Abstract
The discrete particle model (DPM) is a mesoscale method used to study the hydrodynamics of dense dispersed flows. In this approach, the particle motion is described in a Lagrangian framework by directly solving the Newtonian kinetic equations of each individual particle while the gas flow is studied in an Eulerian framework. The constitutive relations for the dispersed phase are not required because the particle-particle interactions are modeled through a two-variant collision-handling algorithm. In this chapter a full understanding of the DPM technique is presented through a detailed description of the numerical model and the results of its applications to gas-solid fluidization systems. We also detail a multi-component numerical strategy developed by the authors to enhance the DPM efficiency.
Keywords: Discrete particle model, gas-solid flow, fluidization system, numerical efficiency.