Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Oxidative Stress in Atherosclerosis Development: The Central Role of LDL and Oxidative Burst

Author(s): Ilaria Peluso, Giuseppa Morabito, Lourdes Urban, Francesca Ioannone and Mauro Serafi

Volume 12, Issue 4, 2012

Page: [351 - 360] Pages: 10

DOI: 10.2174/187153012803832602

Price: $65

Abstract

The involvement of both oxidative stress and hyperlipaemia in atherosclerosis development is well established. Oxidative burst is an innate immune response to infection, the latter being associated also with marked changes in lipid and lipoprotein metabolism, aimed to neutralize endotoxin toxic effects. On the other hand, lipid overload may increase lipopolysaccharide circulating levels and oxidative stress. Whilst these changes may be beneficial from the perspective of host defense, if they become chronic, they likely increase the risk of atherosclerosis. In particular, oxidation of lipoproteins, resulting from an imbalance of the pro- and antioxidant equilibrium, is involved in the pathologic process of atherosclerosis, changing cellular functions. Lipid oxidation, induced by leukocytes derived reactive oxygen species, can amplify foam cell formation through oxidized low density lipoproteins LDL (oxLDL) formation and uptake. The main enzymes, operating during oxidative burst, involved in LDL oxidation are NADPH oxidase and myeloperoxidase. In vitro studies have shown that oxLDL are able to induce many proatherogenic processes, including modulation of oxidative burst. OxLDL may also induce maturation of dendritic cells and regulate the shift from classical (M1) to alternative (M2) macrophage activation and from T helper 1 to T helper 2 response, suggesting that these could act as a bridge between innate and adaptative immunity, both involved in plaque development. Understanding the relationship between oxLDL and leukocyte oxidative burst helps to explain the involvement of innate immune responses in the early phases of atherosclerosis. The present review focuses on this interplay.

Keywords: Atherosclerosis, immunity, lipoproteins, low density, oxidative burst, hyperlipaemia, lipopolysaccharide circulating levels, oxidized low density lipoproteins LDL (oxLDL), Atherogenesis, endothelial injury, plasma antioxidants, cardiovascular diseases (CVD).


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy