Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Insights on Nutrients as Analgesics in Chronic Pain

Author(s): Geir Bjørklund*, Salvatore Chirumbolo, Maryam Dadar, Joeri J. Pen, Monica Daniela Doşa*, Lyudmila Pivina, Yulia Semenova and Jan Aaseth

Volume 27, Issue 37, 2020

Page: [6407 - 6423] Pages: 17

DOI: 10.2174/0929867326666190712172015

Price: $65

Abstract

Many serious inflammatory disorders and nutrient deficiencies induce chronic pain, and anti-inflammatory diets have been applied successfully to modify the inflammatory symptoms causing chronic pain. Numerous scientific data and clinical investigations have demonstrated that long-term inflammation could lead to an inappropriate or exaggerated sensibility to pain. In addition, some Non-steroidal Anti-inflammatory Drugs (NSAID), which directly act on the many enzymes involved in pain and inflammation, including cyclooxygenases, are used to dampen the algesic signal to the central nervous system, reducing the responses of soft C-fibers to pain stimuli. On the other hand, there are a few reports from both health authorities and physicians, reporting that decreased transmission of pain signals can be achieved and improved, depending on the patient’s dietary habit. Many nutrients, as well as a suitable level of exercise (resistance training), are the best methods for improving the total mitochondrial capacity in muscle cells, which can lead to a reduction in sensitivity to pain, particularly by lowering the inflammatory signaling to C-fibers. According to the current literature, it could be proposed that chronic pain results from the changed ratio of neuropeptides, hormones, and poor nutritional status, often related to an underlying inflammatory disorder. The current review also evaluates the effective role of nutrition-related interventions on the severity of chronic pain. This review pointed out that nutritional interventions can have a positive effect on pain experience through the indirect inhibitory effect on prostaglandin E2 and attenuation of mitochondrial dysfunction caused by ischemia/reperfusion in skeletal muscle, improving the intracellular antioxidant defense system. These data highlight the need for more nutrition studies where chronic pain is the primary outcome, using accurate interventions. To date, no nutritional recommendation for chronic pain has been officially proposed. Therefore, the goal of this article is to explore pain management and pain modulation, searching for a mode of nutrition efficient in reducing pain.

Keywords: Pain, diet, nutritional supplementation, exercises, COX-2, omega-3.

[1]
Shah, V.; Taddio, A.; Ohlsson, A. Randomised controlled trial of paracetamol for heel prick pain in neonates. Arch. Dis. Child. Fetal Neonatal Ed., 1998, 79(3), F209-F211.
[http://dx.doi.org/10.1136/fn.79.3.F209 ] [PMID: 10194994]
[2]
Shah, P.S.; Herbozo, C.; Aliwalas, L.L.; Shah, V.S. Breastfeeding or breast milk for procedural pain in neonates. Cochrane Database Syst. Rev., 2012, 12, CD004950.
[http://dx.doi.org/10.1002/14651858.CD004950.pub3 ] [PMID: 23235618]
[3]
Fujii, Y.; Ozaki, N.; Taguchi, T.; Mizumura, K.; Furukawa, K.; Sugiura, Y. TRP channels and ASICs mediate mechanical hyperalgesia in models of inflammatory muscle pain and delayed onset muscle soreness. Pain, 2008, 140(2), 292-304.
[http://dx.doi.org/10.1016/j.pain.2008.08.013 ] [PMID: 18834667]
[4]
Kassab, M.; Foster, J.P.; Foureur, M.; Fowler, C. Sweet-tasting solutions for needle-related procedural pain in infants one month to one year of age. Cochrane Database Syst. Rev., 2012, 12, CD008411.
[http://dx.doi.org/10.1002/14651858.CD008411.pub2] [PMID: 23235662]
[5]
Brain, K.; Burrows, T.L.; Rollo, M.E.; Chai, L.K.; Clarke, E.D.; Hayes, C.; Hodson, F.J.; Collins, C.E. A systematic review and meta-analysis of nutrition interventions for chronic noncancer pain. J. Hum. Nutr. Diet., 2019, 32, 198-225.
[http://dx.doi.org/10.1111/jhn.12601] [PMID: 30294938]
[6]
Kassab, M.; Sheehy, A.; King, M.; Fowler, C.; Foureur, M. A double-blind randomised controlled trial of 25% oral glucose for pain relief in 2-month old infants undergoing immunisation. Int. J. Nurs. Stud., 2012, 49(3), 249-256.
[http://dx.doi.org/10.1016/j.ijnurstu.2011.09.013 ] [PMID: 22000905]
[7]
Kassab, M.I.; Roydhouse, J.K.; Fowler, C.; Foureur, M. The effectiveness of glucose in reducing needle-related procedural pain in infants. J. Pediatr. Nurs., 2012, 27(1), 3-17.
[http://dx.doi.org/10.1016/j.pedn.2010.10.008 ] [PMID: 22222101]
[8]
De Vizia, B.; Raia, V.; Spano, C.; Pavlidis, C.; Coruzzo, A.; Alessio, M. Effect of an 8-month treatment with omega-3 fatty acids (eicosapentaenoic and docosahexaenoic) in patients with cystic fibrosis. JPEN J. Parenter. Enteral Nutr., 2003, 27(1), 52-57.
[http://dx.doi.org/10.1177/014860710302700152 ] [PMID: 12549599]
[9]
Freitas, R.D.S.; Campos, M.M. Protective effects of omega-3 fatty acids in cancer-related complications. Nutrients, 2019, 11(5), 945.
[http://dx.doi.org/10.3390/nu11050945 ] [PMID: 31035457]
[10]
Artukoglu, B.B.; Beyer, C.; Zuloff-Shani, A.; Brener, E.; Bloch, M.H. Efficacy of palmitoylethanolamide for pain: a meta-analysis. Pain Physician, 2017, 20(5), 353-362.
[PMID: 28727699]
[11]
Indraccolo, U.; Indraccolo, S.R.; Mignini, F. Micronized palmitoylethanolamide/trans-polydatin treatment of endometriosis-related pain: a meta-analysis. Ann. Ist. Super. Sanita, 2017, 53(2), 125-134.
