to provide long-term correction of the genetic defect. This may be achievable by targeting airway epithelial stem/progenitor cells with an integrating vector. Here, we evaluated the ability of a lentiviral vector, derived from the simian immunodeficiency virus and pseudotyped with F and HN envelope proteins from Sendai virus, to transduce progenitor basal cells of the mouse nasal airways. We first transduced basal cell-enriched cultures ex vivo and confirmed efficient transduction of cytokeratin-5 positive cells. We next asked whether progenitor cells could be transduced in vivo. We evaluated the transduction efficiency in mice pretreated by intranasal administration of polidocanol to expose the progenitor cell layer. Compared to control mice, polidocanol treated mice demonstrated a significant increase in the number of transduced basal cells at 3 and 14 days post vector administration. At 14 days, the epithelium of treated mice contained clusters (4 to 8 adjacent cells) of well differentiated ciliated, as well as basal cells suggesting a clonal expansion. These results indicate that our lentiviral vector can transduce progenitor basal cells in vivo, although transduction required denudation of the surface epithelium prior to vector administration.
Export Options
About this article
Cite this article as:
Leoni Giulia, Y. Wasowicz Marguerite, Chan Mario, Meng Cuixiang, Farley Raymond, L. Brody Steven, Inoue Makoto, Hasegawa Mamoru, W.F.W. Alton Eric and Griesenbach Uta, Ex Vivo and In Vivo Lentivirus-Mediated Transduction of Airway Epithelial Progenitor Cells, Current Gene Therapy 2015; 15 (6) . https://dx.doi.org/10.2174/1566523215666151016123625
DOI https://dx.doi.org/10.2174/1566523215666151016123625 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
The Changing Face of Tobacco Use Among United States Youth
Current Drug Abuse Reviews Ultrasound Techniques for Drug Delivery in Cardiovascular Medicine
Current Drug Discovery Technologies Editorial [Hot topic: New Perspectives in Cardiovascular Medicine (Executive Editor: Jaye P.F. Chin-Dusting)]
Current Pharmaceutical Design Potential Roles of MyomiRs in Cardiac Development and Related Diseases
Current Cardiology Reviews Therapeutic Targets in Extracellular Protein Deposition Diseases
Current Medicinal Chemistry Effects of Obesity on Vascular Potassium Channels
Current Vascular Pharmacology Anticancer Potential of Ginger: Mechanistic and Pharmaceutical Aspects
Current Pharmaceutical Design Diabetes Mellitus: Channeling Care through Cellular Discovery
Current Neurovascular Research Critical Issues in Delivery of RNAi Therapeutics In Vivo
Current Pharmaceutical Biotechnology Does Phosphodiesterase 11A (PDE11A) Hold Promise as a Future Therapeutic Target?
Current Pharmaceutical Design Perioperative Management of Intracranial Aneurysm and Subarachnoid Hemorrhage
Current Pharmaceutical Design A Novel Systemic Indicator of Periodontal Tissue Damage: Ischemia Modified Albumin
Combinatorial Chemistry & High Throughput Screening Reviewing the Cardiovascular Complications of HIV Infection After the Introduction of Highly Active Antiretroviral Therapy
Current Drug Targets - Cardiovascular & Hematological Disorders Proteomic Insights into Inflammatory Airway Diseases
Current Proteomics ADAM Proteins- Therapeutic Potential in Cancer
Current Cancer Drug Targets Mycobacterium w Immunotherapy for Treating Pulmonary Tuberculosis - a Systematic Review
Current Pharmaceutical Design Pulmonary Hypertension and Right Ventricular Dysfunction in Chronic Lung Diseases: New Pathobiologic Concepts
Current Respiratory Medicine Reviews Editorial from Editor-in-Chief: Amniotic Pulmonary Embolism and the Respiratory System: Management Trends and Future Options
Current Respiratory Medicine Reviews Overview and Findings from the Rush Memory and Aging Project
Current Alzheimer Research Biopterin Analogues: Novel Nitric Oxide Synthase Inhibitors with Immunosuppressive Action
Current Drug Metabolism