Review Article

NG2 -胶质细胞在生理和病理状态的异质性、增殖和差异调节

卷 27, 期 37, 2020

页: [6384 - 6406] 页: 23

弟呕挨: 10.2174/0929867326666190717112944

价格: $65

摘要

NG2-胶质细胞,又称少突胶质细胞前体细胞(Oligodendrocyte, OPCs),约占发育和成人大脑细胞的5%-10%,是中枢神经系统的第五大细胞群。NG2 -胶质细胞表达参与神经元活动快速调节和神经元突触信号传导的受体和离子通道,在生理和病理状态均具有功能意义。在发育成熟的中枢神经系统中,NG2 -胶质细胞通过直接的突触接触参与与周围神经元的快速信号传递。这些独特的胶质细胞在早期发育的大脑中具有增殖和分化为少突胶质细胞的独特功能,这对轴突髓鞘的形成至关重要。作为对损伤的反应,NG2 -胶质细胞可以增殖,迁移到损伤处,分化为少突胶质细胞,形成新的髓鞘,包裹在受损的轴突上,实现功能恢复。NG2 -胶质细胞在神经活动和疾病中调节其行为和动态的能力,表明其在生理状态和病理状态的髓磷脂保存和重塑中起着关键作用。本文对NG2 -胶质细胞的异质性、增殖调控因子、寡突胶质细胞分化调控因子等特点进行了综述。

关键词: NG2-胶质细胞,少突胶质细胞前体细胞,异质性,分化,少突细胞,髓鞘

[1]
Nishiyama, A.; Watanabe, M.; Yang, Z.; Bu, J. Identity, distribution, and development of polydendrocytes: NG2-expressing glial cells. J. Neurocytol., 2002, 31(6-7), 437-455.
[http://dx.doi.org/10.1023/A:1025783412651 ] [PMID: 14501215]
[2]
Levine, J.M.; Card, J.P. Light and electron microscopic localization of a cell surface antigen (NG2) in the rat cerebellum: association with smooth protoplasmic astrocytes. J. Neurosci., 1987, 7(9), 2711-2720.
[http://dx.doi.org/10.1523/JNEUROSCI.07-09-02711.1987 ] [PMID: 3305798]
[3]
Levine, J.M.; Stallcup, W.B. Plasticity of developing cerebellar cells in vitro studied with antibodies against the NG2 antigen. J. Neurosci., 1987, 7(9), 2721-2731.
[http://dx.doi.org/10.1523/JNEUROSCI.07-09-02721.1987 ] [PMID: 3305799]
[4]
Ozerdem, U.; Grako, K.A.; Dahlin-Huppe, K.; Monosov, E.; Stallcup, W.B. NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev. Dyn., 2001, 222(2), 218-227.
[http://dx.doi.org/10.1002/dvdy.1200 ] [PMID: 11668599]
[5]
Armstrong, R.C.; Dorn, H.H.; Kufta, C.V.; Friedman, E.; Dubois-Dalcq, M.E. Pre-oligodendrocytes from adult human CNS. J. Neurosci., 1992, 12(4), 1538-1547.
[http://dx.doi.org/10.1523/JNEUROSCI.12-04-01538.1992 ] [PMID: 1556607]
[6]
Gogate, N.; Verma, L.; Zhou, J.M.; Milward, E.; Rusten, R.; O’Connor, M.; Kufta, C.; Kim, J.; Hudson, L.; Dubois-Dalcq, M. Plasticity in the adult human oligodendrocyte lineage. J. Neurosci., 1994, 14(8), 4571-4587.
[http://dx.doi.org/10.1523/JNEUROSCI.14-08-04571.1994 ] [PMID: 7519254]
[7]
Yong, V.W.; Kim, S.U.; Kim, M.W.; Shin, D.H. Growth factors for human glial cells in culture. Glia, 1988, 1(2), 113-123.
[http://dx.doi.org/10.1002/glia.440010203 ] [PMID: 2976033]
[8]
Scolding, N.; Franklin, R.; Stevens, S.; Heldin, C.H.; Compston, A.; Newcombe, J. Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain, 1998, 121(Pt 12), 2221-2228.
[http://dx.doi.org/10.1093/brain/121.12.2221 ] [PMID: 9874475]
[9]
Geha, S.; Pallud, J.; Junier, M.P.; Devaux, B.; Leonard, N.; Chassoux, F.; Chneiweiss, H.; Daumas-Duport, C.; Varlet, P. NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol., 2010, 20(2), 399-411.
[http://dx.doi.org/10.1111/j.1750-3639.2009.00295.x ] [PMID: 19486010]
[10]
Kessaris, N.; Fogarty, M.; Iannarelli, P.; Grist, M.; Wegner, M.; Richardson, W.D. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat. Neurosci., 2006, 9(2), 173-179.
[http://dx.doi.org/10.1038/nn1620 ] [PMID: 16388308]
[11]
Zhou, Q.; Anderson, D.J. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell, 2002, 109(1), 61-73.
[http://dx.doi.org/10.1016/S0092-8674(02)00677-3 ] [PMID: 11955447]
[12]
Aguirre, A.; Gallo, V. Reduced EGFR signaling in progenitor cells of the adult subventricular zone attenuates oligodendrogenesis after demyelination. Neuron Glia Biol., 2007, 3(3), 209-220.
[http://dx.doi.org/10.1017/S1740925X08000082 ] [PMID: 18634612]
[13]
Menn, B.; Garcia-Verdugo, J.M.; Yaschine, C.; Gonzalez-Perez, O.; Rowitch, D.; Alvarez-Buylla, A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J. Neurosci., 2006, 26(30), 7907-7918.
[http://dx.doi.org/10.1523/JNEUROSCI.1299-06.2006 ] [PMID: 16870736]
[14]
Ortega, F.; Gascón, S.; Masserdotti, G.; Deshpande, A.; Simon, C.; Fischer, J.; Dimou, L.; Chichung Lie, D.; Schroeder, T.; Berninger, B. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nat. Cell Biol., 2013, 15(6), 602-613.
[http://dx.doi.org/10.1038/ncb2736 ] [PMID: 23644466]
[15]
Levine, J. The reactions and role of NG2 glia in spinal cord injury Brain Res., 2016, 1638(Pt B), 199-208.
[http://dx.doi.org/10.1016/j.brainres.2015.07.026]
[16]
Birey, F.; Aguirre, A. Age-dependent netrin-1 signaling regulates NG2+ glial cell spatial homeostasis in normal adult gray matter. J. Neurosci., 2015, 35(17), 6946-6951.
[http://dx.doi.org/10.1523/JNEUROSCI.0356-15.2015 ] [PMID: 25926469]
[17]
Robins, S.C.; Trudel, E.; Rotondi, O.; Liu, X.; Djogo, T.; Kryzskaya, D.; Bourque, C.W.; Kokoeva, M.V. Evidence for NG2-glia derived, adult-born functional neurons in the hypothalamus. PLoS One, 2013, 8(10)e78236
[http://dx.doi.org/10.1371/journal.pone.0078236 ] [PMID: 24205170]
[18]
Irvine, K.A.; Blakemore, W.F. A different regional response by mouse oligodendrocyte progenitor cells (OPCs) to high-dose X-irradiation has consequences for repopulating OPC-depleted normal tissue. Eur. J. Neurosci., 2007, 25(2), 417-424.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05313.x ] [PMID: 17284182]
[19]
Chari, D.M.; Blakemore, W.F. Efficient recolonisation of progenitor-depleted areas of the CNS by adult oligodendrocyte progenitor cells. Glia, 2002, 37(4), 307-313.
[http://dx.doi.org/10.1002/glia.10038 ] [PMID: 11870870]
[20]
Dimou, L.; Götz, M. Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol. Rev., 2014, 94(3), 709-737.
[http://dx.doi.org/10.1152/physrev.00036.2013 ] [PMID: 24987003]
[21]
Robins, S.C.; Kokoeva, M.V. NG2-Glia, a new player in energy balance. Neuroendocrinology, 2018, 107(3), 305-312.
[http://dx.doi.org/10.1159/000488111 ] [PMID: 29506015]
[22]
Song, F.E.; Huang, J.L.; Lin, S.H.; Wang, S.; Ma, G.F.; Tong, X.P. Roles of NG2-glia in ischemic stroke. CNS Neurosci. Ther., 2017, 23(7), 547-553.
[http://dx.doi.org/10.1111/cns.12690 ] [PMID: 28317272]
[23]
Marques, S.; Zeisel, A.; Codeluppi, S.; van Bruggen, D.; Mendanha Falcão, A.; Xiao, L.; Li, H.; Häring, M.; Hochgerner, H.; Romanov, R.A.; Gyllborg, D.; Muñoz Manchado, A.; La Manno, G.; Lönnerberg, P.; Floriddia, E.M.; Rezayee, F.; Ernfors, P.; Arenas, E.; Hjerling-Leffler, J.; Harkany, T.; Richardson, W.D.; Linnarsson, S.; Castelo-Branco, G. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science, 2016, 352(6291), 1326-1329.