[http://dx.doi.org/10.4415/ANN_17_02_08 ] [PMID: 28617258]
[12]
Soeken, K.L. Selected CAM therapies for arthritis-related pain: the evidence from systematic reviews. Clin. J. Pain, 2004, 20(1), 13-18.
[http://dx.doi.org/10.1097/00002508-200401000-00004 ] [PMID: 14668651]
[13]
Schunck, W-H.; Konkel, A.; Fischer, R.; Weylandt, K-H. Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases. Pharmacol. Ther., 2018, 183, 177-204.
[http://dx.doi.org/10.1016/j.pharmthera.2017.10.016 ] [PMID: 29080699]
[14]
Barros-Neto, J.A.; Souza-Machado, A.; Kraychete, D.C.; Jesus, R.P.; Cortes, M.L.; Lima, M.D.; Freitas, M.C.; Santos, T.M.; Viana, G.F.; Menezes-Filho, J.A. Selenium and zinc status in chronic myofascial pain: serum and erythrocyte concentrations and food intake. PLoS One, 2016, 11(10), e0164302.
[http://dx.doi.org/10.1371/journal.pone.0164302 ] [PMID: 27755562]
[15]
Shalimar; Midha, S.; Hasan, A.; Dhingra, R.; Garg, P.K. Long-term pain relief with optimized medical treatment including antioxidants and step-up interventional therapy in patients with chronic pancreatitis. J. Gastroenterol. Hepatol., 2017, 32(1), 270-277.
[http://dx.doi.org/10.1111/jgh.13410 ] [PMID: 27061119]
[16]
van Nooten, F.; Treur, M.; Pantiri, K.; Stoker, M.; Charokopou, M. Capsaicin 8% patch versus oral neuropathic pain medications for the treatment of painful diabetic peripheral neuropathy: a systematic literature review and network meta-analysis. Clin. Ther., 2017, 39(4), 787-803.
[http://dx.doi.org/10.1016/j.clinthera.2017.02.010 ] [PMID: 28365034]
[17]
Derry, S.; Rice, A.S.; Cole, P.; Tan, T.; Moore, R.A. Topical capsaicin (high concentration) for chronic neuropathic pain in adults. Cochrane Database Syst. Rev., 2013, (2), CD007393.
[http://dx.doi.org/10.1002/14651858.CD007393.pub3 ] [PMID: 23450576]
[18]
Birklein, F.; Schmelz, M. Neuropeptides, neurogenic inflammation and complex regional pain syndrome (CRPS). Neurosci. Lett., 2008, 437(3), 199-202.
[http://dx.doi.org/10.1016/j.neulet.2008.03.081 ] [PMID: 18423863]
[19]
Wu, Z.; Camargo, C.A., Jr; Malihi, Z.; Bartley, J.; Waayer, D.; Lawes, C.M.M.; Toop, L.; Khaw, K-T.; Scragg, R. Monthly vitamin D supplementation, pain, and pattern of analgesic prescription: secondary analysis from the randomized, double-blind, placebo-controlled Vitamin D Assessment study. Pain, 2018, 159(6), 1074-1082.
[http://dx.doi.org/10.1097/j.pain.0000000000001189 ] [PMID: 29494417]
[20]
Javdani, M.; Habibi, A.; Shirian, S.; Kojouri, G.A.; Hosseini, F. Effect of selenium nanoparticle supplementation on tissue inflammation, blood cell count, and IGF-1 levels in spinal cord injury-induced rats. Biol. Trace Elem. Res., 2019, 187(1), 202-211.
[http://dx.doi.org/10.1007/s12011-018-1371-5 ] [PMID: 29730750]
[21]
Schaffer, S.; Kim, H.W. Effects and mechanisms of taurine as a therapeutic agent. Biomol. Ther. (Seoul), 2018, 26(3), 225-241.
[http://dx.doi.org/10.4062/biomolther.2017.251 ] [PMID: 29631391]
[22]
Pinho-Ribeiro, F.A.; Verri, W.A., Jr; Chiu, I.M. Nociceptor sensory neuron–immune interactions in pain and inflammation. Trends Immunol., 2017, 38(1), 5-19.
[http://dx.doi.org/10.1016/j.it.2016.10.001 ] [PMID: 27793571]
[23]
Dilger, R.N.; Johnson, R.W. Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J. Leukoc. Biol., 2008, 84(4), 932-939.
[http://dx.doi.org/10.1189/jlb.0208108 ] [PMID: 18495785]
[24]
Dina, O.A.; Parada, C.A.; Yeh, J.; Chen, X.; McCarter, G.C.; Levine, J.D. Integrin signaling in inflammatory and neuropathic pain in the rat. Eur. J. Neurosci., 2004, 19(3), 634-642.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03169.x ] [PMID: 14984413]
[25]
Barnes, P.J. Neuroeffector mechanisms: the interface between inflammation and neuronal responses. J. Allergy Clin. Immunol., 1996, 98(5 Pt 2), S73-S81.
[http://dx.doi.org/10.1016/S0091-6749(96)70020-9 ] [PMID: 8939180]
[26]
Bagga, D.; Wang, L.; Farias-Eisner, R.; Glaspy, J.A.; Reddy, S.T. Differential effects of prostaglandin derived from ω-6 and ω-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc. Natl. Acad. Sci. USA, 2003, 100(4), 1751-1756.
[http://dx.doi.org/10.1073/pnas.0334211100 ] [PMID: 12578976]
[27]
Hansen, H.S.; Artmann, A. Endocannabinoids and nutrition. J. Neuroendocrinol., 2008, 20(Suppl. 1), 94-99.
[http://dx.doi.org/10.1111/j.1365-2826.2008.01687.x ] [PMID: 18426507]
[28]
Kim, M.; Furuzono, T.; Yamakuni, K.; Li, Y.; Kim, Y-I.; Takahashi, H.; Ohue-Kitano, R.; Jheng, H-F.; Takahashi, N.; Kano, Y.; Yu, R.; Kishino, S.; Ogawa, J.; Uchida, K.; Yamazaki, J.; Tominaga, M.; Kawada, T.; Goto, T. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1. FASEB J., 2017, 31(11), 5036-5048.
[http://dx.doi.org/10.1096/fj.201700151R ] [PMID: 28754711]
[29]
Corey, E.J.; Shih, C.; Cashman, J.R. Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene biosynthesis. Proc. Natl. Acad. Sci. USA, 1983, 80(12), 3581-3584.
[http://dx.doi.org/10.1073/pnas.80.12.3581 ] [PMID: 6304720]
[30]
Sarter, B.; Kelsey, K.S.; Schwartz, T.A.; Harris, W.S. Blood docosahexaenoic acid and eicosapentaenoic acid in vegans: Associations with age and gender and effects of an algal-derived omega-3 fatty acid supplement. Clin. Nutr., 2015, 34(2), 212-218.
[http://dx.doi.org/10.1016/j.clnu.2014.03.003 ] [PMID: 24679552]
[31]
Chumpitazi, B.P.; Cope, J.L.; Hollister, E.B.; Tsai, C.M.; McMeans, A.R.; Luna, R.A.; Versalovic, J.; Shulman, R.J. Randomised clinical trial: gut microbiome biomarkers are associated with clinical response to a low FODMAP diet in children with the irritable bowel syndrome. Aliment. Pharmacol. Ther., 2015, 42(4), 418-427.
[http://dx.doi.org/10.1111/apt.13286 ] [PMID: 26104013]
[32]
Janakiraman, M.; Krishnamoorthy, G. Emerging role of diet and microbiota interactions in neuroinflammation. Front. Immunol., 2018, 9, 2067.
[http://dx.doi.org/10.3389/fimmu.2018.02067 ] [PMID: 30254641]
[33]
Stecher, B. The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection in: Metabolism and Bacterial Pathogenesis; Conway, T.; Cohen, P.S., Eds.; Wiley, 2015, pp. 297-320.
[http://dx.doi.org/10.1128/microbiolspec.MBP-0008-2014]
[34]
Mohajeri, M.; Sahebkar, A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol., 2018, 122, 30-51.
[http://dx.doi.org/10.1016/j.critrevonc.2017.12.005 ] [PMID: 29458788]
[35]
Holzer, P. Neuropeptides and the microbiota-gut-brain axis in: Microbial endocrinology: The microbiota-gut-brain axis in health and disease ; Lyte, M.; Cryan, J.F., Eds.; , 2014, 195-219, .
[36]
Grace, A.A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat. Rev. Neurosci., 2016, 17(8), 524-532.
[http://dx.doi.org/10.1038/nrn.2016.57 ] [PMID: 27256556]
[37]
Little, J.P.; Phillips, S.M. Resistance exercise and nutrition to counteract muscle wasting. Appl. Physiol. Nutr. Metab., 2009, 34(5), 817-828.
[http://dx.doi.org/10.1139/H09-093 ] [PMID: 19935843]
[38]
Hadley, S.H.; Bahia, P.K.; Taylor-Clark, T.E. Sensory nerve terminal mitochondrial dysfunction induces hyperexcitability in airway nociceptors via protein kinase C. Mol. Pharmacol., 2014, 85(6), 839-848.
[http://dx.doi.org/10.1124/mol.113.091272 ] [PMID: 24642367]
[39]
Nesuashvili, L.; Hadley, S.H.; Bahia, P.K.; Taylor-Clark, T.E. Sensory nerve terminal mitochondrial dysfunction activates airway sensory nerves via transient receptor potential (TRP) channels. Mol. Pharmacol., 2013, 83(5), 1007-1019.
[http://dx.doi.org/10.1124/mol.112.084319 ] [PMID: 23444014]
[40]
Storozhuk, M.V.; Zholos, A.V. TRP channels as novel targets for endogenous ligands: focus on endocannabinoids and nociceptive signalling. Curr. Neuropharmacol., 2018, 16(2), 137-150.
[http://dx.doi.org/10.2174/1570159X15666170424120802 ] [PMID: 28440188]
[41]
Minke, B. TRP channels and Ca2+ signaling. Cell Calcium, 2006, 40(3), 261-275.
[http://dx.doi.org/10.1016/j.ceca.2006.05.002 ] [PMID: 16806461]
[42]
Duggett, N.A.; Griffiths, L.A.; Flatters, S.J.L. Paclitaxel-induced painful neuropathy is associated with changes in mitochondrial bioenergetics, glycolysis, and an energy deficit in dorsal root ganglia neurons. Pain, 2017, 158(8), 1499-1508.
[http://dx.doi.org/10.1097/j.pain.0000000000000939 ] [PMID: 28541258]
[43]
Reiter, R.J.; Tan, D.X.; Rosales-Corral, S.; Galano, A.; Zhou, X.J.; Xu, B. Mitochondria: central organelles for melatonin’s antioxidant and anti-aging actions. Molecules, 2018, 23(2), 509.
[http://dx.doi.org/10.3390/molecules23020509] [PMID: 29495303]
[44]
Jia, X.; Jackson, T.J. Pain beliefs and problems in functioning among people with arthritis: a meta-analytic review. Behav. Med., 2016, 39, 735-756.
[http://dx.doi.org/10.1007/s10865-016-9777-z] [PMID: 27506911]
[45]
Loredo-Pérez, A.A.; Montalvo-Blanco, C.E.; Hernández-González, L.I.; Anaya-Reyes, M.; Fernández Del Valle-Laisequilla, C.; Reyes-García, J.G.; Acosta-González, R.I.; Martínez-Martínez, A.; Villarreal-Salcido, J.C.; Vargas-Muñoz, V.M.; Muñoz-Islas, E.; Ramírez-Rosas, M.B.; Jiménez-Andrade, J.M. High-fat diet exacerbates pain-like behaviors and periarticular bone loss in mice with CFA-induced knee arthritis. Obesity (Silver Spring), 2016, 24(5), 1106-1115.
[http://dx.doi.org/10.1002/oby.21485 ] [PMID: 27030572]
[46]
Aspinall, E.; Berenschot, W. Democracy for Sale: Elections; Clientelism, and the State in Indonesia, 2019.
[http://dx.doi.org/10.7591/9781501732997]
[47]
Cowan, D. Oral Aloe vera as a treatment for osteoarthritis: a summary. Br. J. Community Nurs., 2010, 15(6), 280-282.
[http://dx.doi.org/10.12968/bjcn.2010.15.6.48369 ] [PMID: 20679979]
[48]
Senftleber, N.K.; Nielsen, S.M.; Andersen, J.R.; Bliddal, H.; Tarp, S.; Lauritzen, L.; Furst, D.E.; Suarez-Almazor, M.E.; Lyddiatt, A.; Christensen, R. Marine oil supplements for arthritis pain: a systematic review and meta-analysis of randomized trials. Nutrients, 2017, 9(1), 42.
[http://dx.doi.org/10.3390/nu9010042 ] [PMID: 28067815]
[49]
Shi, L.; Ren, Y.; Zhang, C.; Yue, W.; Lei, F. Effects of organic selenium (Se-enriched yeast) supplementation in gestation diet on antioxidant status, hormone profile and haemato-biochemical parameters in Taihang Black Goats. Anim. Feed Sci. Technol., 2018, 238, 57-65.
[http://dx.doi.org/10.1016/j.anifeedsci.2018.02.004]
[50]
Dawson, R., Jr; Biasetti, M.; Messina, S.; Dominy, J. The cytoprotective role of taurine in exercise-induced muscle injury. Amino Acids, 2002, 22(4), 309-324.
[http://dx.doi.org/10.1007/s007260200017 ] [PMID: 12107759]
[51]
Rahman, M.A.; Hasegawa, H. High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking. Sci. Total Environ., 2011, 409(22), 4645-4655.
[http://dx.doi.org/10.1016/j.scitotenv.2011.07.068 ] [PMID: 21899878]
[52]
Sugiura, H.; Okita, S.; Kato, T.; Naka, T.; Kawanishi, S.; Ohnishi, S.; Oshida, Y.; Ma, N. Protection by taurine against INOS-dependent DNA damage in heavily exercised skeletal muscle by inhibition of the NF-κB signaling pathway. Adv. Exp. Med. Biol., 2013, 775, 237-246.
[http://dx.doi.org/10.1007/978-1-4614-6130-2_20 ] [PMID: 23392939]
[53]
Kato, T.; Okita, S.; Wang, S.; Tsunekawa, M.; Ma, N. The effects of taurine administration against inflammation in heavily exercised skeletal muscle of rats. Adv. Exp. Med. Biol., 2015, 803, 773-784.
[http://dx.doi.org/10.1007/978-3-319-15126-7_62 ] [PMID: 25833544]
[54]
Smolyaninova, L.V.; Dergalev, A.A.; Kulebyakin, K.Y.; Carpenter, D.O.; Boldyrev, A.A. Carnosine prevents necrotic and apoptotic death of rat thymocytes via ouabain-sensitive Na/K-ATPase. Cell Biochem. Funct., 2013, 31(1), 30-35.
[http://dx.doi.org/10.1002/cbf.2856 ] [PMID: 22763713]
[55]
Baraniuk, J.N.; El-Amin, S.; Corey, R.; Rayhan, R.; Timbol, C. Carnosine treatment for gulf war illness: a randomized controlled trial. Glob. J. Health Sci., 2013, 5(3), 69-81.
[http://dx.doi.org/10.5539/gjhs.v5n3p69 ] [PMID: 23618477]
[56]
Kawahara, M.; Tanaka, K.I.; Kato-Negishi, M. Zinc, carnosine, and neurodegenerative diseases. Nutrients, 2018, 10(2), 147.
[http://dx.doi.org/10.3390/nu10020147 ] [PMID: 29382141]
[57]
Gupta, R.C.; Win, T.; Bittner, S. Taurine analogues; a new class of therapeutics: retrospect and prospects. Curr. Med. Chem., 2005, 12(17), 2021-2039.
[http://dx.doi.org/10.2174/0929867054546582] [PMID: 16101502]
[58]
Gordon, R.E.; Heller, R.F. Taurine protection of lungs in hamster models of oxidant injury: a morphologic time study of paraquat and bleomycin treatment. Adv. Exp. Med. Biol., 1992, 315, 319-328.
[http://dx.doi.org/10.1007/978-1-4615-3436-5_38] [PMID: 1380761]
[59]
Yousuf, S.; Atif, F.; Ahmad, M.; Hoda, M.N.; Khan, M.B.; Ishrat, T.; Islam, F. Selenium plays a modulatory role against cerebral ischemia-induced neuronal damage in rat hippocampus. Brain Res., 2007, 1147, 218-225.
[http://dx.doi.org/10.1016/j.brainres.2007.01.143 ] [PMID: 17376411]
[60]
Simsek, N.; Koc, A.; Karadeniz, A.; Yildirim, M.E.; Celik, H.T.; Sari, E.; Kara, A. Ameliorative effect of selenium in cisplatin-induced testicular damage in rats. Acta Histochem., 2016, 118(3), 263-270.
[http://dx.doi.org/10.1016/j.acthis.2016.02.002 ] [PMID: 26920108]
[61]
Beyfuss, K.; Hood, D.A. A systematic review of p53 regulation of oxidative stress in skeletal muscle. Redox Rep., 2018, 23(1), 100-117.
[http://dx.doi.org/10.1080/13510002.2017.1416773 ] [PMID: 29298131]
[62]
Cunha, T.F.; Bacurau, A.V.; Moreira, J.B.; Paixão, N.A.; Campos, J.C.; Ferreira, J.C.; Leal, M.L.; Negrão, C.E.; Moriscot, A.S.; Wisløff, U.; Brum, P.C. Exercise training prevents oxidative stress and ubiquitin-proteasome system overactivity and reverse skeletal muscle atrophy in heart failure. PLoS One, 2012, 7(8), e41701.
[http://dx.doi.org/10.1371/journal.pone.0041701 ] [PMID: 22870245]
[63]
Gomes, M.J.; Martinez, P.F.; Pagan, L.U.; Damatto, R.L.; Cezar, M.D.M.; Lima, A.R.R.; Okoshi, K.; Okoshi, M.P. Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget, 2017, 8(12), 20428-20440.
[http://dx.doi.org/10.18632/oncotarget.14670 ] [PMID: 28099900]
[64]
Glover, E.I.; Phillips, S.M. Resistance exercise and appropriate nutrition to counteract muscle wasting and promote muscle hypertrophy. Curr. Opin. Clin. Nutr. Metab. Care, 2010, 13(6), 630-634.
