Artificial Intelligence, Machine Learning and User Interface Design

Powering User Interface Design of Tourism Recommendation System with AI and ML

Author(s): P. M. Shelke, Suruchi Dedgaonkar* and R. N. Bhimanpallewar

Pp: 108-135 (28)

DOI: 10.2174/9789815179606124010008

* (Excluding Mailing and Handling)

Abstract

The term “User Experience” (UX) refers to all elements of a customer's relationship with a company, including its services, products, and overall customer experience. Meeting the specific consumer demands and knowing their behavioral patterns are the most important criteria for an efficient UX.

The backend that selects what to recommend and the frontend that gives the recommendation are the two essential components of recommendation systems (RS). An RS's user interface must deliver recommendations in a way that allows users to anticipate taking action on them. A user interface is required to provide the recommendations. When creating a recommender's user interface, the designers must make several decisions. Understandability, transparency, assessability, trust, and timeliness are five elements that the designer must address.

When it comes to organizing a trip, people are becoming increasingly accustomed to using modern technology. Users are provided with a large quantity of data, which they must evaluate in order to choose the offerings that are interesting or appropriate for them. A customized tourist attractions recommender system is thought to be the most efficient way for visitors to find tourist attractions. The recommender system compares the acquired data to comparable and dissimilar data from other sources to provide a list of recommended tourist sites.

 These systems, which assist people in finding what they need on the internet, have been a huge success, and they wouldn't be conceivable without an excellent user interface. Data can now be easily segmented based on demographics, habits, trends, and a variety of other factors, thanks to the application of machine learning and AI. The main concept is to provide each user with better strategic decisions to their preferences based on their prior travel data and behavior. In this way, every facet of human behavior that these systems supply and explore is then fed into algorithms, which develop meaningful patterns. These patterns are then expressed through an interface and then transformed into useful products and services that help businesses improve their user experience.

Both AI and machine learning are extremely compatible and friendly with UX; they all follow the same concepts and aims. However, there are many challenges to their implementation. AI/ML engineers and UX designers should collaborate on a shared platform to create a blueprint for a fantastic UX experience. The mix of qualitative and quantitative data is crucial if AI and machine learning connect with UX. There is no other technology that can improve UX as much as AI.

© 2024 Bentham Science Publishers | Privacy Policy