[http://dx.doi.org/10.1126/science.aaf6463 ] [PMID: 27284195]
[24]
Young, K.M.; Psachoulia, K.; Tripathi, R.B.; Dunn, S.J.; Cossell, L.; Attwell, D.; Tohyama, K.; Richardson, W.D. Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron, 2013, 77(5), 873-885.
[http://dx.doi.org/10.1016/j.neuron.2013.01.006 ] [PMID: 23473318]
[25]
Psachoulia, K.; Jamen, F.; Young, K.M.; Richardson, W.D. Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol., 2009, 5(3-4), 57-67.
[http://dx.doi.org/10.1017/S1740925X09990354 ] [PMID: 20346197]
[26]
Boulanger, J.J.; Messier, C. Unbiased stereological analysis of the fate of oligodendrocyte progenitor cells in the adult mouse brain and effect of reference memory training. Behav. Brain Res., 2017, 329, 127-139.
[http://dx.doi.org/10.1016/j.bbr.2017.04.027 ] [PMID: 28442356]
[27]
Hill, R.A.; Patel, K.D.; Medved, J.; Reiss, A.M.; Nishiyama, A. NG2 cells in white matter but not gray matter proliferate in response to PDGF. J. Neurosci., 2013, 33(36), 14558-14566.
[http://dx.doi.org/10.1523/JNEUROSCI.2001-12.2013 ] [PMID: 24005306]
[28]
Maki, T.; Maeda, M.; Uemura, M.; Lo, E.K.; Terasaki, Y.; Liang, A.C.; Shindo, A.; Choi, Y.K.; Taguchi, A.; Matsuyama, T.; Takahashi, R.; Ihara, M.; Arai, K. Potential interactions between pericytes and oligodendrocyte precursor cells in perivascular regions of cerebral white matter. Neurosci. Lett., 2015, 597, 164-169.
[http://dx.doi.org/10.1016/j.neulet.2015.04.047 ] [PMID: 25936593]
[29]
Seo, J.H.; Maki, T.; Maeda, M.; Miyamoto, N.; Liang, A.C.; Hayakawa, K.; Pham, L.D.; Suwa, F.; Taguchi, A.; Matsuyama, T.; Ihara, M.; Kim, K.W.; Lo, E.H.; Arai, K. Oligodendrocyte precursor cells support blood-brain barrier integrity via TGF-β signaling. PLoS One, 2014, 9(7)e103174
[http://dx.doi.org/10.1371/journal.pone.0103174 ] [PMID: 25078775]
[30]
Miyamoto, N.; Maki, T.; Shindo, A.; Liang, A.C.; Maeda, M.; Egawa, N.; Itoh, K.; Lo, E.K.; Lok, J.; Ihara, M.; Arai, K. Astrocytes promote oligodendrogenesis after white matter damage via brain-derived neurotrophic factor. J. Neurosci., 2015, 35(41), 14002-14008.
[http://dx.doi.org/10.1523/JNEUROSCI.1592-15.2015 ] [PMID: 26468200]
[31]
Parras, C.M.; Hunt, C.; Sugimori, M.; Nakafuku, M.; Rowitch, D.; Guillemot, F. The proneural gene Mash1 specifies an early population of telencephalic oligodendrocytes. J. Neurosci., 2007, 27(16), 4233-4242.
[http://dx.doi.org/10.1523/JNEUROSCI.0126-07.2007 ] [PMID: 17442807]
[32]
Battiste, J.; Helms, A.W.; Kim, E.J.; Savage, T.K.; Lagace, D.C.; Mandyam, C.D.; Eisch, A.J.; Miyoshi, G.; Johnson, J.E. Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord. Development, 2007, 134(2), 285-293.
[http://dx.doi.org/10.1242/dev.02727 ] [PMID: 17166924]
[33]
Bergles, D.E.; Roberts, J.D.; Somogyi, P.; Jahr, C.E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature, 2000, 405(6783), 187-191.
[http://dx.doi.org/10.1038/35012083 ] [PMID: 10821275]
[34]
Mangin, J.M.; Kunze, A.; Chittajallu, R.; Gallo, V. Satellite NG2 progenitor cells share common glutamatergic inputs with associated interneurons in the mouse dentate gyrus. J. Neurosci., 2008, 28(30), 7610-7623.
[http://dx.doi.org/10.1523/JNEUROSCI.1355-08.2008 ] [PMID: 18650338]
[35]
Chittajallu, R.; Aguirre, A.; Gallo, V. NG2-positive cells in the mouse white and grey matter display distinct physiological properties. J. Physiol., 2004, 561(Pt 1), 109-122.
[http://dx.doi.org/10.1113/jphysiol.2004.074252 ] [PMID: 15358811]
[36]
Mangin, J.M.; Li, P.; Scafidi, J.; Gallo, V. Experience-dependent regulation of NG2 progenitors in the developing barrel cortex. Nat. Neurosci., 2012, 15(9), 1192-1194.
[http://dx.doi.org/10.1038/nn.3190 ] [PMID: 22885848]
[37]
Müller, J.; Reyes-Haro, D.; Pivneva, T.; Nolte, C.; Schaette, R.; Lübke, J.; Kettenmann, H. The principal neurons of the medial nucleus of the trapezoid body and NG2(+) glial cells receive coordinated excitatory synaptic input. J. Gen. Physiol., 2009, 134(2), 115-127.
[http://dx.doi.org/10.1085/jgp.200910194 ] [PMID: 19635853]
[38]
Etxeberria, A.; Mangin, J.M.; Aguirre, A.; Gallo, V. Adult-born SVZ progenitors receive transient synapses during remyelination in corpus callosum. Nat. Neurosci., 2010, 13(3), 287-289.
[http://dx.doi.org/10.1038/nn.2500 ] [PMID: 20173746]
[39]
Kukley, M.; Capetillo-Zarate, E.; Dietrich, D. Vesicular glutamate release from axons in white matter. Nat. Neurosci., 2007, 10(3), 311-320.
[http://dx.doi.org/10.1038/nn1850 ] [PMID: 17293860]
[40]
Ziskin, J.L.; Nishiyama, A.; Rubio, M.; Fukaya, M.; Bergles, D.E. Vesicular release of glutamate from unmyelinated axons in white matter. Nat. Neurosci., 2007, 10(3), 321-330.
[http://dx.doi.org/10.1038/nn1854 ] [PMID: 17293857]
[41]
De Biase, L.M.; Nishiyama, A.; Bergles, D.E. Excitability and synaptic communication within the oligodendrocyte lineage. J. Neurosci., 2010, 30(10), 3600-3611.
[http://dx.doi.org/10.1523/JNEUROSCI.6000-09.2010 ] [PMID: 20219994]
[42]
Káradóttir, R.; Hamilton, N.B.; Bakiri, Y.; Attwell, D. Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat. Neurosci., 2008, 11(4), 450-456.
[http://dx.doi.org/10.1038/nn2060 ] [PMID: 18311136]
[43]
Lin, S.C.; Huck, J.H.; Roberts, J.D.; Macklin, W.B.; Somogyi, P.; Bergles, D.E. Climbing fiber innervation of NG2-expressing glia in the mammalian cerebellum. Neuron, 2005, 46(5), 773-785.
[http://dx.doi.org/10.1016/j.neuron.2005.04.025 ] [PMID: 15924863]
[44]
Ge, W.P.; Zhou, W.; Luo, Q.; Jan, L.Y.; Jan, Y.N. Dividing glial cells maintain differentiated properties including complex morphology and functional synapses. Proc. Natl. Acad. Sci. USA, 2009, 106(1), 328-333.
[http://dx.doi.org/10.1073/pnas.0811353106 ] [PMID: 19104058]
[45]
Lin, S.C.; Bergles, D.E. Synaptic signaling between neurons and glia. Glia, 2004, 47(3), 290-298.
[http://dx.doi.org/10.1002/glia.20060 ] [PMID: 15252819]
[46]
Tanaka, Y.; Tozuka, Y.; Takata, T.; Shimazu, N.; Matsumura, N.; Ohta, A.; Hisatsune, T. Excitatory GABAergic activation of cortical dividing glial cells. Cereb. Cortex, 2009, 19(9), 2181-2195.
[http://dx.doi.org/10.1093/cercor/bhn238 ] [PMID: 19131437]
[47]
Vélez-Fort, M.; Maldonado, P.P.; Butt, A.M.; Audinat, E.; Angulo, M.C. Postnatal switch from synaptic to extrasynaptic transmission between interneurons and NG2 cells. J. Neurosci., 2010, 30(20), 6921-6929.
[http://dx.doi.org/10.1523/JNEUROSCI.0238-10.2010 ] [PMID: 20484634]
[48]
Viganò, F.; Möbius, W.; Götz, M.; Dimou, L. Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat. Neurosci., 2013, 16(10), 1370-1372.
