Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Sam68通过诱导EphA3激活来促进人类乳腺癌的发展

卷 20, 期 1, 2020

页: [76 - 83] 页: 8

弟呕挨: 10.2174/1568009619666190718124541

价格: $65

摘要

背景:与68 kDa有丝分裂相关的Src(Sam68)通常在人类癌症中高表达。在某些癌症患者中,Sam68的过度表达与生存预后不良有关。但是,尚不清楚Sam68是否在促进乳腺癌转移中起作用。 材料与方法:采用免疫组织化学方法检测Sam68蛋白在乳腺癌组织中的表达。采用Trans-well测定,伤口愈合,实时PCR和Western blotting分析来检测Sam68对促进EMT或转移乳腺癌的作用。下一代RNA测序用于分析可能受Sam68调控的基因。 结果:Sam68在促进乳腺癌转移中起积极作用。 Sam68被发现在乳腺癌以及淋巴结转移中过表达。还发现MMP-9在乳腺癌组织中过表达,并且与Sam68的表达相关(P <0.01)。 NOD / SCID小鼠的异种移植和体外实验证实,Sam68调节乳腺癌细胞的侵袭和转移能力。 Sam68可能在乳腺癌中上调EPHA3。 结论:Sam68的高表达通过上调EPHA3基因参与乳腺癌的转移。

关键词: Sam68,乳腺癌,EPHA3,转移,免疫组化,异种移植。

« Previous
图形摘要

[1]
Nathanson, S.D.; Krag, D.; Kuerer, H.M.; Newman, L.A.; Brown, M.; Kerjaschki, D.; Pereira, E.R.; Padera, T.P. Breast cancer metastasis through the lympho-vascular system. Clin. Exp. Metastasis, 2018, 35(5-6), 443-454.
[http://dx.doi.org/10.1007/s10585-018-9902-1] [PMID: 29796854]
[2]
Huot, M.E.; Brown, C.M.; Lamarche-Vane, N.; Richard, S. An adaptor role for cytoplasmic Sam68 in modulating Src activity during cell polarization. Mol. Cell. Biol., 2009, 29(7), 1933-1943.
[http://dx.doi.org/10.1128/MCB.01707-08] [PMID: 19139276]
[3]
Richard, S.; Vogel, G.; Huot, M.E.; Guo, T.; Muller, W.J.; Lukong, K.E. Sam68 haploinsufficiency delays onset of mammary tumorigenesis and metastasis. Oncogene, 2008, 27(4), 548-556.
[http://dx.doi.org/10.1038/sj.onc.1210652] [PMID: 17621265]
[4]
Wang, L.; Cui, Y.; Liao, W.; Liu, S. Role of Sam68 in proliferation, invasion and migration of colorectal cancer cells in vitro. Nan Fang Yi Ke Da Xue Xue Bao, 2014, 34(4), 546-551.
[PMID: 24752106]
[5]
Zhang, Z.; Yu, C.; Li, Y.; Jiang, L.; Zhou, F. Utility of SAM68 in the progression and prognosis for bladder cancer. BMC Cancer, 2015, 15, 364.
[http://dx.doi.org/10.1186/s12885-015-1367-x] [PMID: 25944080]
[6]
Janes, P.W.; Slape, C.I.; Farnsworth, R.H.; Atapattu, L.; Scott, A.M.; Vail, M.E. EphA3 biology and cancer. Growth Factors, 2014, 32(6), 176-189.
[http://dx.doi.org/10.3109/08977194.2014.982276] [PMID: 25391995]
[7]
Chiari, R.; Hames, G.; Stroobant, V.; Texier, C.; Maillère, B.; Boon, T.; Coulie, P.G. Identification of a tumor-specific shared antigen derived from an Eph receptor and presented to CD4 T cells on HLA class II molecules. Cancer Res., 2000, 60(17), 4855-4863.
[PMID: 10987298]
[8]
Bielli, P.; Busà, R.; Paronetto, M.P. Sette, C. The RNA-binding protein Sam68 is a multifunctional player in human cancer. Endocr. Relat. Cancer, 2011, 18(4), R91-R102.
[http://dx.doi.org/10.1530/ERC-11-0041] [PMID: 21565971]
[9]
Taylor, S.J.; Resnick, R.J.; Shalloway, D. Sam68 exerts separable effects on cell cycle progression and apoptosis. BMC Cell Biol., 2004, 5, 5.
[http://dx.doi.org/10.1186/1471-2121-5-5] [PMID: 14736338]
[10]
Zhang, Z.; Li, J.; Zheng, H.; Yu, C.; Chen, J.; Liu, Z.; Li, M.; Zeng, M.; Zhou, F.; Song, L. Expression and cytoplasmic localization of SAM68 is a significant and independent prognostic marker for renal cell carcinoma. Cancer Epidemiol. Biomarkers Prev., 2009, 18(10), 2685-2693.
[http://dx.doi.org/10.1158/1055-9965.EPI-09-0097] [PMID: 19755649]
[11]
Li, Z.; Yu, C.P.; Zhong, Y.; Liu, T.J.; Huang, Q.D.; Zhao, X.H.; Huang, H.; Tu, H.; Jiang, S.; Zhang, Y.; Liu, J.H.; Song, L.B. Sam68 expression and cytoplasmic localization is correlated with lymph node metastasis as well as prognosis in patients with early-stage cervical cancer. Ann. Oncol., 2012, 23(3), 638-646.
[http://dx.doi.org/10.1093/annonc/mdr290] [PMID: 21700735]
[12]
Dumbovic, G.; Biayna, J.; Banús, J.; Samuelsson, J.; Roth, A.; Diederichs, S.; Alonso, S.; Buschbeck, M.; Perucho, M.; Forcales, S.V. A novel long non-coding RNA from NBL2 pericentromeric macrosatellite forms a perinucleolar aggregate structure in colon cancer. Nucleic Acids Res., 2018, 46(11), 5504-5524.
[http://dx.doi.org/10.1093/nar/gky263] [PMID: 29912433]
[13]
Yim, S.Y.; Shim, J.J.; Shin, J.H.; Jeong, Y.S.; Kang, S.H.; Kim, S.B.; Eun, Y.G.; Lee, D.J.; Conner, E.A.; Factor, V.M.; Moore, D.D.; Johnson, R.L.; Thorgeirsson, S.S.; Lee, J.S. Integrated genomic comparison of mouse models reveals their clinical resemblance to human liver cancer. Mol. Cancer Res., 2018.
[14]
Romano, G.; Chagani, S.; Kwong, L.N. The path to metastatic mouse models of colorectal cancer. Oncogene, 2018, 37(19), 2481-2489.
[http://dx.doi.org/10.1038/s41388-018-0155-x] [PMID: 29463860]
[15]
Mendes, O.; Kim, H.T.; Stoica, G. Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin. Exp. Metastasis, 2005, 22(3), 237-246.
[http://dx.doi.org/10.1007/s10585-005-8115-6] [PMID: 16158251]
[16]
Kalhori, V.; Törnquist, K. MMP2 and MMP9 participate in S1P-induced invasion of follicular ML-1 thyroid cancer cells. Mol. Cell. Endocrinol., 2015, 404, 113-122.
[http://dx.doi.org/10.1016/j.mce.2015.01.037] [PMID: 25643979]
[17]
Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010, 141(1), 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[18]
Limoge, M.; Safina, A.; Beattie, A.; Kapus, L.; Truskinovsky, A.M.; Bakin, A.V. Tumor-fibroblast interactions stimulate tumor vascularization by enhancing cytokine-driven production of MMP9 by tumor cells. Oncotarget, 2017, 8(22), 35592-35608.
[http://dx.doi.org/10.18632/oncotarget.16022] [PMID: 28423685]
[19]
Canavese, M.; Dottorini, T.; Crisanti, A. VEGF and LPS synergistically silence inflammatory response to Plasmodium berghei infection and protect against cerebral malaria. Pathog. Glob. Health, 2015, 109(6), 255-265.
[http://dx.doi.org/10.1179/2047773215Y.0000000018] [PMID: 26392042]
[20]
Adams, J.; Carder, P.J.; Downey, S.; Forbes, M.A.; MacLennan, K.; Allgar, V.; Kaufman, S.; Hallam, S.; Bicknell, R.; Walker, J.J.; Cairnduff, F.; Selby, P.J.; Perren, T.J.; Lansdown, M.; Banks, R.E. Vascular endothelial growth factor (VEGF) in breast cancer: comparison of plasma, serum, and tissue VEGF and microvessel density and effects of tamoxifen. Cancer Res., 2000, 60(11), 2898-2905.
[PMID: 10850435]
[21]
Rezaei, M.; Hashemi, M.; Sanaei, S.; Mashhadi, M.A.; Taheri, M. Association between vascular endothelial growth factor gene polymorphisms with breast cancer risk in an Iranian population. Breast Cancer (Auckl.), 2016, 10, 85-91.
[http://dx.doi.org/10.4137/BCBCR.S39649] [PMID: 27398026]
[22]
Lu, Y.; Xu, Q.; Zuo, Y.; Liu, L.; Liu, S.; Chen, L.; Wang, K.; Lei, Y.; Zhao, X.; Li, Y. Isoprenaline/β2-AR activates Plexin-A1/VEGFR2 signals via VEGF secretion in gastric cancer cells to promote tumor angiogenesis. BMC Cancer, 2017, 17(1), 875.
[http://dx.doi.org/10.1186/s12885-017-3894-0] [PMID: 29262812]
[23]
Santamaria, P.G.; Moreno-Bueno, G.; Portillo, F.; Cano, A. EMT: Present and future in clinical oncology. Mol. Oncol., 2017, 11(7), 718-738.
[http://dx.doi.org/10.1002/1878-0261.12091] [PMID: 28590039]
[24]
Polyak, K.; Weinberg, R.A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer, 2009, 9(4), 265-273.
[http://dx.doi.org/10.1038/nrc2620] [PMID: 19262571]
[25]
Nasri, B.; Inokuchi, M.; Ishikawa, T.; Uetake, H.; Takagi, Y.; Otsuki, S.; Kojima, K.; Kawano, T. High expression of EphA3 (erythropoietin-producing hepatocellular A3) in gastric cancer is associated with metastasis and poor survival. BMC Clin. Pathol., 2017, 17, 8.
[http://dx.doi.org/10.1186/s12907-017-0047-y] [PMID: 28465671]
[26]
Andretta, E.; Cartón-García, F.; Martínez-Barriocanal, Á.; de Marcondes, P.G.; Jimenez-Flores, L.M.; Macaya, I.; Bazzocco, S.; Bilic, J.; Rodrigues, P.; Nieto, R.; Landolfi, S.; Ramon, Y. Cajal, S.; Schwartz, S.; Brown, A.; Dopeso, H.; Arango, D. Investigation of the role of tyrosine kinase receptor EPHA3 in colorectal cancer. Sci. Rep., 2017, 7, 41576.
[http://dx.doi.org/10.1038/srep41576] [PMID: 28169277]
[27]
Vail, M.E.; Murone, C.; Tan, A.; Hii, L.; Abebe, D.; Janes, P.W.; Lee, F.T.; Baer, M.; Palath, V.; Bebbington, C.; Yarranton, G.; Llerena, C.; Garic, S.; Abramson, D.; Cartwright, G.; Scott, A.M.; Lackmann, M. Targeting EphA3 inhibits cancer growth by disrupting the tumor stromal microenvironment. Cancer Res., 2014, 74(16), 4470-4481.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0218] [PMID: 25125683]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy