Abstract
Bevacizumab is a humanised monoclonal antibody targeted to the vascular endothelial growth factor (VEGF). VEGF is the ligand for VEGF receptors (VEGFR), which are important for the development and maintenance of the angiogenic phenotype in high-grade solid tumors, including malignant gliomas. An overview of VEGF, VEGFR, and the pharmacology of bevacizumab will be presented. Bevacizumab is active in pre-clinical testing against glioma tissue cultures and xenograft models. In the clinical setting, in combination with irinotecan and other chemotherapy agents, it has shown significant activity in patients with glioblastoma multiforme (GBM) and other brain tumors. Objective responses on neuro-imaging have been noted in 30-60% of reported cases. Prolongation of progression-free survival and overall survival have also been suggested in many reports. Treatment of bevacizumab is associated with potential side effects, including thromboembolic disorders, fatigue, intracranial hemorrhage, proteinuria, hypertension, and bowel perforation.
Keywords: Bevacizumab, chemotherapy, vascular endothelial growth factor, angiogenesis, brain tumor, glioblastoma multiforme, glioma
Current Signal Transduction Therapy
Title:Overview of Angiogenesis and the use of Bevacizumab in Patients with Malignant Gliomas
Volume: 8 Issue: 1
Author(s): Herbert B. Newton
Affiliation:
Keywords: Bevacizumab, chemotherapy, vascular endothelial growth factor, angiogenesis, brain tumor, glioblastoma multiforme, glioma
Abstract: Bevacizumab is a humanised monoclonal antibody targeted to the vascular endothelial growth factor (VEGF). VEGF is the ligand for VEGF receptors (VEGFR), which are important for the development and maintenance of the angiogenic phenotype in high-grade solid tumors, including malignant gliomas. An overview of VEGF, VEGFR, and the pharmacology of bevacizumab will be presented. Bevacizumab is active in pre-clinical testing against glioma tissue cultures and xenograft models. In the clinical setting, in combination with irinotecan and other chemotherapy agents, it has shown significant activity in patients with glioblastoma multiforme (GBM) and other brain tumors. Objective responses on neuro-imaging have been noted in 30-60% of reported cases. Prolongation of progression-free survival and overall survival have also been suggested in many reports. Treatment of bevacizumab is associated with potential side effects, including thromboembolic disorders, fatigue, intracranial hemorrhage, proteinuria, hypertension, and bowel perforation.
Export Options
About this article
Cite this article as:
B. Newton Herbert, Overview of Angiogenesis and the use of Bevacizumab in Patients with Malignant Gliomas, Current Signal Transduction Therapy 2013; 8 (1) . https://dx.doi.org/10.2174/1574362411308010005
DOI https://dx.doi.org/10.2174/1574362411308010005 |
Print ISSN 1574-3624 |
Publisher Name Bentham Science Publisher |
Online ISSN 2212-389X |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Conjugation Approaches for Construction of Aptamer-Modified Nanoparticles for Application in Imaging
Current Topics in Medicinal Chemistry The Peripheral Benzodiazepine Receptor: A Promising Therapeutic Drug Target
Current Medicinal Chemistry Increased Expression of Matrix Metalloproteinases Mediates Thromboxane A2-Induced Invasion in Lung Cancer Cells
Current Cancer Drug Targets Overview of the Formulations and Analogs in the Taxanes' Story
Current Medicinal Chemistry Nanotechnology Platforms; An Innovative Approach to Brain Tumor Therapy
Medicinal Chemistry Curcumin Suppresses Tumor Growth and Angiogenesis in Human Glioma Cells Through Modulation of Vascular Endothelial Growth Factor/ Angiopoietin-2/Thrombospondin-1 Signaling
CNS & Neurological Disorders - Drug Targets Anti-cancer Therapies in High Grade Gliomas
Current Proteomics The Plasminogen Activation System Promotes Neurorepair in the Ischemic Brain
Current Drug Targets Crossed Cerebellar Diaschisis in Alzheimer’s Disease
Current Alzheimer Research Immuno-Isolation in Oncology - A Mini-Review
Current Pharmaceutical Biotechnology Meet Our Editorial Board Member
CNS & Neurological Disorders - Drug Targets Recent Developments in Chimeric NSAIDs as Anticancer Agents: Teaching an Old Dog a New Trick
Mini-Reviews in Medicinal Chemistry Antidepressant Desipramine Leads to C6 Glioma Cell Autophagy: Implication for the Adjuvant Therapy of Cancer
Anti-Cancer Agents in Medicinal Chemistry Mitocans: Mitochondrial Targeted Anti-Cancer Drugs as Improved Therapies and Related Patent Documents
Recent Patents on Anti-Cancer Drug Discovery Targeting Chemokine Receptor CXCR4 for Treatment of HIV-1 Infection, Tumor Progression, and Metastasis
Current Topics in Medicinal Chemistry Resveratrol Counteracts Hypoxia-Induced Gastric Cancer Invasion and EMT through Hedgehog Pathway Suppression
Anti-Cancer Agents in Medicinal Chemistry Will Arsenic Trioxide Benefit Treatment of Solid Tumor by Nano- Encapsulation?
Mini-Reviews in Medicinal Chemistry Cancer Chemoprevention by Targeting the Epigenome
Current Drug Targets Micro-/Nano-Scale Biointerfaces, Mechanical Coupling and Cancer Therapy
Current Topics in Medicinal Chemistry Lack of Association between NOD2 rs3135500 and IL12B rs1368439 microRNA Binding Site SNPs and Colorectal Cancer Susceptibility in an Iranian Population
MicroRNA