Abstract
The zebrafish has emerged as an excellent transitional screening model system between cell-based assays, which are rapid and inexpensive but have limited physiological relevance, and higher vertebrate models, which have better physiological relevance, but are more time-consuming and expensive to deploy. As vertebrates, zebrafish maintain significant evolutionary proximity to humans and have been validated as robust models for drug research, studies of mechanism and behavioral genetics. Unlike higher vertebrate models, zebrafish are well-suited to high-throughput applications owing to their high fecundity, rapid extrauterine development and transparency during organogenesis enabling in vivo labeling and imaging. Recent advances have been made in automating high content and high-throughput zebrafish screens, with the goal of developing fully automated drug screening platforms. The application and continued development of these technologies holds potential clinical significance in drug discovery and elucidating disease mechanisms.
Keywords: Chemical biology, drug development, high content, high throughput screen, pharmacogenomics, system automation, zebrafish, fully automated drug screening, Gene knockdown, Danio rerio