Abstract
Trypanosomatids parasites have complex life cycles which involve a wide diversity of milieus with very different physicochemical properties. Arginine kinase is one of the key enzymes, responsible for the parasites’ metabolic plasticity, which maintains the cell energy homeostasis during environment changes. Arginine kinase catalyzes the reversible phosphorylation between phosphoarginine and ADP. The phosphagen phosphoarginine sustains high levels of cellular activity until metabolic events, such as glycolysis and oxidative phosphorylation, are switched on. In different unicellular and multicellular organisms including trypanosomatids, it was demonstrated that arginine kinase is an important component in resistance mechanisms to different stress factors, such as reactive oxygen species, trypanocidal drugs, pH and starvation. In addition, few arginine kinase inhibitors were identified during the lasts years, some of them with trypanocidal activity, such as polyphenolic compounds. All these unique features, in addition to the fact that arginine kinase is completely absent in mammals, make this pathway a favorable start point for rational drug design for the treatment of human trypanosomamiases.
Keywords: Arginine kinase, drug development, energy metabolism, phosphagen kinase, phosphoarginine, Trypanosoma cruzi, Trypanosoma brucei, trypanosomatids.
Infectious Disorders - Drug Targets
Title:Arginine Kinase: A Potential Pharmacological Target in Trypanosomiasis
Volume: 14 Issue: 1
Author(s): Claudio A. Pereira
Affiliation:
Keywords: Arginine kinase, drug development, energy metabolism, phosphagen kinase, phosphoarginine, Trypanosoma cruzi, Trypanosoma brucei, trypanosomatids.
Abstract: Trypanosomatids parasites have complex life cycles which involve a wide diversity of milieus with very different physicochemical properties. Arginine kinase is one of the key enzymes, responsible for the parasites’ metabolic plasticity, which maintains the cell energy homeostasis during environment changes. Arginine kinase catalyzes the reversible phosphorylation between phosphoarginine and ADP. The phosphagen phosphoarginine sustains high levels of cellular activity until metabolic events, such as glycolysis and oxidative phosphorylation, are switched on. In different unicellular and multicellular organisms including trypanosomatids, it was demonstrated that arginine kinase is an important component in resistance mechanisms to different stress factors, such as reactive oxygen species, trypanocidal drugs, pH and starvation. In addition, few arginine kinase inhibitors were identified during the lasts years, some of them with trypanocidal activity, such as polyphenolic compounds. All these unique features, in addition to the fact that arginine kinase is completely absent in mammals, make this pathway a favorable start point for rational drug design for the treatment of human trypanosomamiases.
Export Options
About this article
Cite this article as:
Pereira A. Claudio, Arginine Kinase: A Potential Pharmacological Target in Trypanosomiasis, Infectious Disorders - Drug Targets 2014; 14 (1) . https://dx.doi.org/10.2174/1871526514666140713144103
DOI https://dx.doi.org/10.2174/1871526514666140713144103 |
Print ISSN 1871-5265 |
Publisher Name Bentham Science Publisher |
Online ISSN 2212-3989 |
![](/images/wayfinder.jpg)
- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Skin Barrier Dysfunction and Systemic Sensitization to Allergens Through the Skin
Current Drug Targets - Inflammation & Allergy Recent Advances in Identification and Characterization of β-Adrenoceptor Agonists and Antagonists
Current Topics in Medicinal Chemistry The Effect of Vitamin D Supplementation on Clinical Outcomes of Asthmatic Children with Vitamin D Insufficiency
Endocrine, Metabolic & Immune Disorders - Drug Targets Monocyclic and Fused Azines and Azoles as Histamine H<sub>4</sub> Receptor Ligands
Current Medicinal Chemistry Editorial [Hot topic: Innate Immunity Molecules S100A8/A9 Involved in Stress Response and Cancer Biology (Guest Editors: Claus Kerkhoff and Saeid Ghavami)]
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry Networking Between γc and GH-R Signaling in the Control of Cell Growth
Current Signal Transduction Therapy Part-Time α-Secretases: The Functional Biology of ADAM 9, 10 and 17
Current Alzheimer Research The Antitumor Effects of Britanin on Hepatocellular Carcinoma Cells and its Real-Time Evaluation by In Vivo Bioluminescence Imaging
Anti-Cancer Agents in Medicinal Chemistry Ceramide Kinase and the Ceramide-1-Phosphate/cPLA2α Interaction as a Therapeutic Target
Current Drug Targets Leptin: The Prototypic Adipocytokine and its Role in NAFLD
Current Pharmaceutical Design PLA2 Mediated Arachidonate Free Radicals: PLA2 Inhibition and Neutralization of Free Radicals by Anti-Oxidants – A New Role as Anti-Inflammatory Molecule
Current Topics in Medicinal Chemistry Targeting Cancer Stem Cells with Repurposed Drugs to Improve Current Therapies
Recent Patents on Anti-Cancer Drug Discovery Pharmacology of Ivabradine and the Effect on Chronic Heart Failure
Current Topics in Medicinal Chemistry Direct Selection of cDNAs from Filamentous Phage Surface Display Libraries: An Update
Medicinal Chemistry Reviews - Online (Discontinued) Synthesis and Biological Potential Assessment of 2-Substituted Quinazolin-4(3<i>H</i>)-ones as Inhibitors of Phosphodiesterase-I and Carbonic Anhydrase-II
Medicinal Chemistry A Miniaturized Glucocorticoid Receptor Translocation Assay Using Enzymatic Fragment Complementation Evaluated with qHTS
Combinatorial Chemistry & High Throughput Screening Nanomedicine against Alzheimer’s and Parkinson’s Disease
Current Pharmaceutical Design C5a, a Therapeutic Target in Sepsis
Recent Patents on Anti-Infective Drug Discovery Diagnosis and Management of Hypertensive Emergencies Complicating Pregnancy
Current Women`s Health Reviews Nanocrystal Technology in the Delivery of Poorly Soluble Drugs: An Overview
Current Drug Delivery