[1]
Sigurdsson, H.; Baldetorp, B.; Borg, A.; Dalberg, M.; Fernö, M.; Killander, D.; Olsson, H. Indicators of prognosis in node-negative breast cancer. N. Engl. J. Med., 1990, 322(15), 1045-1053.
[2]
Richie, R.C.; Swanson, J.O. Breast cancer: A review of the literature. J. Insur. Med., 2003, 35(2), 85-101.
[3]
(a) Donegan, W.L. Follow-up after treatment for breast cancer: how much is too much? J. Surg. Oncol., 1995, 59(4), 211-214.
(b) Lourenco, A.P.; Khalil, H.; Sanford, M.; Donegan, L. High-risk lesions at MRI-guided breast biopsy: Frequency and rate of underestimation. AJR Am. J. Roentgenol., 2014, 203(3), 682-686.
[4]
(a) Burns, K.A.; Korach, K.S. Estrogen receptors and human disease: An update. Arch. Toxicol., 2012, 86(10), 1491-1504.
(b) Deroo, B.J.; Korach, K.S. Estrogen receptors and human disease. J. Clin. Invest., 2006, 116(3), 561-570.
[5]
(a) Cardoso, J.M.S.; Correia, I.; Galvão, A.M.; Marques, F.; Carvalho, M.F.N.N. Synthesis of Ag(I) camphor sulphonylimine complexes and assessment of their cytotoxic properties against cisplatin-resistant A2780cisR and A2780 cell lines. J. Inorg. Biochem., 2017, 166, 55-63.
(b) Pandey, V.; Ansari, M.W.; Tula, S.; Sahoo, R.K.; Bains, G.; Kumar, J.; Tuteja, N.; Shukla, A. Ocimum sanctum leaf extract induces drought stress tolerance in rice. Plant Signal. Behav., 2016, 11(5)e1150400
(c) Moayedi, Y.; Greenberg, S.A.; Jenkins, B.A.; Marshall, K.L.; Dimitrov, L.V.; Nelson, A.M.; Owens, D.M.; Lumpkin, E.A. Camphor white oil induces tumor regression through cytotoxic T cell-dependent mechanisms. Mol. Carcinog., 2018, 58(5), 722-734.
[6]
(a) Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C.T. Anticancer and antiviral sulfonamides. Curr. Med. Chem., 2003, 10(11), 925-953.
(b) Zhao, C.; Rakesh, K.P.; Ravidar, L.; Fang, W.Y.; Qin, H.L. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review. Eur. J. Med. Chem., 2019, 162, 679-734.
(c) Abdel-Maksoud, M.S.; El-Gamal, M.I.; Gamal El-Din, M.M.; Oh, C.H. Design, synthesis, in vitro anticancer evaluation, kinase inhibitory effects, and pharmacokinetic profile of new 1,3,4-triarylpyrazole derivatives possessing terminal sulfonamide moiety. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 97-109.
[7]
(a) Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol., 2011, 12(1), 9-14.
(b) Eskelinen, E.L. The dual role of autophagy in cancer. Curr. Opin. Pharmacol., 2011, 11(4), 294-300.
[8]
Oren, M.; Kotler, E. p53 mutations promote proteasomal activity. Nat. Cell Biol., 2016, 18(8), 833-835.
[9]
Stiewe, T.; Haran, T.E. How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance. Drug Resist. Updat. 38, 2018, 27-43.
[10]
Chen, J. The Cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med., 2016, 6(3)a026104
[11]
Bonizzi, G.; Karin, M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol., 2004, 25(6), 280-288.
[12]
(a) Pires, B.R.B.; Silva, R.C.M.C.; Ferreira, G.M.; Abdelhay, E. NF-kappaB: Two Sides of the Same Coin. Genes (Basel), 2018, 9(1)E24
(b) Hoesel, B.; Schmid, J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer, 2013, 12, 86.
[13]
Eckstein, N. Platinum resistance in breast and ovarian cancer cell lines. Journal of experimental & clinical cancer research. CR (East Lansing Mich.), 2011, 30, 91.
[14]
Kamenova-Nacheva, M.S.; Pasheva, E.; Slavchev, I.; Dimitrov, V.; Momekov, G.; Nikolova, R.; Shivachev, B.; Ugrinova, I.; Dobrikov, G.M. Synthesis of ferrocenylmethylidene and arylidene substituted camphane based compounds as potential anticancer agents. New J. Chem., 2017, 41(17), 9103-9112.
[15]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[16]
Guzmán, C.; Bagga, M.; Kaur, A.; Westermarck, J.; Abankwa, D. ColonyArea: An ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS One, 2014, 9(3)e92444
[17]
Franken, N.A.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc., 2006, 1(5), 2315-2319.
[18]
Luo, M.; Fu, L. The effect of chemotherapy on programmed cell death 1/programmed cell death 1 ligand axis: Some chemotherapeutical drugs may finally work through immune response. Oncotarget, 2016, 7(20), 29794-29803.
[19]
(a) Yun, C.W.; Lee, S.H. The roles of autophagy in cancer. Int. J. Mol. Sci., 2018, 19(11)E3466
(b) Mizushima, N. Autophagy: Process and function. Genes Dev., 2007, 21(22), 2861-2873.
[20]
(a) Lorin, S.; Hamaï, A.; Mehrpour, M.; Codogno, P. Autophagy regulation and its role in cancer. Semin. Cancer Biol., 2013, 23(5), 361-379.
(b) White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer, 2012, 12(6), 401-410.
[21]
(a) Carlsson, S.R.; Simonsen, A. Membrane dynamics in autophagosome biogenesis. J. Cell Sci., 2015, 128(2), 193-205.
(b) Kabeya, Y.; Mizushima, N.; Ueno, T.; Yamamoto, A.; Kirisako, T.; Noda, T.; Kominami, E.; Ohsumi, Y.; Yoshimori, T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J., 2000, 19(21), 5720-5728.
[22]
(a) Tian, B.; Brasier, A.R. Identification of a nuclear factor kappa B-dependent gene network. Recent Prog. Horm. Res., 2003, 58, 95-130.
(b) Albensi, B.C.; Mattson, M.P. Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse, 2000, 35(2), 151-159.
(c) Monkkonen, T.; Debnath, J. Inflammatory signaling cascades and autophagy in cancer. Autophagy, 2018, 14(2), 190-198.
[23]
Tilborghs, S.; Corthouts, J.; Verhoeven, Y.; Arias, D.; Rolfo, C.; Trinh, X.B.; van Dam, P.A. The role of nuclear factor-kappa B signaling in human cervical cancer. Crit. Rev. Oncol. Hematol., 2017, 120, 141-150.
[24]
Ozaki, T.; Nakagawara, A. Role of p53 in cell death and human cancers. Cancers (Basel), 2011, 3(1), 994-1013.
[25]
(a) Vousden, K.H.; Prives, C. Blinded by the light: The growing complexity of p53. Cell, 2009, 137(3), 413-431.
(b) Mrakovcic, M.; Fröhlich, L.F. p53-mediated molecular control of autophagy in tumor cells. Biomolecules, 2018, 8(2)E14
[26]
Gartel, A.L.; Feliciano, C.; Tyner, A.L. A new method for determining the status of p53 in tumor cell lines of different origin. Oncol. Res., 2003, 13(6-10), 405-408.
[27]
Naryzhny, S.N.; Lee, H. Proliferating cell nuclear antigen in the cytoplasm interacts with components of glycolysis and cancer. FEBS Lett., 2010, 584(20), 4292-4298.
[28]
Wickberg, A.; Holmberg, L.; Adami, H.O.; Magnuson, A.; Villman, K.; Liljegren, G. Sector resection with or without postoperative radiotherapy for stage I breast cancer: 20-year results of a randomized trial. J. Clin. Oncol., 2014, 32(8), 791-797.
[29]
Kartalou, M.; Essigmann, J.M. Mechanisms of resistance to cisplatin. Mutat. Res., 2001, 478(1-2), 23-43.
[30]
(a) Ali, S.; Yasin, G.; Zuhra, Z.; Wu, Z.; Butler, I.S.; Badshah, A.; Din, I.U. Ferrocene-based bioactive bimetallic thiourea complexes: Synthesis and spectroscopic studies. Bioinorg. Chem. Appl., 2015, 2015386587
(b) Asghar, F.; Fatima, S.; Rana, S.; Badshah, A.; Butler, I.S.; Tahir, M.N. Synthesis, spectroscopic investigation, and DFT study of N,N′-disubstituted ferrocene-based thiourea complexes as potent anticancer agents. Dalton Trans., 2018, 47(6), 1868-1878.
[31]
Top, S.; Tang, J.; Vessieres, A.; Carrez, D.; Provot, C.; Jaouen, G. Ferrocenyl hydroxytamoxifen: A prototype for a new range of oestradiol receptor site-directed cytotoxics. Chem. Commun. (Camb.), 1996, 8, 955-956.
[32]
(a) Osella, D.; Ferrali, M.; Zanello, P.; Laschi, F.; Fontani, M.; Nervi, C.; Cavigiolio, G. On the mechanism of the antitumor activity of ferrocenium derivatives. Inorg. Chim. Acta, 2000, 306(1), 42-48.
(b) Asghar, F.; Fatima, S.; Rana, S.; Badshah, A.; Butler, I.S.; Tahir, M.N. Synthesis, spectroscopic investigation, and DFT study of N,N′-disubstituted ferrocene-based thiourea complexes as potent anticancer agents. Dalton Trans., 2018, 47(6), 1868-1878.
[33]
Pigeon, P.; Top, S.; Vessieres, A.; Huche, M.; Gormen, M.; El Arbi, M.; Plamont, M.A.; McGlinchey, M.J.; Jaouen, G. A new series of ferrocifen derivatives, bearing two aminoalkyl chains, with strong antiproliferative effects on breast cancer cells. New J. Chem., 2011, 35(10), 2212-2218.
[34]
(a) Singh, A.; Lumb, I.; Mehra, V.; Kumar, V. Ferrocene-appended pharmacophores: An exciting approach for modulating the biological potential of organic scaffolds. Dalton Trans., 2019, 48(9), 2840-2860.
(b) Pérez, W.I.; Soto, Y.; Ortíz, C.; Matta, J.; Meléndez, E. Ferrocenes as potential chemotherapeutic drugs: synthesis, cytotoxic activity, reactive oxygen species production and micronucleus assay. Bioorg. Med. Chem., 2015, 23(3), 471-479.
[35]
Agus, H.H.; Sengoz, C.O.; Yilmaz, S. Oxidative stress-mediated apoptotic cell death induced by camphor in sod1-deficient Schizosaccharomyces pombe. Toxicol. Res. (Camb.), 2018, 8(2), 216-226.
[36]
El-Sayed, N.S.; El-Bendary, E.R.; El-Ashry, S.M.; El-Kerdawy, M.M. Synthesis and antitumor activity of new sulfonamide derivatives of thiadiazolo[3,2-a]pyrimidines. Eur. J. Med. Chem., 2011, 46(9), 3714-3720.
[37]
(a) Giuliani, C.; Bucci, I.; Napolitano, G. The role of the transcription factor nuclear factor-kappa B in thyroid autoimmunity and cancer. Front. Endocrinol. (Lausanne), 2018, 9, 471.
(b) Escárcega, R.O.; Fuentes-Alexandro, S.; García-Carrasco, M.; Gatica, A.; Zamora, A. The transcription factor nuclear factor-kappa B and cancer. Clin. Oncol. (R. Coll. Radiol.), 2007, 19(2), 154-161.
[38]
Liu, F.; Bardhan, K.; Yang, D.; Thangaraju, M.; Ganapathy, V.; Waller, J.L.; Liles, G.B.; Lee, J.R.; Liu, K. NF-κB directly regulates Fas transcription to modulate Fas-mediated apoptosis and tumor suppression. J. Biol. Chem., 2012, 287(30), 25530-25540.
[39]
Campbell, K.J.; Rocha, S.; Perkins, N.D. Active repression of antiapoptotic gene expression by RelA(p65) NF-kappa B. Mol. Cell, 2004, 13(6), 853-865.
[40]
Kaltschmidt, B.; Kaltschmidt, C.; Hofmann, T.G.; Hehner, S.P.; Dröge, W.; Schmitz, M.L. The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus. Eur. J. Biochem., 2000, 267(12), 3828-3835.
[41]
Ashikawa, K.; Shishodia, S.; Fokt, I.; Priebe, W.; Aggarwal, B.B. Evidence that activation of nuclear factor-kappaB is essential for the cytotoxic effects of doxorubicin and its analogues. Biochem. Pharmacol., 2004, 67(2), 353-364.
[42]
Nakanishi, C.; Toi, M. Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat. Rev. Cancer, 2005, 5(4), 297-309.
[43]
Rai, A.; Kapoor, S.; Singh, S.; Chatterji, B.P.; Panda, D. Transcription factor NF-κB associates with microtubules and stimulates apoptosis in response to suppression of microtubule dynamics in MCF-7 cells. Biochem. Pharmacol., 2015, 93(3), 277-289.
[44]
(a) Georges, S.A.; Biery, M.C.; Kim, S.Y.; Schelter, J.M.; Guo, J.; Chang, A.N.; Jackson, A.L.; Carleton, M.O.; Linsley, P.S.; Cleary, M.A.; Chau, B.N. Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Res., 2008, 68(24), 10105-10112.
(b) Chen, J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med., 2016, 6(3)a026104
(c) Pietsch, E.C.; Sykes, S.M.; McMahon, S.B.; Murphy, M.E. The p53 family and programmed cell death. Oncogene, 2008, 27(50), 6507-6521.