Abstract
Medical data can be stored and analyzed using the Internet of Medical Things (IoMT), which is a collection of smart devices that link to a wireless body area network (WBAN) using mobile edge computing (MEC). The Wireless Body Area Network (WBAN) is the most practical, cost-effective, easily adaptable, and noninvasive electronic health monitoring technology. WBAN consists of a coordinator and several sensors for monitoring the biological indications and jobs of the human body. The exciting field has led to a new research and standardization process, especially in WBAN performance and consistency. In duplicated mobility or WBASN scenarios, signal integrity is unstable, and system performance is greatly reduced. Therefore, the reduction of disturbances in the project must be considered. WBAN performance may compromise if co-existing other wireless networks are available. A complete detailed analysis of coexistence and mitigation solutions in WBAN technology is discussed in this paper. In particular, the low power consumption of IEEE 802.15.6 and IEEE 802.15.4, 3 of one of WBAN's leading Wi-Fi wireless technologies, have been investigated. It will elaborate on a comparison of WBAN interference mitigation schemes.