Abstract
Secondary bone tumours arising in the field of a preceding radiotherapy are a serious late effect, in particular considering the increasing survival times in patients treated for paediatric malignancies. In general, therapy associated tumours are known to show a more aggressive behaviour and a limited response to chemotherapy compared with their primary counterparts. It is not clear however whether this less favourable outcome is caused by inherent genetic factors of the tumour cells or by a general systemic condition of the patient. To elucidate this we analysed a series of bone sarcomas with a history of prior irradiation for the presence of genomic alterations and compared them with the alterations identified earlier in primary osteosarcomas. We analysed seven radiation induced bone sarcomas for genome-wide losses of heterozygosity (LOH) using Affymetrix 10K2 high-density single nucleotide polymorphism (SNP) arrays. Additionally, copy number changes were analysed at two distinct loci on 10q that were recently found to be of major prognostic significance in primary osteosarcomas. All the investigated tumours showed a LOH at 10q21.1 with 86% of cases (6/7) revealing a total genome-wide LOH score above 2400 and more than 24% of the genome being affected. Our results indicate similar genetic alterations in radiation induced sarcomas of bone and primary osteosarcomas with a poor prognosis. We speculate that the high degree of genomic instability found in these tumours causes the poor prognosis irrespective of the initiating event.
Keywords: Genomic instability, Loss-of-heterozygosity, Osteosarcom, Predictive assay, Radiation-induced, SNP-array, Therapy-related, Therapy response, heterozygosity, radiotherapy , induced bone sarcomas
Current Genomics
Title:Secondary Radiation-Induced Bone Tumours Demonstrate a High Degree of Genomic Instability Predictive of a Poor Prognosis
Volume: 13 Issue: 6
Author(s): Christine Rumenapp, Jan Smida, Iria Gonzalez-Vasconcellos, Daniel Baumhoer, Bernard Malfoy, Nabila-Sandra Hadj-Hamou, Bahar Sanli-Bonazzi, Michaela Nathrath, Michael J. Atkinson and Michael Rosemann
Affiliation:
Keywords: Genomic instability, Loss-of-heterozygosity, Osteosarcom, Predictive assay, Radiation-induced, SNP-array, Therapy-related, Therapy response, heterozygosity, radiotherapy , induced bone sarcomas
Abstract: Secondary bone tumours arising in the field of a preceding radiotherapy are a serious late effect, in particular considering the increasing survival times in patients treated for paediatric malignancies. In general, therapy associated tumours are known to show a more aggressive behaviour and a limited response to chemotherapy compared with their primary counterparts. It is not clear however whether this less favourable outcome is caused by inherent genetic factors of the tumour cells or by a general systemic condition of the patient. To elucidate this we analysed a series of bone sarcomas with a history of prior irradiation for the presence of genomic alterations and compared them with the alterations identified earlier in primary osteosarcomas. We analysed seven radiation induced bone sarcomas for genome-wide losses of heterozygosity (LOH) using Affymetrix 10K2 high-density single nucleotide polymorphism (SNP) arrays. Additionally, copy number changes were analysed at two distinct loci on 10q that were recently found to be of major prognostic significance in primary osteosarcomas. All the investigated tumours showed a LOH at 10q21.1 with 86% of cases (6/7) revealing a total genome-wide LOH score above 2400 and more than 24% of the genome being affected. Our results indicate similar genetic alterations in radiation induced sarcomas of bone and primary osteosarcomas with a poor prognosis. We speculate that the high degree of genomic instability found in these tumours causes the poor prognosis irrespective of the initiating event.
Export Options
About this article
Cite this article as:
Rumenapp Christine, Smida Jan, Gonzalez-Vasconcellos Iria, Baumhoer Daniel, Malfoy Bernard, Hadj-Hamou Nabila-Sandra, Sanli-Bonazzi Bahar, Nathrath Michaela, J. Atkinson Michael and Rosemann Michael, Secondary Radiation-Induced Bone Tumours Demonstrate a High Degree of Genomic Instability Predictive of a Poor Prognosis, Current Genomics 2012; 13 (6) . https://dx.doi.org/10.2174/138920212802510420
DOI https://dx.doi.org/10.2174/138920212802510420 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Evaluation of <sup>177</sup>Lu-EDTMP in Dogs with Spontaneous Tumor Involving Bone: Pharmacokinetics, Dosimetry and Therapeutic Efficacy
Current Radiopharmaceuticals Pathological and Therapeutic Aspects of Long Noncoding RNAs in Osteosarcoma
Anti-Cancer Agents in Medicinal Chemistry New Indications for Established Drugs: Combined Tumor-Stroma-Targeted Cancer Therapy with PPARγ Agonists, COX-2 Inhibitors, mTOR Antagonists and Metronomic Chemotherapy
Current Cancer Drug Targets Electrochemical Cell-based Biosensors for Biomedical Applications
Current Topics in Medicinal Chemistry The Vitamin D/CYP24A1 Story in Cancer
Anti-Cancer Agents in Medicinal Chemistry Neurophysiological Mechanisms Related to Pain Management in Bone Tumors
Current Neuropharmacology Optical and Multimodal Peptide-Based Probes for In Vivo Molecular Imaging
Anti-Cancer Agents in Medicinal Chemistry Chemokines and Chemokine Receptors Blockers as New Drugs for the Treatment of Chronic Obstructive Pulmonary Disease
Current Medicinal Chemistry The Role of Transcription Factors in the Formation of an Arrhythmogenic Substrate in Congestive Human Heart Failure
Current Medicinal Chemistry Clinical Development of Inhibitors of the Insulin-like Growth Factor Receptor in Oncology
Current Drug Targets Suramin: Clinical Uses and Structure-Activity Relationships
Mini-Reviews in Medicinal Chemistry Pharmacogenetics of Metabolic Genes of Anthracyclines in Acute Myeloid Leukemia
Current Drug Metabolism Radiosensitization of Prostate Cancer by Soy Isoflavones
Current Cancer Drug Targets Ceramic Nanoparticles: Fabrication Methods and Applications in Drug Delivery
Current Pharmaceutical Design Combination Therapy of Cisplatin and other Agents for Osteosarcoma: A Review
Current Cancer Therapy Reviews Clinical Pharmacology of Cyclophosphamide and Ifosfamide
Current Drug Therapy Therapeutic Potential and Outlook of Alternative Medicine for Osteoporosis
Current Drug Targets Molecular Mechanisms of Anti-cancer Activities of β-elemene: Targeting Hallmarks of Cancer
Anti-Cancer Agents in Medicinal Chemistry Heparanase Patents: Dim Past and Bright Future
Recent Patents on Inflammation & Allergy Drug Discovery Recent Developments in the Field of Anticancer Platinum Complexes
Recent Patents on Anti-Cancer Drug Discovery