Abstract
Cadmium (Cd) is a well known environmental and industrial heavy metal with multi-organ toxic effects. In this study, we examined the effects of Cd as cadmium chloride (CdCl2) on the proteomic profiles of exposed HEK 293, HepG2 and 1321N1 cells in an attempt to develop suitable biomarkers for Cd toxicity. 2D-gel electrophoresis (2DE) was performed on the cell extracts after 24 hr exposure to 5, 10 and 50 µM Cd and protein spots were compared using Phoretix TM 2D analysis software. Comparisons were made between Cd treated and untreated cells and spots were identified by mass spectroscopy using peptide-mass fingerprinting and database searching. The results show that the different concentrations (5-50 µM) of CdCl2 used in this study caused at least 1-5-fold induction in some proteins in the three cell lines. A common feature in the proteomic profile was identified in HepG2 and HEK 293 cells after exposure to 5 µM CdCl2 and this was the induction of one of the subunits of ATP synthase. 2DE analysis shows a 2.95- and 2.54-fold induction in ATP synthase in HEK 293 and HepG2 cells, respectively after 24 hr exposure to 5 µM CdCl2. However, western blot validation shows 4.8- and 3.54-fold induction in ATPase in HEK 293 and HepG2 cells respectively. Both 2DE and western blot analysis shows a 2.2-fold induction in calreticulin, a Ca2+-binding protein, in HepG2 cells after 24 hr exposure to 5 µM CdCl2.Though 2DE analysis shows a 1.7-fold induction in Albumin (ALB) protein in HEK 293 cells exposed to 50 µM CdCl2, western blot analysis, however, shows a 10-fold increase. Exposure to 5 µM Cd also induced (1.8-fold) C-protein expression in 1321N1 cells. However, western blot analysis shows a 4.5-fold increase. These results suggest that Cd drastically alters the proteomic profiles of exposed cells, which include alterations in the expressions of proteins, involve in metabolism and intracellular Ca2+ homeostasis. These alterations may be important hallmarks in identifying Cd toxicity.
Keywords: Albumin, ATP synthase, cadmium toxicity, calreticulin, C-protein, 2D-electrophoresis.
Current Proteomics
Title:2D-Gel Electrophoresis Analysis of Proteomic Changes in Three Human Cell Lines; HEK 293, HepG2 and 1321N1 Cells in Response to Cadmium
Volume: 11 Issue: 1
Author(s): Akeem O. Lawal and Elizabeth M. Ellis
Affiliation:
Keywords: Albumin, ATP synthase, cadmium toxicity, calreticulin, C-protein, 2D-electrophoresis.
Abstract: Cadmium (Cd) is a well known environmental and industrial heavy metal with multi-organ toxic effects. In this study, we examined the effects of Cd as cadmium chloride (CdCl2) on the proteomic profiles of exposed HEK 293, HepG2 and 1321N1 cells in an attempt to develop suitable biomarkers for Cd toxicity. 2D-gel electrophoresis (2DE) was performed on the cell extracts after 24 hr exposure to 5, 10 and 50 µM Cd and protein spots were compared using Phoretix TM 2D analysis software. Comparisons were made between Cd treated and untreated cells and spots were identified by mass spectroscopy using peptide-mass fingerprinting and database searching. The results show that the different concentrations (5-50 µM) of CdCl2 used in this study caused at least 1-5-fold induction in some proteins in the three cell lines. A common feature in the proteomic profile was identified in HepG2 and HEK 293 cells after exposure to 5 µM CdCl2 and this was the induction of one of the subunits of ATP synthase. 2DE analysis shows a 2.95- and 2.54-fold induction in ATP synthase in HEK 293 and HepG2 cells, respectively after 24 hr exposure to 5 µM CdCl2. However, western blot validation shows 4.8- and 3.54-fold induction in ATPase in HEK 293 and HepG2 cells respectively. Both 2DE and western blot analysis shows a 2.2-fold induction in calreticulin, a Ca2+-binding protein, in HepG2 cells after 24 hr exposure to 5 µM CdCl2.Though 2DE analysis shows a 1.7-fold induction in Albumin (ALB) protein in HEK 293 cells exposed to 50 µM CdCl2, western blot analysis, however, shows a 10-fold increase. Exposure to 5 µM Cd also induced (1.8-fold) C-protein expression in 1321N1 cells. However, western blot analysis shows a 4.5-fold increase. These results suggest that Cd drastically alters the proteomic profiles of exposed cells, which include alterations in the expressions of proteins, involve in metabolism and intracellular Ca2+ homeostasis. These alterations may be important hallmarks in identifying Cd toxicity.
Export Options
About this article
Cite this article as:
Lawal O. Akeem and Ellis M. Elizabeth, 2D-Gel Electrophoresis Analysis of Proteomic Changes in Three Human Cell Lines; HEK 293, HepG2 and 1321N1 Cells in Response to Cadmium, Current Proteomics 2014; 11 (1) . https://dx.doi.org/10.2174/1570164611666140218232521
DOI https://dx.doi.org/10.2174/1570164611666140218232521 |
Print ISSN 1570-1646 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6247 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Rock1 & 2 Perform Overlapping and Unique Roles in Angiogenesis and Angiosarcoma Tumor Progression
Current Molecular Medicine Meet Our Editor-in-Chief
Clinical Cancer Drugs Design and Development of Glutathione Conjugated Poly (d, l) lactide Nanocarriers for Delivery of Hydrophilic Fluorescent Marker across Blood Brain Barrier
Current Nanoscience Recent Advancement in Discovery and Development of Natural Product Combretastatin-inspired Anticancer Agents
Anti-Cancer Agents in Medicinal Chemistry Dequalinium-Derived Nanoconstructs: A Promising Vehicle for Mitochondrial Targeting
Current Drug Delivery Pharmacological Profile and Pharmacogenomics of Anti-Cancer Drugs Used for Targeted Therapy
Current Cancer Drug Targets The Traces of Sound: Taking the Road to Skin
Current Rheumatology Reviews Meet Our Editorial Board Member
Mini-Reviews in Organic Chemistry KiSS1-Induced GPR54 Signaling Inhibits Breast Cancer Cell Migration and Epithelial-Mesenchymal Transition via Protein Kinase D1
Current Molecular Medicine Liposomal Targeting of Angiogenic Vasculature
Current Drug Delivery Impacts of Amine Functionalized Iron Oxide Nanoparticles on HepG2 Cell Line
Current Nanoscience Immunological and Translational Aspects of Glycolytic Metabolism in Various Human Tumor Entities
Clinical Immunology, Endocrine & Metabolic Drugs (Discontinued) Patent Selections
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) Delivery of Curcumin and Medicinal Effects of the Copper(II)-Curcumin Complexes
Current Pharmaceutical Design PET Imaging with [<sup>68</sup>Ga]NOTA-RGD for Prostate Cancer: A Comparative Study with [<sup>18</sup>F]Fluorodeoxyglucose and [<sup>18</sup>F]Fluoroethylcholine
Current Cancer Drug Targets Pharmacogenetics and Statin Treatment: Reality or Theory?
Current Vascular Pharmacology Pyrrolo[2,3-d]Pyrimidines as Kinase Inhibitors
Current Medicinal Chemistry Current Status and Perspectives in the Development of Camptothecins
Current Pharmaceutical Design Breast Cancer Resistance Protein: A Potential Therapeutic Target for Cancer
Current Drug Targets Progress in Immunotherapy of Head and Neck Squamous Cell Carcinoma
Current Molecular Pharmacology