Abstract
Poorly controlled diabetes mellitus can result in serious complications. Gene therapy is increasingly being considered as an alternative approach to treat diabetes, because of its ability to induce physiological insulin secretion and it allows patients to escape insulin injections. The properties of gut K and L-cells, including glucose sensitivity, the ability to process insulin and a regulated secretion pathway support their use as surrogate β-cells. Previous in vitro studies have provided sufficient evidence supporting the use of these cells for gene therapy studies. Therefore, we examined the ability of K and L-cells to produce insulin in diabetic mice. Chitosan nanoparticles were used to transfer the insulin gene into intestinal cells via oral administration. The efficiency of chitosan as a gene vehicle was investigated through the use of reporter gene. Insulin mRNA and protein expression levels were measured by RT-PCR and ELISA, respectively. Blood glucose testing revealed that this treatment reduced glucose levels in diabetic mice. The decrease in blood glucose level in the first week of treatment was greater in mice with K-cell specific insulin expression compared with mice with L-cellspecific insulin expression. These results indicate that inducing insulin secretion in K-cells conferred a quicker response to gene therapy.
Keywords: Chitosan nanoparticles, diabetes gene therapy, in vivo, K cells and L-cells.
Current Gene Therapy
Title:Insulin Secreted From Genetically Engineered Intestinal Cells Reduces Blood Glucose Levels in Diabetic Mice
Volume: 13 Issue: 4
Author(s): Mina Rasouli, Zeenathul N. Allaudin, Abdul R. Omar and Zalinah Ahmad
Affiliation:
Keywords: Chitosan nanoparticles, diabetes gene therapy, in vivo, K cells and L-cells.
Abstract: Poorly controlled diabetes mellitus can result in serious complications. Gene therapy is increasingly being considered as an alternative approach to treat diabetes, because of its ability to induce physiological insulin secretion and it allows patients to escape insulin injections. The properties of gut K and L-cells, including glucose sensitivity, the ability to process insulin and a regulated secretion pathway support their use as surrogate β-cells. Previous in vitro studies have provided sufficient evidence supporting the use of these cells for gene therapy studies. Therefore, we examined the ability of K and L-cells to produce insulin in diabetic mice. Chitosan nanoparticles were used to transfer the insulin gene into intestinal cells via oral administration. The efficiency of chitosan as a gene vehicle was investigated through the use of reporter gene. Insulin mRNA and protein expression levels were measured by RT-PCR and ELISA, respectively. Blood glucose testing revealed that this treatment reduced glucose levels in diabetic mice. The decrease in blood glucose level in the first week of treatment was greater in mice with K-cell specific insulin expression compared with mice with L-cellspecific insulin expression. These results indicate that inducing insulin secretion in K-cells conferred a quicker response to gene therapy.
Export Options
About this article
Cite this article as:
Rasouli Mina, Allaudin N. Zeenathul, Omar R. Abdul and Ahmad Zalinah, Insulin Secreted From Genetically Engineered Intestinal Cells Reduces Blood Glucose Levels in Diabetic Mice, Current Gene Therapy 2013; 13 (4) . https://dx.doi.org/10.2174/15665232113139990002
DOI https://dx.doi.org/10.2174/15665232113139990002 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Momordicacharantia: A New Strategic Vision to Improve the Therapy of Endoplasmic Reticulum Stress
Current Pharmaceutical Design Therapeutic Use of Vitamin D and its Analogues in Autoimmunity
Recent Patents on Inflammation & Allergy Drug Discovery Influence of Bariatric Surgery on the Expression of Nesfatin-1 in Rats with Type 2 Diabetes Mellitus
Current Pharmaceutical Design Cerium and Yttrium Oxide Nanoparticles and Nano-selenium Produce Protective Effects Against H2O2-induced Oxidative Stress in Pancreatic Beta Cells by Modulating Mitochondrial Dysfunction
Pharmaceutical Nanotechnology Caffeine and Suicide: A Systematic Review
CNS & Neurological Disorders - Drug Targets Intratubular Renin-Angiotensin System in Hypertension
Current Hypertension Reviews Curcumin Activates Erythrocyte Membrane Acetylcholinesterase
Letters in Drug Design & Discovery Activity Based Chemical Proteomics: Profiling Proteases as Drug Targets
Current Drug Discovery Technologies Anti-Proliferative Activity of Standardized Methanol Extract of Coscinium fenestratum and Its Major Constituent, Berberine, Against Nasopharyngeal Carcinoma Cells
The Natural Products Journal High Prevalence of Vitamin D Deficiency and Correlation with Cystatin-C and Other Cardiovascular and Renal Risk Biomarkers in Patients with Type 2 Diabetes Mellitus Complicated with Hypertension
Current Diabetes Reviews Association of Sleep Apnea Syndrome and Diabetes Mellitus
Current Respiratory Medicine Reviews Editorial (Hot Topic: Achieving Current Goals in Prevention and Treatment of Vascular Disease: An Update)
Current Pharmaceutical Design Carnitine Metabolism and Deficit - When Supplementation is Necessary?
Current Pharmaceutical Biotechnology Recent Patents on Oral Insulin
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) State of the Art Clinical Efficacy and Safety Evaluation of N-Acetylcarnosine Dipeptide Ophthalmic Prodrug. Principles for the Delivery, Self-Bioactivation, Molecular Targets and Interaction with a Highly Evolved Histidyl-Hydrazide Structure in the Treatment and Therapeutic Management of a Group of Sight-Threatening Eye Diseases
Current Clinical Pharmacology Dexamethasone and Restenosis After Coronary Stent Implantation: New Indication for an Old Drug?
Current Pharmaceutical Design The Secreted Aspartic Proteinases as a New Target in the Therapy of Candidiasis
Current Drug Targets Management of Hypertension in Relation to Acute Coronary Syndromes and Revascularisation
Current Pharmaceutical Design Hydroethanolic Extract of <i>Lampaya Medicinalis</i> Phil. (<i>Verbenaceae</i>) Decreases Proinflammatory Marker Expression in Palmitic Acid-exposed Macrophages
Endocrine, Metabolic & Immune Disorders - Drug Targets Relevance of Postprandial Lipemia in Metabolic Syndrome
Current Vascular Pharmacology