[http://dx.doi.org/10.1097/MCO.0b013e32833f1ae5 ] [PMID: 20829685]
[65]
Campbell, B.I.; Aguilar, D.; Conlin, L.; Vargas, A.; Schoenfeld, B.J.; Corson, A.; Gai, C.; Best, S.; Galvan, E.; Couvillion, K. Effects of high versus low protein intake on body composition and maximal strength in aspiring female physique athletes engaging in an 8-week resistance training program. Int. J. Sport Nutr. Exerc. Metab., 2018, 28(6), 580-585.
[http://dx.doi.org/10.1123/ijsnem.2017-0389 ] [PMID: 29405780]
[66]
Maltese, G.; Psefteli, P.M.; Rizzo, B.; Srivastava, S.; Gnudi, L.; Mann, G.E.; Siow, R.C. The anti-ageing hormone klotho induces Nrf2-mediated antioxidant defences in human aortic smooth muscle cells. J. Cell. Mol. Med., 2017, 21(3), 621-627.
[http://dx.doi.org/10.1111/jcmm.12996 ] [PMID: 27696667]
[67]
Corbi, G.; Conti, V.; Russomanno, G.; Rengo, G.; Vitulli, P.; Ciccarelli, A.L.; Filippelli, A.; Ferrara, N. Is physical activity able to modify oxidative damage in cardiovascular aging? Oxid. Med. Cell. Longev., 2012, 2012, 728547.
[http://dx.doi.org/10.1155/2012/728547 ] [PMID: 23029599]
[68]
Lambertucci, R.H.; Levada-Pires, A.C.; Rossoni, L.V.; Curi, R.; Pithon-Curi, T.C. Effects of aerobic exercise training on antioxidant enzyme activities and mRNA levels in soleus muscle from young and aged rats. Mech. Ageing Dev., 2007, 128(3), 267-275.
[http://dx.doi.org/10.1016/j.mad.2006.12.006 ] [PMID: 17224177]
[69]
Powers, S.K.; Duarte, J.; Kavazis, A.N.; Talbert, E.E. Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp. Physiol., 2010, 95(1), 1-9.
[http://dx.doi.org/10.1113/expphysiol.2009.050526 ] [PMID: 19880534]
[70]
Rahimi, M.H.; Shab-Bidar, S.; Mollahosseini, M.; Djafarian, K. Branched-chain amino acid supplementation and exercise-induced muscle damage in exercise recovery: A meta-analysis of randomized clinical trials. Nutrition, 2017, 42, 30-36.
[http://dx.doi.org/10.1016/j.nut.2017.05.005 ] [PMID: 28870476]
[71]
Pasiakos, S.M.; Lieberman, H.R.; McLellan, T.M. Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: a systematic review. Sports Med., 2014, 44(5), 655-670.
[http://dx.doi.org/10.1007/s40279-013-0137-7 ] [PMID: 24435468]
[72]
Ranchordas, M.K.; Rogerson, D.; Soltani, H.; Costello, J.T. Antioxidants for preventing and reducing muscle soreness after exercise. Cochrane Database Syst. Rev. 2017, (12)
[http://dx.doi.org/10.1002/14651858.CD009789.pub2]
[73]
de la Roche, J.; Walther, I.; Leonow, W.; Hage, A.; Eberhardt, M.; Fischer, M.; Reeh, P.W.; Sauer, S.; Leffler, A. Lactate is a potent inhibitor of the capsaicin receptor TRPV1. Sci. Rep., 2016, 6, 36740.
[http://dx.doi.org/10.1038/srep36740 ] [PMID: 27827430]
[74]
Poppler, L.H.; Mackinnon, S.E. The role of the peripheral nerve surgeon in the treatment of pain. Neurotherapeutics, 2019, 16(1), 9-25.
[http://dx.doi.org/10.1007/s13311-018-00695-z ] [PMID: 30542905]
[75]
Burke, N.N.; Geoghegan, E.; Kerr, D.M.; Moriarty, O.; Finn, D.P.; Roche, M. Altered neuropathic pain behaviour in a rat model of depression is associated with changes in inflammatory gene expression in the amygdala. Genes Brain Behav., 2013, 12(7), 705-713.
[http://dx.doi.org/10.1111/gbb.12080 ] [PMID: 23957449]
[76]
Yoneda, T.; Hiasa, M.; Nagata, Y.; Okui, T.; White, F.A. Acidic microenvironment and bone pain in cancer-colonized bone. Bonekey Rep., 2015, 4, 690.
[http://dx.doi.org/10.1038/bonekey.2015.58 ] [PMID: 25987988]
[77]
Chiang, M-C. Neuropathic pain in small fiber neuropathy. in: Small Fiber Neuropathy and Related Syndromes: Pain and Neurodegeneration. Hsieh, S.-T., Anand, P., Gibbons, C.H., Sommer, C. (Eds.); Springer link, 2019, pp. 153-164.
[78]
Galer, B.S.; Gianas, A.; Jensen, M.P. Painful diabetic polyneuropathy: epidemiology, pain description, and quality of life. Diabetes Res. Clin. Pract., 2000, 47(2), 123-128.
[http://dx.doi.org/10.1016/S0168-8227(99)00112-6 ] [PMID: 10670912]
[79]
Leef, K.H. Evidence-based review of oral sucrose administration to decrease the pain response in newborn infants. Neonatal Netw., 2006, 25(4), 275-284.
[http://dx.doi.org/10.1891/0730-0832.25.4.275 ] [PMID: 16913238]
[80]
Harrison, R.V.; Gordon, K.A.; Papsin, B.C.; Negandhi, J.; James, A.L. Auditory neuropathy spectrum disorder (ANSD) and cochlear implantation. Int. J. Pediatr. Otorhinolaryngol., 2015, 79(12), 1980-1987.
[http://dx.doi.org/10.1016/j.ijporl.2015.10.006 ] [PMID: 26545793]
[81]
Lal, D.; Rounds, A.; Dodick, D.W. Comprehensive management of patients presenting to the otolaryngologist for sinus pressure, pain, or headache. Laryngoscope, 2015, 125(2), 303-310.
[http://dx.doi.org/10.1002/lary.24926 ] [PMID: 25216102]
[82]
Newlove-Delgado, T.; Ford, T.J.; Hamilton, W.; Stein, K.; Ukoumunne, O.C. Prescribing of medication for attention deficit hyperactivity disorder among young people in the Clinical Practice Research Datalink 2005-2013: analysis of time to cessation. Eur. Child Adolesc. Psychiatry, 2018, 27(1), 29-35.
[http://dx.doi.org/10.1007/s00787-017-1011-1 ] [PMID: 28589222]
[83]
Hungin, A.P.; Mulligan, C.; Pot, B.; Whorwell, P.; Agréus, L.; Fracasso, P.; Lionis, C.; Mendive, J.; Philippart de Foy, J.M.; Rubin, G.; Winchester, C.; de Wit, N. Systematic review: probiotics in the management of lower gastrointestinal symptoms in clinical practice -- an evidence-based international guide. Aliment. Pharmacol. Ther., 2013, 38(8), 864-886.
[http://dx.doi.org/10.1111/apt.12460 ] [PMID: 23981066]
[84]
Wentworth, C. Public eating, private pain: Children, feasting, and food security in Vanuatu. Food Foodways, 2016, 24(3-4), 136-152.
[http://dx.doi.org/10.1080/07409710.2016.1210888]
[85]
Cai, G-H.; Huang, J.; Zhao, Y.; Chen, J.; Wu, H-H.; Dong, Y-L.; Smith, H.S.; Li, Y-Q.; Wang, W.; Wu, S-X. Antioxidant therapy for pain relief in patients with chronic pancreatitis: systematic review and meta-analysis. Pain Physician, 2013, 16(6), 521-532.
[PMID: 24284838]
[86]
Bjørklund, G.; Dadar, M.; Aaseth, J. Delayed-type hypersensitivity to metals in connective tissue diseases and fibromyalgia. Environ. Res., 2018, 161, 573-579.
[http://dx.doi.org/10.1016/j.envres.2017.12.004 ] [PMID: 29245125]
[87]
Miranda, E.F.; de Oliveira, L.V.F.; Antonialli, F.C.; Vanin, A.A. de Carvalho, Pde.T.; Leal-Junior, E.C. Phototherapy with combination of super-pulsed laser and light-emitting diodes is beneficial in improvement of muscular performance (strength and muscular endurance), dyspnea, and fatigue sensation in patients with chronic obstructive pulmonary disease. Lasers Med. Sci., 2015, 30(1), 437-443.
[http://dx.doi.org/10.1007/s10103-014-1690-5 ] [PMID: 25413975]
[88]
Chariot, P.; Bignani, O. Skeletal muscle disorders associated with selenium deficiency in humans. Muscle Nerve, 2003, 27(6), 662-668.
[http://dx.doi.org/10.1002/mus.10304 ] [PMID: 12766976]
[89]
Hara, K.; Nakamura, M.; Haranishi, Y.; Terada, T.; Kataoka, K.; Sata, T. Antinociceptive effect of intrathecal administration of hypotaurine in rat models of inflammatory and neuropathic pain. Amino Acids, 2012, 43(1), 397-404.
[http://dx.doi.org/10.1007/s00726-011-1094-9] [PMID: 21971909]
[90]
Hagen, K.B.; Byfuglien, M.G.; Falzon, L.; Olsen, S.U.; Smedslund, G. Dietary interventions for rheumatoid arthritis. Cochrane Database Syst. Rev., 2009, (1), CD006400.
[http://dx.doi.org/10.1002/14651858.CD006400.pub2] [PMID: 19160281]
[91]
Madhusudhan, S.K. Novel analgesic combination of tramadol, paracetamol, caffeine and taurine in the management of moderate to moderately severe acute low back pain. J. Orthop., 2013, 10(3), 144-148.
[http://dx.doi.org/10.1016/j.jor.2013.07.001 ] [PMID: 24396231]
[92]
Cheppudira, B.; Fowler, M.; McGhee, L.; Greer, A.; Mares, A.; Petz, L.; Devore, D.; Loyd, D.R.; Clifford, J.L. Curcumin: a novel therapeutic for burn pain and wound healing. Expert Opin. Investig. Drugs, 2013, 22(10), 1295-1303.
[http://dx.doi.org/10.1517/13543784.2013.825249 ] [PMID: 23902423]
[93]
Haroyan, A.; Mukuchyan, V.; Mkrtchyan, N.; Minasyan, N.; Gasparyan, S.; Sargsyan, A.; Narimanyan, M.; Hovhannisyan, A. Efficacy and safety of curcumin and its combination with boswellic acid in osteoarthritis: a comparative, randomized, double-blind, placebo-controlled study. BMC Complement. Altern. Med., 2018, 18(1), 7.
[http://dx.doi.org/10.1186/s12906-017-2062-z ] [PMID: 29316908]
[94]
Daily, J.W.; Yang, M.; Park, S. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: a systematic review and meta-analysis of randomized clinical trials. J. Med. Food, 2016, 19(8), 717-729.
[http://dx.doi.org/10.1089/jmf.2016.3705 ] [PMID: 27533649]
[95]
Shih, P-K.; Chen, Y-C.; Huang, Y-C.; Chang, Y-T.; Chen, J-X.; Cheng, C-M. Pretreatment of vitamin D3 ameliorates lung and muscle injury induced by reperfusion of bilateral femoral vessels in a rat model. J. Surg. Res., 2011, 171(1), 323-328.
[http://dx.doi.org/10.1016/j.jss.2010.03.008 ] [PMID: 20462603]
[96]
Lowe, D.W.; Fraser, J.L.; Rollins, L.G.; Bentzley, J.; Nie, X.; Martin, R.; Singh, I.; Jenkins, D. Vitamin D improves functional outcomes in neonatal hypoxic ischemic male rats treated with N-acetylcysteine and hypothermia. Neuropharmacology, 2017, 123, 186-200.
[http://dx.doi.org/10.1016/j.neuropharm.2017.06.004 ] [PMID: 28599922]
[97]
Wang, Y.; Chiang, Y-H.; Su, T-P.; Hayashi, T.; Morales, M.; Hoffer, B.J.; Lin, S-Z. Vitamin D(3) attenuates cortical infarction induced by middle cerebral arterial ligation in rats. Neuropharmacology, 2000, 39(5), 873-880.
[http://dx.doi.org/10.1016/S0028-3908(99)00255-5 ] [PMID: 10699453]
[98]
Ekici, F.; Ozyurt, B.; Erdogan, H. The combination of vitamin D3 and dehydroascorbic acid administration attenuates brain damage in focal ischemia. Neurol. Sci., 2009, 30(3), 207-212.
[http://dx.doi.org/10.1007/s10072-009-0038-6 ] [PMID: 19266157]
[99]
Sinanoglu, O.; Sezgin, G.; Ozturk, G.; Tuncdemir, M.; Guney, S.; Aksungar, F.B.; Yener, N. Melatonin with 1,25-dihydroxyvitamin D3 protects against apoptotic ischemia-reperfusion injury in the rat kidney. Ren. Fail., 2012, 34(8), 1021-1026.
[http://dx.doi.org/10.3109/0886022X.2012.700887 ] [PMID: 22780560]
[100]
Fayaz, A.; Croft, P.; Langford, R.M.; Donaldson, L.J.; Jones, G.T. Prevalence of chronic pain in the UK: a systematic review and meta-analysis of population studies. BMJ Open, 2016, 6(6), e010364.
[http://dx.doi.org/10.1136/bmjopen-2015-010364 ] [PMID: 27324708]
[101]
Yong, W.C.; Sanguankeo, A.; Upala, S. Effect of vitamin D supplementation in chronic widespread pain: a systematic review and meta-analysis. Clin. Rheumatol., 2017, 36(12), 2825-2833.
[http://dx.doi.org/10.1007/s10067-017-3754-y ] [PMID: 28812209]
[102]
Wu, Z.; Malihi, Z.; Stewart, A.W.; Lawes, C.M.; Scragg, R. Effect of vitamin D supplementation on pain: a systematic review and meta-analysis. Pain Physician, 2016, 19(7), 415-427.
[PMID: 27676659]
[103]
Pablos, M.I.; Agapito, M.T.; Gutierrez, R.; Recio, J.M.; Reiter, R.J.; Barlow-Walden, L.; Acuña-Castroviejo, D.; Menendez-Pelaez, A. Melatonin stimulates the activity of the detoxifying enzyme glutathione peroxidase in several tissues of chicks. J. Pineal Res., 1995, 19(3), 111-115.
[http://dx.doi.org/10.1111/j.1600-079X.1995.tb00178.x ] [PMID: 8750343]
[104]
Zhang, H.M.; Zhang, Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J. Pineal Res., 2014, 57(2), 131-146.
[http://dx.doi.org/10.1111/jpi.12162 ] [PMID: 25060102]
[105]
Zhou, H.; Zhang, Y.; Hu, S.; Shi, C.; Zhu, P.; Ma, Q.; Jin, Q.; Cao, F.; Tian, F.; Chen, Y. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J. Pineal Res., 2017, 63(1), e12413.
[http://dx.doi.org/10.1111/jpi.12413 ] [PMID: 28398674]
[106]
Sobhani, R.; Masoudpour, H.; Akbari, M.; Suzangar, H.R. AleSaeidio, S.; Adibi, S.; Khademi, S.A.; Khademi, E.F.; Sobhani, F. The histobiochemical effects of melatonin on ischemia reperfusion-related injuries in vascular trauma of lower limbs. Ann. Ital. Chir., 2012, 83(1), 49-54.
[PMID: 22352217]
[107]
Wang, L-X.; Lü, S.Z.; Zhang, W-J.; Song, X-T.; Chen, H.; Zhang, L-J. Coronary spasm, a pathogenic trigger of vulnerable plaque rupture. Chin. Med. J. (Engl.), 2011, 124(23), 4071-4078.
[PMID: 22340344]
[108]
Erkanli, K.; Kayalar, N.; Erkanli, G.; Ercan, F.; Sener, G.; Kirali, K. Melatonin protects against ischemia/reperfusion injury in skeletal muscle. J. Pineal Res., 2005, 39(3), 238-242.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00240.x ] [PMID: 16150103]
[109]
Hibaoui, Y.; Roulet, E.; Ruegg, U.T. Melatonin prevents oxidative stress-mediated mitochondrial permeability transition and death in skeletal muscle cells. J. Pineal Res., 2009, 47(3), 238-252.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00707.x ] [PMID: 19664004]
[110]
Rodriguez, M.I.; Escames, G.; López, L.C.; García, J.A.; Ortiz, F.; López, A.; Acuña-Castroviejo, D. Melatonin administration prevents cardiac and diaphragmatic mitochondrial oxidative damage in senescence-accelerated mice. J. Endocrinol., 2007, 194(3), 637-643.
[http://dx.doi.org/10.1677/JOE-07-0260 ] [PMID: 17761903]
[111]
Mansouri, A.; Demeilliers, C.; Amsellem, S.; Pessayre, D.; Fromenty, B. Acute ethanol administration oxidatively damages and depletes mitochondrial DNA in mouse liver, brain, heart, and skeletal muscles: protective effects of antioxidants. J. Pharmacol. Exp. Ther., 2001, 298(2), 737-743.
[PMID: 11454938]
[112]
Öner, J.; Öner, H.; Sahin, Z.; Demir, R.; Ustünel, I. Melatonin is as effective as testosterone in the prevention of soleus muscle atrophy induced by castration in rats. Anat. Rec. (Hoboken), 2008, 291(4), 448-455.
[http://dx.doi.org/10.1002/ar.20659 ] [PMID: 18293375]
[113]
Öner, J.; Ozan, E. Effects of melatonin on skeletal muscle of rats with experimental hyperthyroidism. Endocr. Res., 2003, 29(4), 445-455.
[http://dx.doi.org/10.1081/ERC-120026950 ] [PMID: 14682473]
[114]
López, L.C.; Escames, G.; Ortiz, F.; Ros, E.; Acuña-Castroviejo, D. Melatonin restores the mitochondrial production of ATP in septic mice. Neuroendocrinol. Lett., 2006, 27(5), 623-630.
[PMID: 17159820]
[115]
Lopez-Gonzalez, M.A.; Guerrero, J.M.; Sanchez, B.; Delgado, F. Melatonin restores and enhances the human type B tonsillar lymphocyte subset in recurrent acute tonsillitis. Neurosci. Lett., 1998, 247(2-3), 131-134.
[http://dx.doi.org/10.1016/S0304-3940(98)00292-4 ] [PMID: 9655610]
[116]
Hibaoui, Y.; Reutenauer-Patte, J.; Patthey-Vuadens, O.; Ruegg, U.T.; Dorchies, O.M. Melatonin improves muscle function of the dystrophic mdx5Cv mouse, a model for Duchenne muscular dystrophy. J. Pineal Res., 2011, 51(2), 163-171.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00871.x ] [PMID: 21486366]
[117]
Ismail, H.M.; Dorchies, O.M.; Scapozza, L. The potential and benefits of repurposing existing drugs to treat rare muscular dystrophies. Expert Opinion on Orphan Drugs, 2018, 6(4), 259-271.
[http://dx.doi.org/10.1080/21678707.2018.1452733]
[118]
Chahbouni, M.; Escames, G.; Venegas, C.; Sevilla, B.; García, J.A.; López, L.C.; Muñoz-Hoyos, A.; Molina-Carballo, A.; Acuña-Castroviejo, D. Melatonin treatment normalizes plasma pro-inflammatory cytokines and nitrosative/oxidative stress in patients suffering from Duchenne muscular dystrophy. J. Pineal Res., 2010, 48(3), 282-289.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00752.x ] [PMID: 20210854]
[119]
Chahbouni, M.; López, M.D.S.; Molina-Carballo, A.; de Haro, T.; Muñoz-Hoyos, A.; Fernández-Ortiz, M.; Guerra-Librero, A.; Acuña-Castroviejo, D. Melatonin treatment reduces oxidative damage and normalizes plasma pro-inflammatory cytokines in patients suffering from charcot-marie-tooth neuropathy: a pilot study in three children. Molecules, 2017, 22(10), 1728.
[http://dx.doi.org/10.3390/molecules22101728 ] [PMID: 29036910]
[120]
Williams, A.C.C.; Craig, K.D. Updating the definition of pain. Pain, 2016, 157(11), 2420-2423.
[http://dx.doi.org/10.1097/j.pain.0000000000000613 ] [PMID: 27200490]
[121]
Cheng, Y.C.; Tsai, R.Y.; Sung, Y.T.; Chen, I.J.; Tu, T.Y.; Mao, Y.Y.; Wong, C.S. Melatonin regulation of transcription in the reversal of morphine tolerance: Microarray analysis of differential gene expression. Int. J. Mol. Med., 2019, 43(2), 791-806.
[http://dx.doi.org/10.3892/ijmm.2018.4030 ] [PMID: 30569162]
[122]
Wilhelmsen, M.; Amirian, I.; Reiter, R.J.; Rosenberg, J.; Gögenur, I. Analgesic effects of melatonin: a review of current evidence from experimental and clinical studies. J. Pineal Res., 2011, 51(3), 270-277.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00895.x ] [PMID: 21615490]
[123]
Kurganova, Y.M.; Danilov, A. Melatonin in chronic pain syndromes. Neurosci. Behav. Physiol., 2017, 47(7), 806-812.
[http://dx.doi.org/10.1007/s11055-017-0472-5]
[124]
Marseglia, L.; Manti, S.; D’Angelo, G.; Arrigo, T.; Cuppari, C.; Salpietro, C.; Gitto, E. Potential use of melatonin in procedural anxiety and pain in children undergoing blood withdrawal. J. Biol. Regul. Homeost. Agents, 2015, 29(2), 509-514.
[PMID: 26122244]
[125]
Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative stress in obesity: a critical component in human diseases. Int. J. Mol. Sci., 2014, 16(1), 378-400.
[http://dx.doi.org/10.3390/ijms16010378 ] [PMID: 25548896]
[126]
Ra, S-G. Akazawa, N.; Choi, Y.; Matsubara, T.; Oikawa, S.; Kumagai, H.; Tanahashi, K.; Ohmori, H.; Maeda, S. Taurine supplementation reduces eccentric exercise-induced delayed onset muscle soreness in young men. Adv. Exp. Med. Tech., 2015, 803, 765-772.
[http://dx.doi.org/10.1007/978-3-319-15126-7_61 ] [PMID: 25833543]
[127]
Gaffey, A.; Campbell, J.; Porritt, K.; Slater, H. The effects of curcumin on musculoskeletal pain: a systematic review protocol. JBI Database Syst. Rev. Implement. Reports, 2015, 13(2), 59-73.
[http://dx.doi.org/10.11124/jbisrir-2015-1684 ] [PMID: 26447034]
[128]
Hunter, T.; Naegeli, A.; Komocsar, W.; Larkin, A.; Schroeder, K.; Zhang, X.; Stefani-Hunyady, D. P094 Comparing oral corticosteroids≥ 30 mg/day use among pediatric and adult patients with newly diagnosed Crohn's disease. Inflamm. Bowel Dis., 2019, 25(Supplement_1), S45-S45.
[http://dx.doi.org/10.1093/ibd/izy393.102]
[129]
Kassab, S.; Saghi, T.; Boyer, A.; Lafon, M-E.; Gruson, D.; Lina, B.; Fleury, H.; Schuffenecker, I. Fatal case of enterovirus 71 infection and rituximab therapy, france, 2012. Emerg. Infect. Dis., 2013, 19(8), 1345-1347.
[http://dx.doi.org/10.3201/eid1908.130202 ] [PMID: 23880543]
[130]
Paladini, A.; Fusco, M.; Cenacchi, T.; Schievano, C.; Piroli, A.; Varrassi, G. Palmitoylethanolamide, a special food for medical purposes, in the treatment of chronic pain: a pooled data meta-analysis. Pain Physician, 2016, 19(2), 11-24.
[PMID: 26815246]
[131]
Wagner, A.D.; Syn, N.L.; Moehler, M.; Grothe, W.; Yong, W.P.; Tai, B.C.; Ho, J.; Unverzagt, S. Chemotherapy for advanced gastric cancer. Cochrane Database Syst. Rev., 2017, 8(8), CD004064.
[http://dx.doi.org/10.1002/14651858.CD004064.pub4 ] [PMID: 28850174 ]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy