Abstract
Fluorine atom has unique properties and has a great interest in organic chemistry and pharmaceuticals. Insertion of fluorine atoms on pyridines induces significant properties to the pyridine ring. The introduction of fluorine atoms on pyridine is carried out by the fluorination of pyridine or pentachloropyridine. The withdrawing nature of these atoms is mainly responsible for the high reactivity of perfluoropyridines toward nucleophilic attack. Therefore, perfluoropyridines are a significant starting material for the synthesis of other substituted pyridines, ring-fused systems as well as macrocyclic compounds via reaction with various monodentate and bidentate nucleophiles, whereas the nature of nucleophile, reaction condition, and solvent have a basic role in the regiochemistry of the reactions. Furthermore, these compounds could participate in organometallic reactions by the reaction of halogen atom with metals and organometallic reagents. Additionally, they underwent hydrodefluorination in photochemical reactions in the presence of catalysts.
Keywords: Bidentate Nucleophile, Continuous Flow Processes, Copolymers, Hard–Hard Interaction Principle, Hydrodefluorination, Macrocycle, Medicinal Chemistry, Meisenheimer Intermediate, Monodentate Nucleophile, N-Methylated Pyridinium, Nucleophilic Substitution, Organometallic Perfluoroheteroaromatics, Pentafluoropyridine, Pentafluoropyridine Cation, Photochemical Reaction, Polyhaloheterocyls, Radical Addition, Regioselectivity, Ring-Fused, Tetrafluoropyridine.