Abstract
We present a general proof of the optical theorem (also known as the optical crosssection theorem) that reveals the intimate connection between the forward scattering amplitude and the absorption-plus-scattering of the incident wave within the scatterer. The oscillating electric charges and currents as well as the electric and magnetic dipoles of the scatterer, driven by an incident plane-wave, extract energy from the incident beam at a certain rate. The same oscillators radiate electromagnetic energy into the far field, thus giving rise to well-defined scattering amplitudes along various directions. The essence of the proof presented here is that the extinction cross-section of an object can be related to its forward scattering amplitude using the induced oscillations within the object but without an actual knowledge of the mathematical form assumed by these oscillations.