[http://dx.doi.org/10.1038/nn.3503 ] [PMID: 23995069]
[49]
Huang, W.; Bai, X.; Stopper, L.; Catalin, B.; Cartarozzi, L.P.; Scheller, A.; Kirchhoff, F. During development NG2 glial cells of the spinal cord are restricted to the oligodendrocyte lineage, but generate astrocytes upon acute injury. Neuroscience, 2018, 385, 154-165.
[http://dx.doi.org/10.1016/j.neuroscience.2018.06.015 ] [PMID: 29913244]
[50]
Larson, V.A.; Zhang, Y.; Bergles, D.E. Electrophysiological properties of NG2(+) cells: Matching physiological studies with gene expression profiles. Brain Res., 2016, 1638(Pt B), 138-160.
[http://dx.doi.org/10.1016/j.brainres.2015.09.010] [PMID: 26385417]
[51]
Clarke, L.E.; Young, K.M.; Hamilton, N.B.; Li, H.; Richardson, W.D.; Attwell, D. Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse. J. Neurosci., 2012, 32(24), 8173-8185.
[http://dx.doi.org/10.1523/JNEUROSCI.0928-12.2012 ] [PMID: 22699898]
[52]
Kriegler, S.; Chiu, S.Y. Calcium signaling of glial cells along mammalian axons. J. Neurosci., 1993, 13(10), 4229-4245.
[http://dx.doi.org/10.1523/JNEUROSCI.13-10-04229.1993 ] [PMID: 7692011]
[53]
Li, S.; Mealing, G.A.; Morley, P.; Stys, P.K. Novel injury mechanism in anoxia and trauma of spinal cord white matter: glutamate release via reverse Na+-dependent glutamate transport. J. Neurosci., 1999, 19(14), RC16.
[http://dx.doi.org/10.1523/JNEUROSCI.19-14-j0002.1999 ] [PMID: 10407058]
[54]
Dimou, L.; Simon, C.; Kirchhoff, F.; Takebayashi, H.; Götz, M. Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J. Neurosci., 2008, 28(41), 10434-10442.
[http://dx.doi.org/10.1523/JNEUROSCI.2831-08.2008 ] [PMID: 18842903]
[55]
Rivers, L.E.; Young, K.M.; Rizzi, M.; Jamen, F.; Psachoulia, K.; Wade, A.; Kessaris, N.; Richardson, W.D. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat. Neurosci., 2008, 11(12), 1392-1401.
[http://dx.doi.org/10.1038/nn.2220 ] [PMID: 18849983]
[56]
Zhu, X.; Hill, R.A.; Dietrich, D.; Komitova, M.; Suzuki, R.; Nishiyama, A. Age-dependent fate and lineage restriction of single NG2 cells. Development, 2011, 138(4), 745-753.
[http://dx.doi.org/10.1242/dev.047951 ] [PMID: 21266410]
[57]
Kang, S.H.; Fukaya, M.; Yang, J.K.; Rothstein, J.D.; Bergles, D.E. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron, 2010, 68(4), 668-681.
[http://dx.doi.org/10.1016/j.neuron.2010.09.009 ] [PMID: 21092857 ]
[58]
Levison, S.W.; Goldman, J.E. Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron, 1993, 10(2), 201-212.
[http://dx.doi.org/10.1016/0896-6273(93)90311-E ] [PMID: 8439409]
[59]
Levison, S.W.; Chuang, C.; Abramson, B.J.; Goldman, J.E. The migrational patterns and developmental fates of glial precursors in the rat subventricular zone are temporally regulated. Development, 1993, 119(3), 611-622.
[PMID: 8187632]
[60]
Aguirre, A.A.; Chittajallu, R.; Belachew, S.; Gallo, V. NG2-expressing cells in the subventricular zone are type C like cells and contribute to interneuron generation in the postnatal hippocampus. J. Cell Biol., 2004, 165(4), 575-589.
[http://dx.doi.org/10.1083/jcb.200311141 ] [PMID: 15159421]
[61]
Young, S.Z.; Taylor, M.M.; Bordey, A. Neurotransmitters couple brain activity to subventricular zone neurogenesis. Eur. J. Neurosci., 2011, 33(6), 1123-1132.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07611.x ] [PMID: 21395856]
[62]
Sakry, D.; Neitz, A.; Singh, J.; Frischknecht, R.; Marongiu, D.; Binamé, F.; Perera, S.S.; Endres, K.; Lutz, B.; Radyushkin, K.; Trotter, J.; Mittmann, T. Oligodendrocyte precursor cells modulate the neuronal network by activity dependent ectodomain cleavage of glial NG2. PLoS Biol., 2014, 12(11)e1001993
[http://dx.doi.org/10.1371/journal.pbio.1001993 ] [PMID: 25387269]
[63]
Grako, K.A.; Stallcup, W.B. Participation of the NG2 proteoglycan in rat aortic smooth muscle cell responses to platelet-derived growth factor. Exp. Cell Res., 1995, 221(1), 231-240.
[http://dx.doi.org/10.1006/excr.1995.1371 ] [PMID: 7589250]
[64]
Nishiyama, A.; Lin, X.H.; Giese, N.; Heldin, C.H.; Stallcup, W.B. Interaction between NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells is required for optimal response to PDGF. J. Neurosci. Res., 1996, 43(3), 315-330.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19960201)43:3<315:AID-JNR6>3.0.CO;2-M ] [PMID: 8714520]
[65]
Goretzki, L.; Burg, M.A.; Grako, K.A.; Stallcup, W.B. High-affinity binding of basic fibroblast growth factor and platelet-derived growth factor-AA to the core protein of the NG2 proteoglycan. J. Biol. Chem., 1999, 274(24), 16831-16837.
[http://dx.doi.org/10.1074/jbc.274.24.16831 ] [PMID: 10358027]
[66]
Barritt, D.S.; Pearn, M.T.; Zisch, A.H.; Lee, S.S.; Javier, R.T.; Pasquale, E.B.; Stallcup, W.B. The multi-PDZ domain protein MUPP1 is a cytoplasmic ligand for the membrane-spanning proteoglycan NG2. J. Cell. Biochem., 2000, 79(2), 213-224.
[http://dx.doi.org/10.1002/1097-4644(20001101)79:2<213:AID-JCB50>3.0.CO;2-G ] [PMID: 10967549]
[67]
Stegmüller, J.; Werner, H.; Nave, K.A.; Trotter, J. The proteoglycan NG2 is complexed with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by the PDZ glutamate receptor interaction protein (GRIP) in glial progenitor cells. Implications for glial neuronal signaling. J. Biol. Chem., 2003, 278(6), 3590-3598.
[http://dx.doi.org/10.1074/jbc.M210010200 ] [PMID: 12458226]
[68]
Chatterjee, N.; Stegmüller, J.; Schätzle, P.; Karram, K.; Koroll, M.; Werner, H.B.; Nave, K.A.; Trotter, J. Interaction of syntenin-1 and the NG2 proteoglycan in migratory oligodendrocyte precursor cells. J. Biol. Chem., 2008, 283(13), 8310-8317.
[http://dx.doi.org/10.1074/jbc.M706074200 ] [PMID: 18218632]
[69]
Rhee, W.; Ray, S.; Yokoo, H.; Hoane, M.E.; Lee, C.C.; Mikheev, A.M.; Horner, P.J.; Rostomily, R.C. Quantitative analysis of mitotic Olig2 cells in adult human brain and gliomas: implications for glioma histogenesis and biology. Glia, 2009, 57(5), 510-523.
[http://dx.doi.org/10.1002/glia.20780 ] [PMID: 18837053]
[70]
Simon, C.; Götz, M.; Dimou, L. Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia, 2011, 59(6), 869-881.
[http://dx.doi.org/10.1002/glia.21156 ] [PMID: 21446038]
[71]
Demerens, C.; Stankoff, B.; Logak, M.; Anglade, P.; Allinquant, B.; Couraud, F.; Zalc, B.; Lubetzki, C. Induction of myelination in the central nervous system by electrical activity. Proc. Natl. Acad. Sci. USA, 1996, 93(18), 9887-9892.
[http://dx.doi.org/10.1073/pnas.93.18.9887 ] [PMID: 8790426]
[72]
Gallo, V.; Zhou, J.M.; McBain, C.J.; Wright, P.; Knutson, P.L.; Armstrong, R.C. Oligodendrocyte progenitor cell proliferation and lineage progression are regulated by glutamate receptor-mediated K+ channel block. J. Neurosci., 1996, 16(8), 2659-2670.
[http://dx.doi.org/10.1523/JNEUROSCI.16-08-02659.1996 ] [PMID: 8786442]
[73]
Abbatecola, A.M.; Lattanzio, F.; Molinari, A.M.; Cioffi, M.; Mansi, L.; Rambaldi, P.; DiCioccio, L.; Cacciapuoti, F.; Canonico, R.; Paolisso, G. Rosiglitazone and cognitive stability in older individuals with type 2 diabetes and mild cognitive impairment. Diabetes Care, 2010, 33(8), 1706-1711.
[http://dx.doi.org/10.2337/dc09-2030 ] [PMID: 20435794]
[74]
Li, Q.; Brus-Ramer, M.; Martin, J.H.; McDonald, J.W. Electrical stimulation of the medullary pyramid promotes proliferation and differentiation of oligodendrocyte progenitor cells in the corticospinal tract of the adult rat. Neurosci. Lett., 2010, 479(2), 128-133.
[http://dx.doi.org/10.1016/j.neulet.2010.05.043 ] [PMID: 20493923]
[75]
Hughes, E.G.; Kang, S.H.; Fukaya, M.; Bergles, D.E. Oligodendrocyte progenitors balance growth with self repulsion to achieve homeostasis in the adult brain. Nat. Neurosci., 2013, 16(6), 668-676.
[http://dx.doi.org/10.1038/nn.3390 ] [PMID: 23624515]
[76]
Barres, B.A.; Raff, M.C. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature, 1993, 361(6409), 258-260.
[http://dx.doi.org/10.1038/361258a0 ] [PMID: 8093806]
[77]
Gibson, E.M.; Purger, D.; Mount, C.W.; Goldstein, A.K.; Lin, G.L.; Wood, L.S.; Inema, I.; Miller, S.E.; Bieri, G.; Zuchero, J.B.; Barres, B.A.; Woo, P.J.; Vogel, H.; Monje, M. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science, 2014, 344(6183)1252304
[http://dx.doi.org/10.1126/science.1252304 ] [PMID: 24727982]
[78]
Stevens, B.; Porta, S.; Haak, L.L.; Gallo, V.; Fields, R.D. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron, 2002, 36(5), 855-868.
[http://dx.doi.org/10.1016/S0896-6273(02)01067-X ] [PMID: 12467589]
[79]
García-Marqués, J.; Núñez-Llaves, R.; López-Mascaraque, L. NG2-glia from pallial progenitors produce the largest clonal clusters of the brain: time frame of clonal generation in cortex and olfactory bulb. J. Neurosci., 2014, 34(6), 2305-2313.
[http://dx.doi.org/10.1523/JNEUROSCI.3060-13.2014 ] [PMID: 24501369]
[80]
Chari, D.M.; Crang, A.J.; Blakemore, W.F. Decline in rate of colonization of oligodendrocyte progenitor cell (OPC)-depleted tissue by adult OPCs with age. J. Neuropathol. Exp. Neurol., 2003, 62(9), 908-916.
[http://dx.doi.org/10.1093/jnen/62.9.908 ] [PMID: 14533780]
[81]
Guo, Z.; Zhang, L.; Wu, Z.; Chen, Y.; Wang, F.; Chen, G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell, 2014, 14(2), 188-202.
[http://dx.doi.org/10.1016/j.stem.2013.12.001 ] [PMID: 24360883]
[82]
Heinrich, C.; Bergami, M.; Gascón, S.; Lepier, A.; Viganò, F.; Dimou, L.; Sutor, B.; Berninger, B.; Götz, M. Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Reports, 2014, 3(6), 1000-1014.
[http://dx.doi.org/10.1016/j.stemcr.2014.10.007 ] [PMID: 25458895]
[83]
Lin, S.T.; Huang, Y.; Zhang, L.; Heng, M.Y.; Ptácek, L.J.; Fu, Y.H. MicroRNA-23a promotes myelination in the central nervous system. Proc. Natl. Acad. Sci. USA, 2013, 110(43), 17468-17473.
[http://dx.doi.org/10.1073/pnas.1317182110 ] [PMID: 24101522]
[84]
Ruffini, F.; Arbour, N.; Blain, M.; Olivier, A.; Antel, J.P. Distinctive properties of human adult brain-derived myelin progenitor cells. Am. J. Pathol., 2004, 165(6), 2167-2175.
[http://dx.doi.org/10.1016/S0002-9440(10)63266-X ] [PMID: 15579458]
[85]
Shi, J.; Marinovich, A.; Barres, B.A. Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. J. Neurosci., 1998, 18(12), 4627-4636.
[http://dx.doi.org/10.1523/JNEUROSCI.18-12-04627.1998 ] [PMID: 9614237]
[86]
Yuen, T.J.; Silbereis, J.C.; Griveau, A.; Chang, S.M.; Daneman, R.; Fancy, S.P.J.; Zahed, H.; Maltepe, E.; Rowitch, D.H. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell, 2014, 158(2), 383-396.
[http://dx.doi.org/10.1016/j.cell.2014.04.052 ] [PMID: 25018103]
[87]
Barres, B.A.; Raff, M.C.; Gaese, F.; Bartke, I.; Dechant, G.; Barde, Y.A. A crucial role for neurotrophin-3 in oligodendrocyte development. Nature, 1994, 367(6461), 371-375.
[http://dx.doi.org/10.1038/367371a0 ] [PMID: 8114937]
[88]
Barres, B.A.; Burne, J.F.; Holtmann, B.; Thoenen, H.; Sendtner, M.; Raff, M.C. Ciliary neurotrophic factor enhances the rate of oligodendrocyte generation. Mol. Cell. Neurosci., 1996, 8(2-3), 146-156.
[http://dx.doi.org/10.1006/mcne.1996.0053 ] [PMID: 8918831]
[89]
Ohya, W.; Funakoshi, H.; Kurosawa, T.; Nakamura, T. Hepatocyte growth factor (HGF) promotes oligodendrocyte progenitor cell proliferation and inhibits its differentiation during postnatal development in the rat. Brain Res., 2007, 1147, 51-65.
[http://dx.doi.org/10.1016/j.brainres.2007.02.045 ] [PMID: 17382307]
[90]
He, X.; Li, Y.; Lu, H.; Zhang, Z.; Wang, Y.; Yang, G.Y. Netrin-1 overexpression promotes white matter repairing and remodeling after focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab., 2013, 33(12), 1921-1927.
[http://dx.doi.org/10.1038/jcbfm.2013.150 ] [PMID: 23963365]
[91]
Canoll, P.D.; Musacchio, J.M.; Hardy, R.; Reynolds, R.; Marchionni, M.A.; Salzer, J.L. GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron, 1996, 17(2), 229-243.
[http://dx.doi.org/10.1016/S0896-6273(00)80155-5 ] [PMID: 8780647]
[92]
Kuspert, M.; Wegner, M. SomethiNG 2 talk about-transcriptional regulation in em-bryonic and adult oligodendrocyte precursors Brain Res, 2016, 1638(Pt B), 167-182.
[http://dx.doi.org/10.1016/j.brainres.2015.07.024]
[93]
Kelenis, D.P.; Hart, E.; Edwards-Fligner, M.; Johnson, J.E.; Vue, T.Y. ASCL1 regulates proliferation of NG2-glia in the embryonic and adult spinal cord. Glia, 2018, 66(9), 1862-1880.
[http://dx.doi.org/10.1002/glia.23344 ] [PMID: 29683222]
[94]
McKinnon, R.D.; Piras, G.; Ida, J.A., Jr; Dubois-Dalcq, M. A role for TGF-beta in oligodendrocyte differentiation. J. Cell Biol., 1993, 121(6), 1397-1407.
[http://dx.doi.org/10.1083/jcb.121.6.1397 ] [PMID: 8509457]
[95]
Dutta, D.J.; Zameer, A.; Mariani, J.N.; Zhang, J.; Asp, L.; Huynh, J.; Mahase, S.; Laitman, B.M.; Argaw, A.T.; Mitiku, N.; Urbanski, M.; Melendez-Vasquez, C.V.; Casaccia, P.; Hayot, F.; Bottinger, E.P.; Brown, C.W.; John, G.R. Combinatorial actions of Tgfβ and Activin ligands promote oligodendrocyte development and CNS myelination. Development, 2014, 141(12), 2414-2428.
[http://dx.doi.org/10.1242/dev.106492 ] [PMID: 24917498]
[96]
Mattugini, N.; Merl-Pham, J.; Petrozziello, E.; Schindler, L.; Bernhagen, J.; Hauck, S.M.; Götz, M. Influence of white matter injury on gray matter reactive gliosis upon stab wound in the adult murine cerebral cortex. Glia, 2018, 66(8), 1644-1662.
[http://dx.doi.org/10.1002/glia.23329 ] [PMID: 29573353]
[97]
Wang, C.; Zhang, C.J.; Martin, B.N.; Bulek, K.; Kang, Z.; Zhao, J.; Bian, G.; Carman, J.A.; Gao, J.; Dongre, A.; Xue, H.; Miller, S.D.; Qian, Y.; Hambardzumyan, D.; Hamilton, T.; Ransohoff, R.M.; Li, X. IL-17 induced NOTCH1 activation in oligodendrocyte progenitor cells enhances proliferation and inflammatory gene expression. Nat. Commun., 2017, 8, 15508.
[http://dx.doi.org/10.1038/ncomms15508 ] [PMID: 28561022]
[98]
Li, Y.; Tang, G.; Liu, Y.; He, X.; Huang, J.; Lin, X.; Zhang, Z.; Yang, G.Y.; Wang, Y. CXCL12 gene therapy ameliorates ischemia-induced white matter injury in mouse brain. Stem Cells Transl. Med., 2015, 4(10), 1122-1130.
[http://dx.doi.org/10.5966/sctm.2015-0074 ] [PMID: 26253714]
[99]
Giera, S.; Luo, R.; Ying, Y.; Ackerman, S.D.; Jeong, S.J.; Stoveken, H.M.; Folts, C.J.; Welsh, C.A.; Tall, G.G.; Stevens, B.; Monk, K.R.; Piao, X. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. eLife, 2018, 7, 7.
[http://dx.doi.org/10.7554/eLife.33385 ] [PMID: 29809138]
[100]
Ilyasov, A.A.; Milligan, C.E.; Pharr, E.P.; Howlett, A.C. The endocannabinoid system and oligodendrocytes in health and disease. Front. Neurosci., 2018, 12, 733.
[http://dx.doi.org/10.3389/fnins.2018.00733 ] [PMID: 30416422]
[101]
Ohashi, K.; Deyashiki, A.; Miyake, T.; Nagayasu, K.; Shibasaki, K.; Shirakawa, H.; Kaneko, S. TRPV4 is functionally expressed in oligodendrocyte precursor cells and increases their proliferation. Pflugers Arch., 2018, 470(5), 705-716.
[http://dx.doi.org/10.1007/s00424-018-2130-3 ] [PMID: 29569183]
[102]
Oka, A.; Belliveau, M.J.; Rosenberg, P.A.; Volpe, J.J. Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J. Neurosci., 1993, 13(4), 1441-1453.
[http://dx.doi.org/10.1523/JNEUROSCI.13-04-01441.1993 ] [PMID: 8096541]
[103]
Yuan, X.; Eisen, A.M.; McBain, C.J.; Gallo, V. A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development, 1998, 125(15), 2901-2914.
[PMID: 9655812]
[104]
Tomlinson, L.; Huang, P.H.; Colognato, H. Prefrontal cortex NG2 glia undergo a developmental switch in their responsiveness to exercise. Dev. Neurobiol., 2018, 78(7), 687-700.
[http://dx.doi.org/10.1002/dneu.22590 ] [PMID: 29569358]
[105]
Wu, Q.; Miller, R.H.; Ransohoff, R.M.; Robinson, S.; Bu, J.; Nishiyama, A. Elevated levels of the chemokine GRO-1 correlate with elevated oligodendrocyte progenitor proliferation in the jimpy mutant. J. Neurosci., 2000, 20(7), 2609-2617.
[http://dx.doi.org/10.1523/JNEUROSCI.20-07-02609.2000 ] [PMID: 10729341]
[106]
Uchida, N.; Chen, K.; Dohse, M.; Hansen, K.D.; Dean, J.; Buser, J.R.; Riddle, A.; Beardsley, D.J.; Wan, Y.; Gong, X.; Nguyen, T.; Cummings, B.J.; Anderson, A.J.; Tamaki, S.J.; Tsukamoto, A.; Weissman, I.L.; Matsumoto, S.G.; Sherman, L.S.; Kroenke, C.D.; Back, S.A. Human neural stem cells induce functional myelination in mice with severe dysmyelination. Sci. Transl. Med., 2012, 4(155)155ra136
[http://dx.doi.org/10.1126/scitranslmed.3004371 ] [PMID: 23052293]
[107]
Windrem, M.S.; Schanz, S.J.; Guo, M.; Tian, G.F.; Washco, V.; Stanwood, N.; Rasband, M.; Roy, N.S.; Nedergaard, M.; Havton, L.A.; Wang, S.; Goldman, S.A. Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell, 2008, 2(6), 553-565.
[http://dx.doi.org/10.1016/j.stem.2008.03.020 ] [PMID: 18522848]
[108]
Wang, J.; Saraswat, D.; Sinha, A.K.; Polanco, J.; Dietz, K.; O’Bara, M.A.; Pol, S.U.; Shayya, H.J.; Sim, F.J. Paired related homeobox protein 1 regulates quiescence in human oligodendrocyte progenitors. Cell reports., 2018, 25(12), 3435-3450.
[http://dx.doi.org/10.1016/j.celrep.2018.11.068 ] [PMID: 30566868]
[109]
Avila, M.; Bansal, A.; Culberson, J.; Peiris, A.N. The role of sex hormones in multiple sclerosis. Eur. Neurol., 2018, 80(1-2), 93-99.
[http://dx.doi.org/10.1159/000494262 ] [PMID: 30343306]
[110]
Ying, Y.Q.; Yan, X.Q.; Jin, S.J.; Liang, Y.; Hou, L.; Niu, W.T.; Luo, X.P. Inhibitory effect of LPS on the proliferation of oligodendrocyte precursor cells through the notch signaling pathway in intrauterine infection-induced rats. Curr. Med. Sci, 2018, 38(5), 840-846.
[http://dx.doi.org/10.1007/s11596-018-1951-9 ] [PMID: 30341518]
[111]
Choi, E.H.; Xu, Y.; Medynets, M.; Monaco, M.C.G.; Major, E.O.; Nath, A.; Wang, T. Activated T cells induce proliferation of oligodendrocyte progenitor cells via release of vascular endothelial cell growth factor-A. Glia, 2018, 66(11), 2503-2513.
[http://dx.doi.org/10.1002/glia.23501 ] [PMID: 30500113]
[112]
Zhang, H.; Miller, R.H. Density-dependent feedback inhibition of oligodendrocyte precursor expansion. J. Neurosci., 1996, 16(21), 6886-6895.
[http://dx.doi.org/10.1523/JNEUROSCI.16-21-06886.1996 ] [PMID: 8824327]
[113]
Ahrendsen, J.T.; Grewal, H.S.; Hickey, S.P.; Culp, C.M.; Gould, E.A.; Shimizu, T.; Strnad, F.A.; Traystman, R.J.; Herson, P.S.; Macklin, W.B. Juvenile striatal white matter is resistant to ischemia-induced damage. Glia, 2016, 64(11), 1972-1986.
[http://dx.doi.org/10.1002/glia.23036 ] [PMID: 27463063]
[114]
Schneider, S.; Gruart, A.; Grade, S.; Zhang, Y.; Kröger, S.; Kirchhoff, F.; Eichele, G.; Delgado García, J.M.; Dimou, L. Decrease in newly generated oligodendrocytes leads to motor dysfunctions and changed myelin structures that can be rescued by transplanted cells. Glia, 2016, 64(12), 2201-2218.
[http://dx.doi.org/10.1002/glia.23055 ] [PMID: 27615452]
[115]
Yeung, M.S.; Zdunek, S.; Bergmann, O.; Bernard, S.; Salehpour, M.; Alkass, K.; Perl, S.; Tisdale, J.; Possnert, G.; Brundin, L.; Druid, H.; Frisén, J. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell, 2014, 159(4), 766-774.
[http://dx.doi.org/10.1016/j.cell.2014.10.011 ] [PMID: 25417154]
[116]
Ortiz, F.C.; Habermacher, C.; Graciarena, M.; Houry, P.Y.; Nishiyama, A.; Nait Oumesmar, B.; Angulo, M.C. Neuronal activity in vivo enhances functional myelin repair. JCI Insight, 2019, 5, 5.
[http://dx.doi.org/10.1172/jci.insight.123434 ] [PMID: 30896448]
[117]
Ehninger, D.; Wang, L.P.; Klempin, F.; Römer, B.; Kettenmann, H.; Kempermann, G. Enriched environment and physical activity reduce microglia and influence the fate of NG2 cells in the amygdala of adult mice. Cell Tissue Res., 2011, 345(1), 69-86.
[http://dx.doi.org/10.1007/s00441-011-1200-z ] [PMID: 21688212]
[118]
Hill, R.A.; Patel, K.D.; Goncalves, C.M.; Grutzendler, J.; Nishiyama, A. Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division. Nat. Neurosci., 2014, 17(11), 1518-1527.
[http://dx.doi.org/10.1038/nn.3815 ] [PMID: 25262495]
[119]
Moyon, S.; Dubessy, A.L.; Aigrot, M.S.; Trotter, M.; Huang, J.K.; Dauphinot, L.; Potier, M.C.; Kerninon, C.; Melik Parsadaniantz, S.; Franklin, R.J.; Lubetzki, C. Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J. Neurosci., 2015, 35(1), 4-20.
[http://dx.doi.org/10.1523/JNEUROSCI.0849-14.2015 ] [PMID: 25568099]
[120]
Fanarraga, M.L.; Griffiths, I.R.; Zhao, M.; Duncan, I.D. Oligodendrocytes are not inherently programmed to myelinate a specific size of axon. J. Comp. Neurol., 1998, 399(1), 94-100.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19980914)399:1<94:AID-CNE7>3.0.CO;2-5 ] [PMID: 9725703]
[121]
Vigano, F.; Dimou, L. The heterogeneous nature of NG2-glia. Brain Res, 2016, 1638(Pt B), 129-137.
[http://dx.doi.org/10.1016/j.brainres.2015.09.012] [PMID: 26388262]
[122]
Yao, F.; Li, Z.; Cheng, L.; Zhang, L.; Zha, X.; Jing, J. Low frequency pulsed electromagnetic field promotes differentiation of oligodendrocyte precursor cells through upregulation of miR-219-5p in vitro. Life Sci., 2019, 223, 185-193.
[http://dx.doi.org/10.1016/j.lfs.2019.03.031 ] [PMID: 30885522]
[123]
Takebayashi, H.; Nabeshima, Y.; Yoshida, S.; Chisaka, O.; Ikenaka, K.; Nabeshima, Y. The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr. Biol., 2002, 12(13), 1157-1163.
[http://dx.doi.org/10.1016/S0960-9822(02)00926-0 ] [PMID: 12121626]
[124]
McKenzie, I.A.; Ohayon, D.; Li, H.; de Faria, J.P.; Emery, B.; Tohyama, K.; Richardson, W.D. Motor skill learning requires active central myelination. Science, 2014, 346(6207), 318-322.
[http://dx.doi.org/10.1126/science.1254960 ] [PMID: 25324381]
[125]
Xiao, L.; Ohayon, D.; McKenzie, I.A.; Sinclair-Wilson, A.; Wright, J.L.; Fudge, A.D.; Emery, B.; Li, H.; Richardson, W.D. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat. Neurosci., 2016, 19(9), 1210-1217.
[http://dx.doi.org/10.1038/nn.4351 ] [PMID: 27455109]
[126]
Wang, C.Y.; Sun, Y.T.; Fang, K.M.; Ho, C.H.; Yang, C.S.; Tzeng, S.F. Function of B-Cell CLL/Lymphoma 11B in glial progenitor proliferation and oligodendrocyte maturation. Front. Mol. Neurosci., 2018, 11, 4.
[http://dx.doi.org/10.3389/fnmol.2018.00004 ] [PMID: 29416501]
[127]
Shi, Y.; Shao, Q.; Li, Z.; Gonzalez, G.A.; Lu, F.; Wang, D.; Pu, Y.; Huang, A.; Zhao, C.; He, C.; Cao, L. Myt1L promotes differentiation of oligodendrocyte precursor cells and is necessary for remyelination after lysolecithin-induced demyelination. Neurosci. Bull., 2018, 34(2), 247-260.
[http://dx.doi.org/10.1007/s12264-018-0207-9 ] [PMID: 29397565]
[128]
Chang, W.; Teng, J. Prox1 is essential for oligodendrocyte survival and regulates oligodendrocyte apoptosis via the regulation of NOXA. Acta Biochim. Biophys. Sin. (Shanghai), 2018, 50(7), 709-717.
[http://dx.doi.org/10.1093/abbs/gmy061 ] [PMID: 29931031]
[129]
Fauveau, M.; Wilmet, B.; Deboux, C.; Benardais, K.; Bachelin, C.; Temporão, A.C.; Kerninon, C.; Nait Oumesmar, B. SOX17 transcription factor negatively regulates oligodendrocyte precursor cell differentiation. Glia, 2018, 66(10), 2221-2232.
[http://dx.doi.org/10.1002/glia.23483 ] [PMID: 30152028]
[130]
Ulc, A.; Zeug, A.; Bauch, J.; van Leeuwen, S.; Kuhlmann, T.; Ffrench-Constant, C.; Ponimaskin, E.; Faissner, A. The guanine nucleotide exchange factor Vav3 modulates oligodendrocyte precursor differentiation and supports remyelination in white matter lesions. Glia, 2019, 67(2), 376-392.
[http://dx.doi.org/10.1002/glia.23548 ] [PMID: 30450647]
[131]
Valentin-Torres, A.; Savarin, C.; Barnett, J.; Bergmann, C.C. Blockade of sustained tumor necrosis factor in a transgenic model of progressive autoimmune encephalomyelitis limits oligodendrocyte apoptosis and promotes oligodendrocyte maturation. J. Neuroinflammation, 2018, 15(1), 121.
[http://dx.doi.org/10.1186/s12974-018-1164-y ] [PMID: 29690885]
[132]
Raff, M.C.; Miller, R.H.; Noble, M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature, 1983, 303(5916), 390-396.
[http://dx.doi.org/10.1038/303390a0 ] [PMID: 6304520]
[133]
Stallcup, W.B.; Beasley, L. Bipotential glial precursor cells of the optic nerve express the NG2 proteoglycan. J. Neurosci., 1987, 7(9), 2737-2744.
[http://dx.doi.org/10.1523/JNEUROSCI.07-09-02737.1987 ] [PMID: 3305800]
[134]
Nakasone, A.; Muramatsu, R.; Kato, Y.; Kawahara, Y.; Yamashita, T. Myotube-derived factor promotes oligodendrocyte precursor cell proliferation. Biochem. Biophys. Res. Commun., 2018, 500(3), 609-613.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.118 ] [PMID: 29679562]
[135]
Jure, I.; De Nicola, A.F.; Labombarda, F. Progesterone effects on oligodendrocyte differentiation in injured spinal cord. Brain Res., 2019, 1708, 36-46.
[http://dx.doi.org/10.1016/j.brainres.2018.12.005 ] [PMID: 30527678]
[136]
Shimizu, S.; Ishino, Y.; Tohyama, M.; Miyata, S. NDE1 positively regulates oligodendrocyte morphological differentiation. Sci. Rep., 2018, 8(1), 7644.
[http://dx.doi.org/10.1038/s41598-018-25898-4 ] [PMID: 29769557]
[137]
Marie, C.; Clavairoly, A.; Frah, M.; Hmidan, H.; Yan, J.; Zhao, C.; Van Steenwinckel, J.; Daveau, R.; Zalc, B.; Hassan, B.; Thomas, J.L.; Gressens, P.; Ravassard, P.; Moszer, I.; Martin, D.M.; Lu, Q.R.; Parras, C. Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8. Proc. Natl. Acad. Sci. USA, 2018, 115(35), E8246-E8255.
[http://dx.doi.org/10.1073/pnas.1802620115 ] [PMID: 30108144]
[138]
de Faria, O., Jr; Dhaunchak, A.S.; Kamen, Y.; Roth, A.D.; Kuhlmann, T.; Colman, D.R.; Kennedy, T.E. TMEM10 promotes oligodendrocyte differentiation and is expressed by oligodendrocytes in human remyelinating multiple sclerosis plaques. Sci. Rep., 2019, 9(1), 3606.
[http://dx.doi.org/10.1038/s41598-019-40342-x ] [PMID: 30837646]
[139]
Calabretta, S.; Vogel, G.; Yu, Z.; Choquet, K.; Darbelli, L.; Nicholson, T.B.; Kleinman, C.L.; Richard, S. Loss of PRMT5 promotes PDGFRalpha degradation during oligodendrocyte differentiation and myelination. Dev. Cell, 2018, 46(4), 426-440.
[http://dx.doi.org/10.1016/j.devcel.2018.06.025 ] [PMID: 30057274]
[140]
Xie, Y.J.; Zhou, L.; Wang, Y.; Jiang, N.W.; Cao, S.; Shao, C.Y.; Wang, X.T.; Li, X.Y.; Shen, Y.; Zhou, L. Leucine-rich glioma inactivated 1 promotes oligodendrocyte differentiation and myelination via TSC-mTOR signaling. Front. Mol. Neurosci., 2018, 11, 231.
[http://dx.doi.org/10.3389/fnmol.2018.00231 ] [PMID: 30034322]
[141]
Zilkha-Falb, R.; Gurevich, M.; Hanael, E.; Achiron, A. Prickle1 as positive regulator of oligodendrocyte differentiation. Neuroscience, 2017, 364, 107-121.
[http://dx.doi.org/10.1016/j.neuroscience.2017.09.018 ] [PMID: 28935237]
[142]
Zhang, Z.H.; Zhao, W.Q.; Ma, F.F.; Zhang, H.; Xu, X.H. Rab10 Disruption Results in Delayed OPC Maturation. Cell. Mol. Neurobiol., 2017, 37(7), 1303-1310.
[http://dx.doi.org/10.1007/s10571-017-0465-5 ] [PMID: 28132130]
[143]
Boda, E.; Viganò, F.; Rosa, P.; Fumagalli, M.; Labat-Gest, V.; Tempia, F.; Abbracchio, M.P.; Dimou, L.; Buffo, A. The GPR17 receptor in NG2 expressing cells: focus on in vivo cell maturation and participation in acute trauma and chronic damage. Glia, 2011, 59(12), 1958-1973.
[http://dx.doi.org/10.1002/glia.21237 ] [PMID: 21956849]
[144]
Lecca, D.; Trincavelli, M.L.; Gelosa, P.; Sironi, L.; Ciana, P.; Fumagalli, M.; Villa, G.; Verderio, C.; Grumelli, C.; Guerrini, U.; Tremoli, E.; Rosa, P.; Cuboni, S.; Martini, C.; Buffo, A.; Cimino, M.; Abbracchio, M.P. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS One, 2008, 3(10)e3579
[http://dx.doi.org/10.1371/journal.pone.0003579 ] [PMID: 18974869]
[145]
Fumagalli, M.; Daniele, S.; Lecca, D.; Lee, P.R.; Parravicini, C.; Fields, R.D.; Rosa, P.; Antonucci, F.; Verderio, C.; Trincavelli, M.L.; Bramanti, P.; Martini, C.; Abbracchio, M.P. Phenotypic changes, signaling pathway, and functional correlates of GPR17-expressing neural precursor cells during oligodendrocyte differentiation. J. Biol. Chem., 2011, 286(12), 10593-10604.
[http://dx.doi.org/10.1074/jbc.M110.162867 ] [PMID: 21209081]
[146]
Chen, Y.; Wu, H.; Wang, S.; Koito, H.; Li, J.; Ye, F.; Hoang, J.; Escobar, S.S.; Gow, A.; Arnett, H.A.; Trapp, B.D.; Karandikar, N.J.; Hsieh, J.; Lu, Q.R. The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell intrinsic timer of myelination. Nat. Neurosci., 2009, 12(11), 1398-1406.
[http://dx.doi.org/10.1038/nn.2410 ] [PMID: 19838178]
[147]
Boda, E.; Di Maria, S.; Rosa, P.; Taylor, V.; Abbracchio, M.P.; Buffo, A. Early phenotypic asymmetry of sister oligodendrocyte progenitor cells after mitosis and its modulation by aging and extrinsic factors. Glia, 2015, 63(2), 271-286.
[http://dx.doi.org/10.1002/glia.22750 ] [PMID: 25213035]
[148]
Coppolino, G.T.; Marangon, D.; Negri, C.; Menichetti, G.; Fumagalli, M.; Gelosa, P.; Dimou, L.; Furlan, R.; Lecca, D.; Abbracchio, M.P. Differential local tissue permissiveness influences the final fate of GPR17-expressing oligodendrocyte precursors in two distinct models of demyelination. Glia, 2018, 66(5), 1118-1130.
[http://dx.doi.org/10.1002/glia.23305 ] [PMID: 29424466]
[149]
Viganò, F.; Schneider, S.; Cimino, M.; Bonfanti, E.; Gelosa, P.; Sironi, L.; Abbracchio, M.P.; Dimou, L. GPR17 expressing NG2-Glia: oligodendrocyte progenitors serving as a reserve pool after injury. Glia, 2016, 64(2), 287-299.
[http://dx.doi.org/10.1002/glia.22929 ] [PMID: 26464068]
[150]
Zhao, B.; Zhao, C.Z.; Zhang, X.Y.; Huang, X.Q.; Shi, W.Z.; Fang, S.H.; Lu, Y.B.; Zhang, W.P.; Xia, Q.; Wei, E.Q. The new P2Y-like receptor G protein-coupled receptor 17 mediates acute neuronal injury and late microgliosis after focal cerebral ischemia in rats. Neuroscience, 2012, 202, 42-57.
[http://dx.doi.org/10.1016/j.neuroscience.2011.11.066 ] [PMID: 22155652]
[151]
Rao, M.S.; Noble, M.; Mayer-Pröschel, M. A tripotential glial precursor cell is present in the developing spinal cord. Proc. Natl. Acad. Sci. USA, 1998, 95(7), 3996-4001.
[http://dx.doi.org/10.1073/pnas.95.7.3996 ] [PMID: 9520481]
[152]
Dohare, P.; Cheng, B.; Ahmed, E.; Yadala, V.; Singla, P.; Thomas, S.; Kayton, R.; Ungvari, Z.; Ballabh, P. Glycogen synthase kinase-3β inhibition enhances myelination in preterm newborns with intraventricular hemorrhage, but not recombinant Wnt3A. Neurobiol. Dis., 2018, 118, 22-39.
[http://dx.doi.org/10.1016/j.nbd.2018.06.015 ] [PMID: 29940337]
[153]
Kang, S.H.; Li, Y.; Fukaya, M.; Lorenzini, I.; Cleveland, D.W.; Ostrow, L.W.; Rothstein, J.D.; Bergles, D.E. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci., 2013, 16(5), 571-579.
[http://dx.doi.org/10.1038/nn.3357 ] [PMID: 23542689]
[154]
Magnus, T.; Carmen, J.; Deleon, J.; Xue, H.; Pardo, A.C.; Lepore, A.C.; Mattson, M.P.; Rao, M.S.; Maragakis, N.J. Adult glial precursor proliferation in mutant SOD1G93A mice. Glia, 2008, 56(2), 200-208.
[http://dx.doi.org/10.1002/glia.20604 ] [PMID: 18023016]
[155]
Philips, T.; Bento-Abreu, A.; Nonneman, A.; Haeck, W.; Staats, K.; Geelen, V.; Hersmus, N.; Küsters, B.; Van Den Bosch, L.; Van Damme, P.; Richardson, W.D.; Robberecht, W. Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain, 2013, 136(Pt 2), 471-482.
[http://dx.doi.org/10.1093/brain/aws339 ] [PMID: 23378219]
[156]
Huang, J.K.; Franklin, R.J. Current status of myelin replacement therapies in multiple sclerosis Prog. Brain Res., 2012, 201, 219-231.
[http://dx.doi.org/10.1016/B978-0-444-59544-7.00011-1]
[157]
Vidaurre, O.G.; Liu, J.; Haines, J.; Sandoval, J.; Nowakowski, R.; Casaccia, P. An integrated approach to design novel therapeutic interventions for demyelinating disorders. Eur. J. Neurosci., 2012, 35(12), 1879-1886.
[http://dx.doi.org/10.1111/j.1460-9568.2012.08118.x ] [PMID: 22708599]
[158]
Marin-Husstege, M.; Muggironi, M.; Liu, A.; Casaccia-Bonnefil, P. Histone deacetylase activity is necessary for oligodendrocyte lineage progression. J. Neurosci., 2002, 22(23), 10333-10345.
[http://dx.doi.org/10.1523/JNEUROSCI.22-23-10333.2002 ] [PMID: 12451133]
[159]
Swiss, V.A.; Nguyen, T.; Dugas, J.; Ibrahim, A.; Barres, B.; Androulakis, I.P.; Casaccia, P. Identification of a gene regulatory network necessary for the initiation of oligodendrocyte differentiation. PLoS One, 2011, 6(4)e18088
[http://dx.doi.org/10.1371/journal.pone.0018088 ] [PMID: 21490970]
[160]
Ye, F.; Chen, Y.; Hoang, T.; Montgomery, R.L.; Zhao, X.H.; Bu, H.; Hu, T.; Taketo, M.M.; van Es, J.H.; Clevers, H.; Hsieh, J.; Bassel-Duby, R.; Olson, E.N.; Lu, Q.R. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat. Neurosci., 2009, 12(7), 829-838.
[http://dx.doi.org/10.1038/nn.2333 ] [PMID: 19503085]
[161]
Shen, S.; Li, J.; Casaccia-Bonnefil, P. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J. Cell Biol., 2005, 169(4), 577-589.
[http://dx.doi.org/10.1083/jcb.200412101 ] [PMID: 15897262]
[162]
Shen, S.; Sandoval, J.; Swiss, V.A.; Li, J.; Dupree, J.; Franklin, R.J.; Casaccia-Bonnefil, P. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat. Neurosci., 2008, 11(9), 1024-1034.
[http://dx.doi.org/10.1038/nn.2172 ] [PMID: 19160500]
[163]
Pedre, X.; Mastronardi, F.; Bruck, W.; López-Rodas, G.; Kuhlmann, T.; Casaccia, P. Changed histone acetylation patterns in normal-appearing white matter and early multiple sclerosis lesions. J. Neurosci., 2011, 31(9), 3435-3445.
[http://dx.doi.org/10.1523/JNEUROSCI.4507-10.2011 ] [PMID: 21368055]
[164]
Gacias, M.; Gerona-Navarro, G.; Plotnikov, A.N.; Zhang, G.; Zeng, L.; Kaur, J.; Moy, G.; Rusinova, E.; Rodriguez, Y.; Matikainen, B.; Vincek, A.; Joshua, J.; Casaccia, P.; Zhou, M.M. Selective chemical modulation of gene transcription favors oligodendrocyte lineage progression. Chem. Biol., 2014, 21(7), 841-854.
[http://dx.doi.org/10.1016/j.chembiol.2014.05.009 ] [PMID: 24954007]
[165]
Egawa, N.; Shindo, A.; Hikawa, R.; Kinoshita, H.; Liang, A.C.; Itoh, K.; Lok, J.; Maki, T.; Takahashi, R.; Lo, E.H.; Arai, K. Differential roles of epigenetic regulators in the survival and differentiation of oligodendrocyte precursor cells. Glia, 2019, 67(4), 718-728.
[http://dx.doi.org/10.1002/glia.23567 ] [PMID: 30793389]
[166]
Boyer, L.A.; Plath, K.; Zeitlinger, J.; Brambrink, T.; Medeiros, L.A.; Lee, T.I.; Levine, S.S.; Wernig, M.; Tajonar, A.; Ray, M.K.; Bell, G.W.; Otte, A.P.; Vidal, M.; Gifford, D.K.; Young, R.A.; Jaenisch, R. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 2006, 441(7091), 349-353.
[http://dx.doi.org/10.1038/nature04733 ] [PMID: 16625203]
[167]
Liu, J.; Magri, L.; Zhang, F.; Marsh, N.O.; Albrecht, S.; Huynh, J.L.; Kaur, J.; Kuhlmann, T.; Zhang, W.; Slesinger, P.A.; Casaccia, P. Chromatin landscape defined by repressive histone methylation during oligodendrocyte differentiation. J. Neurosci., 2015, 35(1), 352-365.
[http://dx.doi.org/10.1523/JNEUROSCI.2606-14.2015 ] [PMID: 25568127]
[168]
Komitova, M.; Serwanski, D.R.; Lu, Q.R.; Nishiyama, A. NG2 cells are not a major source of reactive astrocytes after neocortical stab wound injury. Glia, 2011, 59(5), 800-809.
[http://dx.doi.org/10.1002/glia.21152 ] [PMID: 21351161]
[169]
Zhu, X.; Zuo, H.; Maher, B.J.; Serwanski, D.R.; LoTurco, J.J.; Lu, Q.R.; Nishiyama, A. Olig2-dependent developmental fate switch of NG2 cells. Development, 2012, 139(13), 2299-2307.
[http://dx.doi.org/10.1242/dev.078873 ] [PMID: 22627280]
[170]
Zhang, Z.H.; Ma, F.F.; Zhang, H.; Xu, X.H. MARCKS is necessary for oligodendrocyte precursor cell maturation. Neurochem. Res., 2017, 42(10), 2933-2939.
[http://dx.doi.org/10.1007/s11064-017-2324-7 ] [PMID: 28623606]
[171]
Li, F.; Zhou, M.W.; Liu, N.; Yang, Y.Y.; Xing, H.Y.; Lu, Y.; Liu, X.X. MicroRNA-219 inhibits proliferation and induces differentiation of oligodendrocyte precursor cells after contusion spinal cord injury in rats. Neural Plast., 2019, 20199610687
[http://dx.doi.org/10.1155/2019/9610687 ] [PMID: 30911293]
[172]
Guo, Y.E.; Suo, N.; Cui, X.; Yuan, Q.; Xie, X. Vitamin C promotes oligodendrocytes generation and remyelination. Glia, 2018, 66(7), 1302-1316.
[http://dx.doi.org/10.1002/glia.23306 ] [PMID: 29423921]
[173]
Goncalves, M.B.; Wu, Y.; Clarke, E.; Grist, J.; Hobbs, C.; Trigo, D.; Jack, J.; Corcoran, J.P.T. Regulation of myelination by exosome associated retinoic acid release from NG2-positive cells. J. Neurosci., 2019, 39(16), 3013-3027.
[http://dx.doi.org/10.1523/JNEUROSCI.2922-18.2019 ] [PMID: 30760627]
[174]
Dyck, S.; Kataria, H.; Akbari-Kelachayeh, K.; Silver, J.; Karimi-Abdolrezaee, S. LAR and PTPσ receptors are negative regulators of oligodendrogenesis and oligodendrocyte integrity in spinal cord injury. Glia, 2019, 67(1), 125-145.
[http://dx.doi.org/10.1002/glia.23533 ] [PMID: 30394599]
[175]
Patel, J.R.; Klein, R.S. Mediators of oligodendrocyte differentiation during remyelination. FEBS Lett., 2011, 585(23), 3730-3737.
[http://dx.doi.org/10.1016/j.febslet.2011.04.037 ] [PMID: 21539842]
[176]
Sloane, J.A.; Batt, C.; Ma, Y.; Harris, Z.M.; Trapp, B.; Vartanian, T. Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc. Natl. Acad. Sci. USA, 2010, 107(25), 11555-11560.
[http://dx.doi.org/10.1073/pnas.1006496107 ] [PMID: 20534434]
[177]
Pan, Y.; Jiang, Z.; Sun, D.; Li, Z.; Pu, Y.; Wang, D.; Huang, A.; He, C.; Cao, L. Cyclin-dependent kinase 18 promotes oligodendrocyte precursor cell differentiation through activating the extracellular signal-regulated kinase signaling pathway. Neurosci. Bull., 2019, 35(5), 802-814.
[http://dx.doi.org/10.1007/s12264-019-00376-7 ] [PMID: 31028571]
[178]
Suo, N.; Guo, Y.E.; He, B.; Gu, H.; Xie, X. Inhibition of MAPK/ERK pathway promotes oligodendrocytes generation and recovery of demyelinating diseases. Glia, 2019, 67(7), 1320-1332.
[http://dx.doi.org/10.1002/glia.23606 ] [PMID: 30815939]
[179]
Lu, F.; Yin, D.; Pu, Y.; Liu, W.; Li, Z.; Shao, Q.; He, C.; Cao, L. Shikimic acid promotes oligodendrocyte precursor cell differentiation and accelerates remyelination in mice. Neurosci. Bull., 2019, 35(3), 434-446.
[http://dx.doi.org/10.1007/s12264-018-0322-7 ] [PMID: 30684125]
[180]
Muñoz-Esquivel, J.; Göttle, P.; Aguirre-Cruz, L.; Flores-Rivera, J.; Corona, T.; Reyes-Terán, G.; Küry, P.; Torres, K.J. Sildenafil inhibits myelin expression and myelination of oligodendroglial precursor cells. ASN Neuro, 2019, 111759091419832444
[http://dx.doi.org/10.1177/1759091419832444 ] [PMID: 30849920]
[181]
Chen, T.J. In vivo regulation of oligodendrocyte precursor cell proliferation and differentiation by the AMPA-receptor subunit GluA2. Cell reports., 2018, 25(4), 852-861.
[http://dx.doi.org/10.1016/j.celrep.2018.09.066 ] [PMID: 30355492]
[182]
Maki, T.; Morancho, A.; Martinez-San Segundo, P.; Hayakawa, K.; Takase, H.; Liang, A.C.; Gabriel-Salazar, M.; Medina-Gutiérrez, E.; Washida, K.; Montaner, J.; Lok, J.; Lo, E.H.; Arai, K.; Rosell, A. Endothelial progenitor cell secretome and oligovascular repair in a mouse model of prolonged cerebral hypoperfusion. Stroke, 2018, 49(4), 1003-1010.
[http://dx.doi.org/10.1161/STROKEAHA.117.019346 ] [PMID: 29511131]
[183]
Cheli, V.T.; Santiago González, D.A.; Namgyal Lama, T.; Spreuer, V.; Handley, V.; Murphy, G.G.; Paez, P.M. Conditional deletion of the L-type calcium channel cav1.2 in oligodendrocyte progenitor cells affects postnatal myelination in mice. J. Neurosci., 2016, 36(42), 10853-10869.
[http://dx.doi.org/10.1523/JNEUROSCI.1770-16.2016 ] [PMID: 27798140]
[184]
Ma, S.; Wang, J.; Wang, Y.; Dai, X.; Xu, F.; Gao, X.; Johnson, J.; Xu, N.; Leak, R.K.; Hu, X.; Luo, Y.; Chen, J. Diabetes mellitus impairs white matter repair and long-term functional deficits after cerebral ischemia. Stroke, 2018, 49(10), 2453-2463.
[http://dx.doi.org/10.1161/STROKEAHA.118.021452 ] [PMID: 30355111]
[185]
De Berdt, P.; Bottemanne, P.; Bianco, J.; Alhouayek, M.; Diogenes, A.; Lloyd, A.; Llyod, A.; Gerardo-Nava, J.; Brook, G.A.; Miron, V.; Muccioli, G.G.; Rieux, A.D. Stem cells from human apical papilla decrease neuro-inflammation and stimulate oligodendrocyte progenitor differentiation via activin-A secretion. Cell. Mol. Life Sci., 2018, 75(15), 2843-2856.
[http://dx.doi.org/10.1007/s00018-018-2764-5 ] [PMID: 29417177 ]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy