Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Long-Term Accumulation of Metals in the Skeleton as Related to Osteoporotic Derangements

Author(s): Geir Bjørklund*, Lyudmila Pivina, Maryam Dadar, Yuliya Semenova, Salvatore Chirumbolo and Jan Aaseth

Volume 27, Issue 40, 2020

Page: [6837 - 6848] Pages: 12

DOI: 10.2174/0929867326666190722153305

Price: $65

Abstract

The concentrations of metals in the environment are still not within the recommended limits as set by the regulatory authorities in various countries because of human activities. They can enter the food chain and bioaccumulate in soft and hard tissues/organs, often with a long half-life of the metal in the body. Metal exposure has a negative impact on bone health and may result in osteoporosis and increased fracture risk depending on concentration and duration of metal exposure and metal species. Bones are a long-term repository for lead and some other metals, and may approximately contain 90% of the total body burden in birds and mammals. The present review focuses on the most common metals found in contaminated areas (mercury, cadmium, lead, nickel, chromium, iron, and aluminum) and their effects on bone tissue, considering the possibility of the long-term bone accumulation, and also some differences that might exist between different age groups in the whole population.

Keywords: Metal concentration, metal intoxication, bone, osteoporosis, fracture, human activities.

[1]
Lavado-García, J.M.; Puerto-Parejo, L.M.; Roncero-Martín, R.; Moran, J.M.; Pedrera-Zamorano, J.D.; Aliaga, I.J.; Leal-Hernández, O.; Canal-Macias, M.L. Dietary intake of cadmium, lead and mercury and its association with bone health in healthy premenopausal women. Int. J. Environ. Res. Public Health, 2017, 14(12), 1437.
[http://dx.doi.org/10.3390/ijerph14121437] [PMID: 29168740]
[2]
Liu, J.; Curtis, E.M.; Cooper, C.; Harvey, N.C. State of the art in osteoporosis risk assessment and treatment. J. Endocrinol. Invest., 2019, 42(10), 1149-1164.
[http://dx.doi.org/10.1007/s40618-019-01041-6] [PMID: 30980341]
[3]
de Wit, M.; Cooper, C.; Tugwell, P.; Bere, N.; Kirwan, J.; Conaghan, P.G.; Roberts, C.; Aujoulat, I.; Al-Daghri, N.; Araujo de Carvalho, I.; Barker, M.; Bedlington, N.; Brandi, M.L.; Bruyère, O.; Burlet, N.; Halbout, P.; Hiligsmann, M.; Jiwa, F.; Kanis, J.A.; Laslop, A.; Lawrence, W.; Pinto, D.; Prieto Yerro, C.; Rabenda, V.; Rizzoli, R.; Scholte-Voshaar, M.; Vlaskovska, M.; Reginster, J.Y. Practical guidance for engaging patients in health research, treatment guidelines and regulatory processes: results of an expert group meeting organized by the World Health Organization (WHO) and the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO). Aging Clin. Exp. Res., 2019, 31(7), 905-915.
[http://dx.doi.org/10.1007/s40520-019-01193-8] [PMID: 30993659]
[4]
Scimeca, M.; Feola, M.; Romano, L.; Rao, C.; Gasbarra, E.; Bonanno, E.; Brandi, M.L.; Tarantino, U. Heavy metals accumulation affects bone microarchitecture in osteoporotic patients. Environ. Toxicol., 2017, 32(4), 1333-1342.
[http://dx.doi.org/10.1002/tox.22327] [PMID: 27464007]
[5]
Rodríguez, J.; Mandalunis, P.M. A review of metal exposure and its effects on bone health. J. Toxicol., 2018, 20184854152
[http://dx.doi.org/10.1155/2018/4854152] [PMID: 30675155]
[6]
Bernard, A. Cadmium & its adverse effects on human health. Indian J. Med. Res., 2008, 128(4), 557-564.
[PMID: 19106447]
[7]
Prasad, A.S. Essential and toxic element: Trace elements in human health and disease; Elsevier, 2013.
[http://dx.doi.org/10.1016/C2013-0-11327-X]
[8]
Prashanth, L.; Kattapagari, K.K.; Chitturi, R.T.; Baddam, V.R.R.; Prasad, L.K. A review on role of essential trace elements in health and disease. J. Dr. NTR Univ. Health Sci., 2015, 4(2), 75.
[http://dx.doi.org/10.4103/2277-8632.158577]
[9]
Newton, D.; Ancill, A.K.; Naylor, K.E.; Eastell, R. Long-term retention of injected barium-133 in man. Radiat. Prot. Dosimetry, 2001, 97(3), 231-240.
[http://dx.doi.org/10.1093/oxfordjournals.rpd.a006668] [PMID: 11843338]
[10]
Medina-Fernández, F.J.; Rodríguez-Ortiz, L.; Garcilazo-Arismendi, D.J.; Navarro-Rodríguez, E.; Torres-Tordera, E.M.; Díaz-López, C.A.; Briceño, J. Impact of barium enema on acute diverticulitis recurrence: a retrospective cohort study of 349 patients. J. Dig. Dis., 2017, 18(7), 379-387.
[http://dx.doi.org/10.1111/1751-2980.12487] [PMID: 28548239]
[11]
Harrison, J. Biokinetic and dosimetric modelling in the estimation of radiation risks from internal emitters. J. Radiol. Prot., 2009, 29(2A), A81-A105.
[http://dx.doi.org/10.1088/0952-4746/29/2A/S06] [PMID: 19454809]
[12]
Nilsson, S.; Strang, P.; Aksnes, A.K.; Franzèn, L.; Olivier, P.; Pecking, A.; Staffurth, J.; Vasanthan, S.; Andersson, C.; Bruland, Ø.S. A randomized, dose-response, multicenter phase II study of radium-223 chloride for the palliation of painful bone metastases in patients with castration-resistant prostate cancer. Eur. J. Cancer, 2012, 48(5), 678-686.
[http://dx.doi.org/10.1016/j.ejca.2011.12.023] [PMID: 22341993]
[13]
Harrison, M.R.; Wong, T.Z.; Armstrong, A.J.; George, D.J. Radium-223 chloride: a potential new treatment for castration-resistant prostate cancer patients with metastatic bone disease. Cancer Manag. Res., 2013, 5, 1-14.
[http://dx.doi.org/10.2147/CMAR.S25537] [PMID: 23326203]
[14]
Synhaeve, N.; Stefani, J.; Tourlonias, E.; Dublineau, I.; Bertho, J.M. Biokinetics of 90Sr after chronic ingestion in a juvenile and adult mouse model. Radiat. Environ. Biophys., 2011, 50(4), 501-511.
[http://dx.doi.org/10.1007/s00411-011-0374-9] [PMID: 21688012]
[15]
Tolstykh, E.I.; Degteva, M.O.; Peremyslova, L.M.; Shagina, N.B.; Shishkina, E.A.; Krivoshchapov, V.A.; Anspaugh, L.R.; Napier, B.A. Reconstruction of long-lived radionuclide intakes for Techa riverside residents: strontium-90. Health Phys., 2011, 101(1), 28-47.
[http://dx.doi.org/10.1097/HP.0b013e318206d0ff] [PMID: 21617390]
[16]
Brady, D.; Parker, C.C.; O’Sullivan, J.M. Bone-targeting radiopharmaceuticals including radium-223. Cancer J., 2013, 19(1), 71-78.
[http://dx.doi.org/10.1097/PPO.0b013e318282479b] [PMID: 23337760]
[17]
Zinka, B.; Kandlbinder, R.; Schupfner, R.; Haas, G.; Wolfbeis, O.S.; Graw, M. The activity ratio of 228Th to 228Ra in bone tissue of recently deceased humans: a new dating method in forensic examinations. Anthropol. Anz., 2012, 69(2), 147-157.
[http://dx.doi.org/10.1127/0003-5548/2012/0127] [PMID: 22606910]
[18]
Heidenreich, W.F.; Rosemann, M. Genetic background and 227Thorium as risk factors in biologically based models for induction of bone cancer in mice. Radiat. Environ. Biophys., 2012, 51(2), 179-185.
[http://dx.doi.org/10.1007/s00411-012-0409-x] [PMID: 22466086]
[19]
Suslova, K.G.; Khokhryakov, V.F.; Sokolova, A.B.; Miller, S.C. 238Pu: a review of the biokinetics, dosimetry and implications for human exposures. Health Phys., 2012, 102(3), 251-262.
[http://dx.doi.org/10.1097/HP.0b013e318234899a] [PMID: 22420017]
[20]
Khalaf, M.; Brey, R.R.; Meldrum, J. A new leg voxel model in two different positions for simulation of the non-uniform distribution of (241)Am in leg bones. Health Phys., 2013, 104(1), 51-56.
[http://dx.doi.org/10.1097/HP.0b013e318261f1f6] [PMID: 23192086]
[21]
Ribera, H. Samarium-153-lexidronam therapy for metastatic bone pain. J. Pain Palliat. Care Pharmacother., 2013, 27(1), 80-81.
[http://dx.doi.org/10.3109/15360288.2012.760705] [PMID: 23527672]
[22]
Ogawa, K.; Washiyama, K. Bone target radiotracers for palliative therapy of bone metastases. Curr. Med. Chem., 2012, 19(20), 3290-3300.
[http://dx.doi.org/10.2174/092986712801215865] [PMID: 22664247]
[23]
Chopra, A. [170Tm]-Labeled ethylenediamine tetramethylene phosphonic acid; MICAD, 2011.
[PMID: 21656985]
[24]
Badawi, J.K. Radionuclide therapy for the treatment of skeletal metastases of urological malignancies: a forgotten therapy? Dtsch. Med. Wochenschr., 2012, 137(33), 1645-1649.
[http://dx.doi.org/10.1055/s-0032-1305201] [PMID: 22875692]
[25]
Underwood, E. Trace elements in human and animal nutrition; Elsevier, 2012.
[http://dx.doi.org/10.1016/B978-0-12-709065-8.X5001-9]
[26]
Tuhy, Ł.; Dmytryk, A.; Samoraj, M.; Chojnacka, K. Trace elements in animal nutrition in: recent advances in trace elements,, 2018, 319-337.
[http://dx.doi.org/10.1002/9781119133780.ch16]
[27]
Mertz, W. Trace Elements in Human and Animal Nutrition; Elsevier, 2012.
[28]
Assi, M.A.; Hezmee, M.N.M.; Haron, A.W.; Sabri, M.Y.M.; Rajion, M.A. The detrimental effects of lead on human and animal health. Vet. World, 2016, 9(6), 660-671.
[http://dx.doi.org/10.14202/vetworld.2016.660-671] [PMID: 27397992]
[29]
Järup, L. Hazards of heavy metal contamination. Br. Med. Bull., 2003, 68(1), 167-182.
[http://dx.doi.org/10.1093/bmb/ldg032] [PMID: 14757716]
[30]
Caito, S.; Lopes, A.C.B.A.; Paoliello, M.M.B.; Aschner, M. Toxicology of lead and its damage to mammalian organs. Met. Ions Life Sci., 2017, 17, 17.
[http://dx.doi.org/10.1515/9783110434330-016] [PMID: 28731309]
[31]
Rashid, A.; Bhat, R.A.; Qadri, H.; Mehmood, M.A. Shafiq-Ur-Rehman. Environmental and socioeconomic factors induced blood lead in children: an investigation from Kashmir, India. Environ. Monit. Assess., 2019, 191(2), 76.
[http://dx.doi.org/10.1007/s10661-019-7220-y] [PMID: 30648205]
[32]
Garrido Latorre, F.; Hernández-Avila, M.; Tamayo Orozco, J.; Albores Medina, C.A.; Aro, A.; Palazuelos, E.; Hu, H. Relationship of blood and bone lead to menopause and bone mineral density among middle-age women in Mexico City. Environ. Health Perspect., 2003, 111(4), 631-636.
[http://dx.doi.org/10.1289/ehp.111-1241456] [PMID: 12676627]
[33]
Gambelunghe, A.; Sallsten, G.; Borné, Y.; Forsgard, N.; Hedblad, B.; Nilsson, P.; Fagerberg, B.; Engström, G.; Barregard, L. Low-level exposure to lead, blood pressure, and hypertension in a population-based cohort. Environ. Res., 2016, 149, 157-163.
[http://dx.doi.org/10.1016/j.envres.2016.05.015] [PMID: 27208466]
[34]
Gangoso, L.; Alvarez-Lloret, P.; Rodríguez-Navarro, A.A.; Mateo, R.; Hiraldo, F.; Donázar, J.A. Long-term effects of lead poisoning on bone mineralization in vultures exposed to ammunition sources. Environ. Pollut., 2009, 157(2), 569-574.
[http://dx.doi.org/10.1016/j.envpol.2008.09.015] [PMID: 18995938]
[35]
Ronis, M.J.; Aronson, J.; Gao, G.G.; Hogue, W.; Skinner, R.A.; Badger, T.M.; Lumpkin, C.K., Jr Skeletal effects of developmental lead exposure in rats. Toxicol. Sci., 2001, 62(2), 321-329.
[http://dx.doi.org/10.1093/toxsci/62.2.321] [PMID: 11452145]
[36]
Ishii, C.; Nakayama, S.M.M.; Kataba, A.; Ikenaka, Y.; Saito, K.; Watanabe, Y.; Makino, Y.; Matsukawa, T.; Kubota, A.; Yokoyama, K.; Mizukawa, H.; Hirata, T.; Ishizuka, M. Characterization and imaging of lead distribution in bones of lead-exposed birds by ICP-MS and LA-ICP-MS. Chemosphere, 2018, 212, 994-1001.
[http://dx.doi.org/10.1016/j.chemosphere.2018.08.149] [PMID: 30286556]
[37]
Sun, K.; Mei, W.; Mo, S.; Xin, L.; Lei, X.; Huang, M.; Chen, Q.; Han, L.; Zhu, X. Lead exposure inhibits osteoblastic differentiation and inactivates the canonical Wnt signal and recovery by icaritin in MC3T3-E1 subclone 14 cells. Chem. Biol. Interact., 2019, 303, 7-13.
[http://dx.doi.org/10.1016/j.cbi.2019.01.039] [PMID: 30731080]
[38]
Álvarez-Lloret, P.; Lee, C.M.; Conti, M.I.; Terrizzi, A.R.; González-López, S.; Martínez, M.P. Effects of chronic lead exposure on bone mineral properties in femurs of growing rats. Toxicology, 2017, 377, 64-72.
[http://dx.doi.org/10.1016/j.tox.2016.11.017] [PMID: 27915097]
[39]
Engström, A.; Michaëlsson, K.; Vahter, M.; Julin, B.; Wolk, A.; Åkesson, A. Associations between dietary cadmium exposure and bone mineral density and risk of osteoporosis and fractures among women. Bone, 2012, 50(6), 1372-1378.
[http://dx.doi.org/10.1016/j.bone.2012.03.018] [PMID: 22465267]
[40]
Wallin, M.; Barregard, L.; Sallsten, G.; Lundh, T.; Karlsson, M.K.; Lorentzon, M.; Ohlsson, C.; Mellström, D. Low‐level cadmium exposure is associated with decreased bone mineral density and increased risk of incident fractures in elderly men: the MrOS Sweden study. J. Bone Miner. Res., 2016, 31(4), 732-741.
[http://dx.doi.org/10.1002/jbmr.2743] [PMID: 26572678]
[41]
Brzóska, M.M.; Moniuszko-Jakoniuk, J. Disorders in bone metabolism of female rats chronically exposed to cadmium. Toxicol. Appl. Pharmacol., 2005, 202(1), 68-83.
[http://dx.doi.org/10.1016/j.taap.2004.06.007] [PMID: 15589978]
[42]
Chen, X.; Zhu, G.; Jin, T.; Gu, S.; Xiao, H.; Qiu, J. Cadmium induces differentiation of RAW264.7 cells into osteoclasts in the presence of RANKL. Food Chem. Toxicol., 2011, 49(9), 2392-2397.
[http://dx.doi.org/10.1016/j.fct.2011.06.053] [PMID: 21723911]
[43]
Rodríguez, J.; Mandalunis, P.M. Effect of cadmium on bone tissue in growing animals. Exp. Toxicol. Pathol., 2016, 68(7), 391-397.
[http://dx.doi.org/10.1016/j.etp.2016.06.001] [PMID: 27312893]
[44]
Chen, X.; Zhu, G.; Gu, S.; Jin, T.; Shao, C. Effects of cadmium on osteoblasts and osteoclasts in vitro. Environ. Toxicol. Pharmacol., 2009, 28(2), 232-236.
[http://dx.doi.org/10.1016/j.etap.2009.04.010] [PMID: 21784008]
[45]
Chen, X.; Wang, K.; Wang, Z.; Gan, C.; He, P.; Liang, Y.; Jin, T.; Zhu, G. Effects of lead and cadmium co-exposure on bone mineral density in a Chinese population. Bone, 2014, 63, 76-80.
[http://dx.doi.org/10.1016/j.bone.2014.02.017] [PMID: 24607944]
[46]
Kazantzis, G. Cadmium, osteoporosis and calcium metabolism. Biometals, 2004, 17(5), 493-498.
[http://dx.doi.org/10.1023/B:BIOM.0000045727.76054.f3] [PMID: 15688852]
[47]
Åkesson, A.; Bjellerup, P.; Lundh, T.; Lidfeldt, J.; Nerbrand, C.; Samsioe, G.; Skerfving, S.; Vahter, M. Cadmium-induced effects on bone in a population-based study of women. Environ. Health Perspect., 2006, 114(6), 830-834.
[http://dx.doi.org/10.1289/ehp.8763] [PMID: 16759980]
[48]
Toxqui, L.; Vaquero, M.P. Chronic iron deficiency as an emerging risk factor for osteoporosis: a hypothesis. Nutrients, 2015, 7(4), 2324-2344.
[http://dx.doi.org/10.3390/nu7042324] [PMID: 25849944]
[49]
Tsay, J.; Yang, Z.; Ross, F.P.; Cunningham-Rundles, S.; Lin, H.; Coleman, R.; Mayer-Kuckuk, P.; Doty, S.B.; Grady, R.W.; Giardina, P.J.; Boskey, A.L.; Vogiatzi, M.G. Bone loss caused by iron overload in a murine model: importance of oxidative stress. Blood, 2010, 116(14), 2582-2589.
[http://dx.doi.org/10.1182/blood-2009-12-260083] [PMID: 20554970]
[50]
Zwart, S.R.; Morgan, J.L.; Smith, S.M. Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the International Space Station. Am. J. Clin. Nutr., 2013, 98(1), 217-223.
[http://dx.doi.org/10.3945/ajcn.112.056465] [PMID: 23719548]
[51]
Guggenbuhl, P.; Brissot, P.; Loréal, O. Miscellaneous non-inflammatory musculoskeletal conditions. Haemochromatosis: the bone and the joint. Best Pract. Res. Clin. Rheumatol., 2011, 25(5), 649-664.
[http://dx.doi.org/10.1016/j.berh.2011.10.014] [PMID: 22142745]
[52]
Medeiros, D.M. Copper, iron and selenium dietary deficiencies negatively impact skeletal integrity: a review. Exp. Biol. Med. (Maywood), 2016, 241(12), 1316-1322.
[http://dx.doi.org/10.1177/1535370216648805] [PMID: 27190269]
[53]
Medeiros, D.M.; Stoecker, B.; Plattner, A.; Jennings, D.; Haub, M. Iron deficiency negatively affects vertebrae and femurs of rats independently of energy intake and body weight. J. Nutr., 2004, 134(11), 3061-3067.
[http://dx.doi.org/10.1093/jn/134.11.3061] [PMID: 15514276]
[54]
Parelman, M.; Stoecker, B.; Baker, A.; Medeiros, D. Iron restriction negatively affects bone in female rats and mineralization of hFOB osteoblast cells. Exp. Biol. Med. (Maywood), 2006, 231(4), 378-386.
[http://dx.doi.org/10.1177/153537020623100403] [PMID: 16565433]
[55]
McClung, J.P.; Andersen, N.E.; Tarr, T.N.; Stahl, C.H.; Young, A.J. Physical activity prevents augmented body fat accretion in moderately iron-deficient rats. J. Nutr., 2008, 138(7), 1293-1297.
[http://dx.doi.org/10.1093/jn/138.7.1293 ] [PMID: 18567750]
[56]
Pivina, L.; Semenova, Y.; Doşa, M.D.; Dauletyarova, M.; Bjørklund, G. Iron deficiency, cognitive functions, and neurobehavioral disorders in children. J. Mol. Neurosci., 2019, 68(1), 1-10.
[http://dx.doi.org/10.1007/s12031-019-01276-1 ] [PMID: 30778834]
[57]
Harris, M.M.; Houtkooper, L.B.; Stanford, V.A.; Parkhill, C.; Weber, J.L.; Flint-Wagner, H.; Weiss, L.; Going, S.B.; Lohman, T.G. Dietary iron is associated with bone mineral density in healthy postmenopausal women. J. Nutr., 2003, 133(11), 3598-3602.
[http://dx.doi.org/10.1093/jn/133.11.3598 ] [PMID: 14608080]
[58]
Abraham, R.; Walton, J.; Russell, L.; Wolman, R.; Wardley-Smith, B.; Green, J.R.; Mitchell, A.; Reeve, J. Dietary determinants of post-menopausal bone loss at the lumbar spine: a possible beneficial effect of iron. Osteoporos. Int., 2006, 17(8), 1165-1173.
[http://dx.doi.org/10.1007/s00198-005-0033-6] [PMID: 16758136]
[59]
Moran, D.S.; Israeli, E.; Evans, R.K.; Yanovich, R.; Constantini, N.; Shabshin, N.; Merkel, D.; Luria, O.; Erlich, T.; Laor, A.; Finestone, A. Prediction model for stress fracture in young female recruits during basic training. Med. Sci. Sports Exerc., 2008, 40(Suppl. 11), S636-S644.
[http://dx.doi.org/10.1249/MSS.0b013e3181893164] [PMID: 18849871]
[60]
Yanovich, R.; Merkel, D.; Israeli, E.; Evans, R.K.; Erlich, T.; Moran, D.S. Anemia, iron deficiency and stress fractures in female combatants during 16 months. J. Strength Cond. Res., 2011, 25(12), 3412-3421.
[http://dx.doi.org/10.1519/JSC.0b013e318215f779] [PMID: 22080308]
[61]
Liu, Z.; Hou, Y.; Li, L.; Yang, Y.; Jia, J.; Hong, Z.; Li, T.; Xu, Y.; Fu, J.; Sun, Y.; Yamamoto, M.; Wang, H.; Pi, J. Nrf2 deficiency aggravates the increase in osteoclastogenesis and bone loss induced by inorganic arsenic. Toxicol. Appl. Pharmacol., 2019, 367, 62-70.
[http://dx.doi.org/10.1016/j.taap.2019.02.003] [PMID: 30742845]
[62]
Dani, S.U. Osteoresorptive arsenic intoxication. Bone, 2013, 53(2), 541-545.
[http://dx.doi.org/10.1016/j.bone.2013.01.017] [PMID: 23337042]
[63]
Lever, J.H. Paget’s disease of bone in Lancashire and arsenic pesticide in cotton mill wastewater: a speculative hypothesis. Bone, 2002, 31(3), 434-436.
[http://dx.doi.org/10.1016/S8756-3282(02)00833-5] [PMID: 12231419]
[64]
Numan, M.S.; Jean, S.; Dessay, M.; Gagnon, E.; Amiable, N.; Brown, J.P.; Michou, L. Gene-environment interactions in Paget’s disease of bone. Joint Bone Spine, 2019, 86(3), 373-380.
[http://dx.doi.org/10.1016/j.jbspin.2018.12.007]] [PMID: 30594595]
[65]
Dumlu, A.; Yalcinkaya, S.; Olgac, V.; Güvercin, M. Osteomyelitis due to arsenic trioxide use for tooth devitalization. Int. Endod. J., 2007, 40(4), 317-322.
[http://dx.doi.org/10.1111/j.0143-2885.2007.01230.x] [PMID: 17298410]
[66]
Marty, M.; Noirrit-Esclassan, E.; Diemer, F. Arsenic trioxide-induced osteo-necrosis treatment in a child: mini-review and case report. Eur. Arch. Paediatr. Dent., 2016, 17(5), 419-422.
[http://dx.doi.org/10.1007/s40368-016-0250-z] [PMID: 27613404]
[67]
Chen, G.; Sung, P-T. Gingival and localized alveolar bone necrosis related to the use of arsenic trioxide paste-two case reports. J. Formos. Med. Assoc., 2014, 113(3), 187-190.
[http://dx.doi.org/10.1016/j.jfma.2012.07.023] [PMID: 24630037]
[68]
Aybar Odstrcil, A.C.; Carino, S.N.; Ricci, J.C.D.; Mandalunis, P.M. Effect of arsenic in endochondral ossification of experimental animals. Exp. Toxicol. Pathol., 2010, 62(3), 243-249.
[http://dx.doi.org/10.1016/j.etp.2009.04.001] [PMID: 19447590]
[69]
Hu, Y.C.; Cheng, H.L.; Hsieh, B.S.; Huang, L.W.; Huang, T.C.; Chang, K.L. Arsenic trioxide affects bone remodeling by effects on osteoblast differentiation and function. Bone, 2012, 50(6), 1406-1415.
[http://dx.doi.org/10.1016/j.bone.2012.03.012] [PMID: 22465848]
[70]
Aaseth, J.; Boivin, G.; Andersen, O. Osteoporosis and trace elements-an overview. J. Trace Elem. Med. Biol., 2012, 26(2-3), 149-152.
[http://dx.doi.org/10.1016/j.jtemb.2012.03.017] [PMID: 22575536]
[71]
Chappard, D.; Bizot, P.; Mabilleau, G.; Hubert, L. Aluminum and bone: review of new clinical circumstances associated with Al(3+) deposition in the calcified matrix of bone. Morphologie, 2016, 100(329), 95-105.
[http://dx.doi.org/10.1016/j.morpho.2015.12.001] [PMID: 26762722]
[72]
Crisponi, G.; Fanni, D.; Gerosa, C.; Nemolato, S.; Nurchi, V.M.; Crespo-Alonso, M.; Lachowicz, J.I.; Faa, G. The meaning of aluminium exposure on human health and aluminium-related diseases. Biomol. Concepts, 2013, 4(1), 77-87.
[http://dx.doi.org/10.1515/bmc-2012-0045] [PMID: 25436567]
[73]
Nebeker, H.G.; Coburn, J.W. Aluminum and renal osteodystrophy. Annu. Rev. Med., 1986, 37(1), 79-95.
[http://dx.doi.org/10.1146/annurev.me.37.020186.000455] [PMID: 3085581]
[74]
Chappard, D.; Mabilleau, G.; Moukoko, D.; Henric, N.; Steiger, V.; Le Nay, P.; Frin, J.M.; De Bodman, C. Aluminum and iron can be deposited in the calcified matrix of bone exostoses. J. Inorg. Biochem., 2015, 152, 174-179.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.09.008] [PMID: 26404568]
[75]
Li, X.; Hu, C.; Zhu, Y.; Sun, H.; Li, Y.; Zhang, Z. Effects of aluminum exposure on bone mineral density, mineral and trace elements in rats. Biol. Trace Elem. Res., 2011, 143(1), 378-385.
[http://dx.doi.org/10.1007/s12011-010-8861-4] [PMID: 20886309]
[76]
Sun, X.; Wang, H.; Huang, W.; Yu, H.; Shen, T.; Song, M.; Han, Y.; Li, Y.; Zhu, Y. Inhibition of bone formation in rats by aluminum exposure via Wnt/β-catenin pathway. Chemosphere, 2017, 176, 1-7.
[http://dx.doi.org/10.1016/j.chemosphere.2017.02.086] [PMID: 28249195]
[77]
Morais, S.; Sousa, J.P.; Fernandes, M.H.; Carvalho, G.S. In vitro biomineralization by osteoblast-like cells. I. Retardation of tissue mineralization by metal salts. Biomaterials, 1998, 19(1-3), 13-21.
[http://dx.doi.org/10.1016/S0142-9612(97)00149-X] [PMID: 9678845]
[78]
Sun, J.Y.; Wang, J.F.; Zi, N.T.; Jing, M.Y.; Weng, X.Y. Effects of zinc supplementation and deficiency on bone metabolism and related gene expression in rat. Biol. Trace Elem. Res., 2011, 143(1), 394-402.
[http://dx.doi.org/10.1007/s12011-010-8869-9] [PMID: 20953845]
[79]
Liu, J.; Luan, J.; Zhou, X.; Cui, Y.; Han, J. Epidemiology, diagnosis and treatment of Wilson’s disease. Intractable Rare Dis. Res., 2017, 6(4), 249-255.
[http://dx.doi.org/10.5582/irdr.2017.01057] [PMID: 29259852]
[80]
Bhatnagar, N.; Lingaiah, P.; Lodhi, J.S.; Karkhur, Y. Pathological fracture of femoral neck leading to a diagnosis of Wilson’s Disease: a case report and review of literature. J. Bone Metab., 2017, 24(2), 135-139.
[http://dx.doi.org/10.11005/jbm.2017.24.2.135] [PMID: 28642858]
[81]
Mahdavi-Roshan, M.; Ebrahimi, M.; Ebrahimi, A. Copper, magnesium, zinc and calcium status in osteopenic and osteoporotic post-menopausal women. Clin. Cases Miner. Bone Metab., 2015, 12(1), 18-21.
[http://dx.doi.org/10.11138/ccmbm/2015.12.1.018] [PMID: 26136790]
[82]
Quemeneur, A.S.; Trocello, J.M.; Ea, H.K.; Ostertag, A.; Leyendecker, A.; Duclos-Vallée, J.C.; de Vernejoul, M.C.; Woimant, F.; Lioté, F. Bone status and fractures in 85 adults with Wilson’s disease. Osteoporos. Int., 2014, 25(11), 2573-2580.
[http://dx.doi.org/10.1007/s00198-014-2806-2] [PMID: 25027110]
[83]
Jimenez-Andrade, J.M.; Mantyh, W.G.; Bloom, A.P.; Ferng, A.S.; Geffre, C.P.; Mantyh, P.W. Bone cancer pain. Ann. N. Y. Acad. Sci., 2010, 1198(1), 173-181.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05429.x] [PMID: 20536932]
[84]
Hagberg, K.W.; Taylor, A.; Hernandez, R.K.; Jick, S. Incidence of bone metastases in breast cancer patients in the United Kingdom: results of a multi-database linkage study using the general practice research database. Cancer Epidemiol., 2013, 37(3), 240-246.
[http://dx.doi.org/10.1016/j.canep.2013.01.006] [PMID: 23416031]
[85]
Rosa Mendoza, E.S.; Moreno, E.; Caguioa, P.B. Predictors of early distant metastasis in women with breast cancer. J. Cancer Res. Clin. Oncol., 2013, 139(4), 645-652.
[http://dx.doi.org/10.1007/s00432-012-1367-z] [PMID: 23283528]
[86]
Jørgensen, T.; Müller, C.; Kaalhus, O.; Danielsen, H.E.; Tveter, K.J. Extent of disease based on initial bone scan: important prognostic predictor for patients with metastatic prostatic cancer. Experience from the Scandinavian prostatic cancer group study no. 2 (SPCG-2). Eur. Urol., 1995, 28(1), 40-46.
[http://dx.doi.org/10.1159/000475018] [PMID: 8521893]
[87]
Decroisette, C.; Galerneau, L.M.; Hominal, S.; Chouaid, C. Epidemiology, management and cost of bone metastases from lung cancer. Rev. Mal. Respir., 2013, 30(4), 309-315.
[http://dx.doi.org/10.1016/j.rmr.2012.12.005] [PMID: 23664289]
[88]
Armbrecht, G.; Belavý, D.L.; Gast, U.; Bongrazio, M.; Touby, F.; Beller, G.; Roth, H.J.; Perschel, F.H.; Rittweger, J.; Felsenberg, D. Resistive vibration exercise attenuates bone and muscle atrophy in 56 days of bed rest: biochemical markers of bone metabolism. Osteoporos. Int., 2010, 21(4), 597-607.
[http://dx.doi.org/10.1007/s00198-009-0985-z] [PMID: 19536451]
[89]
Zwart, S.R.; Pierson, D.; Mehta, S.; Gonda, S.; Smith, S.M. Capacity of omega-3 fatty acids or eicosapentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-kappaB activation: from cells to bed rest to astronauts. J. Bone Miner. Res., 2010, 25(5), 1049-1057.
[http://dx.doi.org/10.1359/jbmr.091041 ] [PMID: 19874203]
[90]
Hong, Y.J.; Huang, X.M.; Liu, X.B.; Zhang, C.Y.; Zhang, L.; Xu, X.L. 6-Shogaol protects against oxidized LDL-induced endothelial injuries by inhibiting oxidized LDL-evoked LOX-1 signaling. Evid. Based Complement. Alternat. Med., 2013, 2013503521
[http://dx.doi.org/10.1155/2013/503521] [PMID: 23533490]
[91]
Milbury, P.E.; Vaughan, M.R.; Farley, S.; Matula, G.J., Jr; Convertino, V.A.; Matson, W.R. A comparative bear model for immobility-induced osteopenia. Ursus, 1998, 10, 507-520.
[PMID: 12744261]
[92]
Manea-Krichten, M.; Patterson, C.; Miller, G.; Settle, D.; Erel, Y. Comparative increases of lead and barium with age in human tooth enamel, rib and ulna. Sci. Total Environ., 1991, 107, 179-203.
[http://dx.doi.org/10.1016/0048-9697(91)90259-H] [PMID: 1785049]
[93]
Liao, Y.; Cao, H.; Xia, B.; Xiao, Q.; Liu, P.; Hu, G.; Zhang, C. Changes in trace element contents and morphology in bones of duck exposed to molybdenum or/and cadmium. Biol. Trace Elem. Res., 2017, 175(2), 449-457.
[http://dx.doi.org/10.1007/s12011-016-0778-0] [PMID: 27392954]
[94]
Anderson, R.A.; Bryden, N.A.; Polansky, M.M.; Gautschi, K. Dietary chromium effects on tissue chromium concentrations and chromium absorption in rats. J. Trace Elem. Exp. Med., 1996, 9(1), 11-25.
[http://dx.doi.org/10.1002/(SICI)1520-670X(199607)9:1<11:AID-JTRA2>3.0.CO;2-K]
[95]
Preuss, H.G.; Anderson, R.A. Chromium update: examining recent literature 1997-1998. Curr. Opin. Clin. Nutr. Metab. Care, 1998, 1(6), 509-512.
[http://dx.doi.org/10.1097/00075197-199811000-00005] [PMID: 10565402]
[96]
Terpiłowska, S.; Siwicki, A.K. Experimental immunology the influence of chromium and iron on interleukin-1α and interleukin-6 concentration in vitro and in vivo. Cent. Eur. J. Immunol., 2012, 37(2), 106-109.
[97]
Staniek, H.; Krejpcio, Z. The effects of supplementary Cr3 (chromium (III) propionate complex) on the mineral status in healthy female rats. Biol. Trace Elem. Res., 2017, 180(1), 90-99.
[http://dx.doi.org/10.1007/s12011-017-0985-3] [PMID: 28281224]
[98]
Sadeghi, N.; Oveisi, M.R.; Jannat, B.; Hajimahmoodi, M.; Behzad, M.; Behfar, A.; Sadeghi, F.; Saadatmand, S. The relationship between bone health and plasma zinc, copper lead and cadmium concentration in osteoporotic women. J. Environ. Health Sci. Eng., 2014, 12(1), 125.
[http://dx.doi.org/10.1186/s40201-014-0125-3] [PMID: 25469307]
[99]
Maciejewska, K.; Drzazga, Z.; Kaszuba, M. Role of trace elements (Zn, Sr, Fe) in bone development: energy dispersive X-ray fluorescence study of rat bone and tooth tissue. Biofactors, 2014, 40(4), 425-435.
[http://dx.doi.org/10.1002/biof.1163] [PMID: 24615876]
[100]
Meunier, P.J.; Roux, C.; Seeman, E.; Ortolani, S.; Badurski, J.E.; Spector, T.D.; Cannata, J.; Balogh, A.; Lemmel, E-M.; Pors-Nielsen, S.; Rizzoli, R.; Genant, H.K.; Reginster, J.Y. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N. Engl. J. Med., 2004, 350(5), 459-468.
[http://dx.doi.org/10.1056/NEJMoa022436] [PMID: 14749454]
[101]
Fernández, J.M.; Molinuevo, M.S.; McCarthy, A.D.; Cortizo, A.M. Strontium ranelate stimulates the activity of bone-specific alkaline phosphatase: interaction with Zn(2+) and Mg (2+). Biometals, 2014, 27(3), 601-607.
[http://dx.doi.org/10.1007/s10534-014-9733-8] [PMID: 24737106]
[102]
Rani, A.; Kumar, A.; Lal, A.; Pant, M. Cellular mechanisms of cadmium-induced toxicity: a review. Int. J. Environ. Health Res., 2014, 24(4), 378-399.
[http://dx.doi.org/10.1080/09603123.2013.835032] [PMID: 24117228]
[103]
Chen, X.; Wang, Z.; Zhu, G.; Nordberg, G.F.; Jin, T.; Ding, X. The association between cumulative cadmium intake and osteoporosis and risk of fracture in a Chinese population. J. Expo. Sci. Environ. Epidemiol., 2019, 29(3), 435-443.
[http://dx.doi.org/10.1038/s41370-018-0057-6] [PMID: 30185939]
[104]
Xu, Z.; Sun, W.; Li, Y.; Ling, S.; Zhao, C.; Zhong, G.; Zhao, D.; Song, J.; Song, H.; Li, J.; You, L.; Nie, G.; Chang, Y.; Li, Y. The regulation of iron metabolism by hepcidin contributes to unloading-induced bone loss. Bone, 2017, 94, 152-161.
[http://dx.doi.org/10.1016/j.bone.2016.09.023] [PMID: 27686598]
[105]
De Lucca, R.C.; Dutrey, P.L.; Villarino, M.E.; Ubios, A.M. Effect of different doses of hexavalent chromium on mandibular growth and tooth eruption in juvenile Wistar rats. Exp. Toxicol. Pathol., 2009, 61(4), 347-352.
[http://dx.doi.org/10.1016/j.etp.2008.10.001] [PMID: 19042111]
[106]
Rodríguez, J.; Mandalunis, P.M. A review of metal exposure and its effects on bone health. J. Toxicol., 2018, 20184854152
[http://dx.doi.org/10.1155/2018/4854152] [PMID: 30675155]
[107]
Monir, A.U.; Gundberg, C.M.; Yagerman, S.E.; van der Meulen, M.C.; Budell, W.C.; Boskey, A.L.; Dowd, T.L. The effect of lead on bone mineral properties from female adult C57/BL6 mice. Bone, 2010, 47(5), 888-894.
[http://dx.doi.org/10.1016/j.bone.2010.07.013] [PMID: 20643234]
[108]
Stahl, T.; Falk, S.; Rohrbeck, A.; Georgii, S.; Herzog, C.; Wiegand, A.; Hotz, S.; Boschek, B.; Zorn, H.; Brunn, H. Migration of aluminum from food contact materials to food-a health risk for consumers? Part I of III: exposure to aluminum, release of aluminum, tolerable weekly intake (TWI), toxicological effects of aluminum, study design, and methods. Environ. Sci. Eur., 2017, 29(1), 19.
[http://dx.doi.org/10.1186/s12302-017-0116-y] [PMID: 28458989]
[109]
Martiniaková, M.; Omelka, R.; Grosskopf, B.; Chovancová, H.; Massányi, P.; Chrenek, P. Effects of dietary supplementation of nickel and nickel-zinc on femoral bone structure in rabbits. Acta Vet. Scand., 2009, 51, 52.
[http://dx.doi.org/10.1186/1751-0147-51-52] [PMID: 20003522]
[110]
Querido, W.; Rossi, A.L.; Farina, M. The effects of strontium on bone mineral: a review on current knowledge and microanalytical approaches. Micron, 2016, 80, 122-134.
[http://dx.doi.org/10.1016/j.micron.2015.10.006] [PMID: 26546967]
[111]
Kim, Y.H.; Shim, J.Y.; Seo, M.S.; Yim, H.J.; Cho, M.R. Relationship between blood mercury concentration and bone mineral density in Korean men in the 2008-2010 Korean national health and nutrition examination survey. Korean J. Fam. Med., 2016, 37(5), 273-278.
[http://dx.doi.org/10.4082/kjfm.2016.37.5.273] [PMID: 27688860]
[112]
Cho, G.J.; Park, H.T.; Shin, J.H.; Hur, J.Y.; Kim, S.H.; Lee, K.W.; Kim, T. The relationship between blood mercury level and osteoporosis in postmenopausal women. Menopause, 2012, 19(5), 576-581.
[http://dx.doi.org/10.1097/gme.0b013e3182377294] [PMID: 22205147]
[113]
Sanchez-Gonzalez, C.; Moreno, L.; Lopez-Chaves, C.; Nebot, E.; Pietschmann, P.; Rodriguez-Nogales, A.; Galvez, J.; Montes-Bayon, M.; Sanz-Medel, A.; Llopis, J. Effect of vanadium on calcium homeostasis, osteopontin mRNA expression, and bone microarchitecture in diabetic rats. Metallomics, 2017, 9(3), 258-267.
[http://dx.doi.org/10.1039/C6MT00272B] [PMID: 28194470]
[114]
Lewis, R.C.; Johns, L.E.; Meeker, J.D. Exploratory analysis of the potential relationship between urinary molybdenum and bone mineral density among adult men and women from NHANES 2007-2010. Chemosphere, 2016, 164, 677-682.
[http://dx.doi.org/10.1016/j.chemosphere.2016.08.142] [PMID: 27639340]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy