Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Ionic Liquids for the Synthesis of Five-Membered N,N-, N,N,N- and N,N,N,NHeterocycles

Author(s): Navjeet Kaur*, Pranshu Bhardwaj, Meenu Devi, Yamini Verma, Neha Ahlawat and Pooja Grewal

Volume 23, Issue 11, 2019

Page: [1214 - 1238] Pages: 25

DOI: 10.2174/1385272823666190717101741

Price: $65

Abstract

Due to special properties of ILs (Ionic Liquids) like their wide liquid range, good solvating ability, negligible vapour pressure, non-inflammability, environment friendly medium, high thermal stability, easy recycling and rate promoters etc. they are used in organic synthesis. The investigation for the replacement of organic solvents in organic synthesis is a growing area of interest due to increasing environmental issues. Therefore, ionic liquids have attracted the attention of chemists and act as a catalyst and reaction medium in organic reaction with high activity. There is no doubt that ionic liquids have become a major subject of study for modern chemistry. In comparison to traditional processes the use of ionic liquids resulted in improved, complimentary or alternative selectivities in organic synthesis. The present manuscript reported the synthesis of multiple nitrogen containing five-membered heterocyclic compounds using ionic liquids. This review covered interesting discoveries in the past few years.

Keywords: Ionic liquid, nitrogen, heterocycles, pyrazoles, imidazoles, triazoles, tetrazoles.

Graphical Abstract

[1]
(a) Farghaly, A.M.; Soliman, R.; Khalil, M.A.; Bekhit, A.A.; el-Din, A.; Bekhit, A. Thioglycolic acid and pyrazole derivatives of 4(3H)quina-zolinone: Synthesis and antimicrobial evaluation. Boll. Chim. Farm., 2002, 141(5), 372-378.
[PMID: 12481380]
(b) Dabiri, M.; Salehi, P.; Baghbanzadeh, M. Ionic liquid promoted eco-friendly and efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Monatsh. Chem., 2007, 138, 1191-1194.
[http://dx.doi.org/10.1007/s00706-007-0635-0]
(c) Kaur, N. Palladiumcatalyzed approach to the synthesis of S-heterocycles. Catal. Rev., 2015, 57(4), 478-564.
[http://dx.doi.org/10.1080/01614940.2015.1082824]
(d) Kaur, N. Solid-phase synthesis of sulfur containing heterocycles. J. Sulfur Chem., 2018, 39(5), 544-577.
[http://dx.doi.org/10.1080/17415993.2018.1457673]
(e) Kaur, N. Copper catalysts in the synthesis of five-membered Npolyheterocycles. Curr. Org. Synth., 2018, 15, 940-971.
[http://dx.doi.org/10.2174/1570179415666180815144442]
(f) Kaur, N. Recent developments in the synthesis of nitrogen containing five-membered polyheterocycles using rhodium catalysts. Synth. Commun., 2018, 4824572474
[http://dx.doi.org/10.1080/00397911.2018.1487070]
(g) Kaur, N.; Kishore, D. Synthesis of 2-(oxadiazolo, pyrimido, imidazolo, and benzimidazolo) substituted analogues of 1,4-benzodiazepin-5-carboxamides linked through a phenoxyl bridge. J. Chem. Sci., 2014, 126, 1861-1867.
[http://dx.doi.org/10.1007/s12039-014-0721-x]
h) Kaur, N.; Kishore, D. Synthesis of oxadiazolo, pyrimido, imidazolo and benzimidazolo containing derivatives of 1,4-benzodiazepin-5-(4′-methylpiperazinyl)-carboxamide through phenylamino spacer. Synth. Commun., 2014, 44, 2789-2796.
[http://dx.doi.org/10.1080/00397911.2013.815215]
i) Kaur, N.; Kishore, D. Application of chalcones in heterocycles synthesis: Synthesis of 2(isoxazolo, pyrazolo and pyrimido) substituted analogues of 1,4benzodiazepin-5-carboxamides linked through an oxyphenyl bridge. Chem. Sci., 2013, 125, 555-560..
[http://dx.doi.org/10.1007/s12039-0130412-z]]
j) Kaur, N.; Kishore, D. Synthetic strategies applicable in the synthesis of privileged scaffold: 1,4-benzodiazepine. Synth. Commun., 2014, 44, 1375-1413...
[http://dx.doi.org/10.1080/00397911.2013.772202]
[2]
(a) Kaur, N. Palladium-catalyzed approach to the synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2014, 49, 86-119.
[http://dx.doi.org/10.1016/j.inoche.2014.09.024]
(b) Kaur, N.; Kishore, D. Nitrogen-containing six-membered heterocycles: Solid-phase synthesis. Synth. Commun., 2014, 44(9), 1173-1211.
[http://dx.doi.org/10.1080/00397911.2012.760129]
(c) Kaur, N.; Kishore, D. Solid-phase synthetic approach toward the synthesis of oxygen containing heterocycles. Synth. Commun., 2014, 44(8), 1019-1042.
[http://dx.doi.org/10.1080/00397911.2012.760131]
(d) Kaur, N. Microwaveassisted synthesis of five membered O-heterocycles. Synth. Commun., 2014, 44(24), 3483-3508.
[http://dx.doi.org/10.1080/00397911.2013.800213]
(e) Kaur, N. Microwave-assisted synthesis of five membered O,N-heterocycles. Synth. Commun., 2014, 44(24), 3509-3537.
[http://dx.doi.org/10.1080/00397911.2013.800214]
(f) Kaur, N. Microwaveassisted synthesis of five membered O,N,N-heterocycles. Synth. Commun., 2014, 44(22), 3229-3247.
[http://dx.doi.org/10.1080/00397911.2013.798666]
(g) Párkányi, C.; Schmidt, D.S. Synthesis of 5-chloro-2-methyl-3-(5methylthiazol-2-yl)-4(3H)-quinazolinone and related compounds with potential biological activity. J. Heterocycl. Chem., 2000, 37, 725-729.
[http://dx.doi.org/10.1002/jhet.5570370409]
(h) Kaur, N. Gold catalysts in the synthesis of five-membered N-heterocycles. Curr. Organocatal., 2017, 4, 122-154.
[http://dx.doi.org/10.2174/2213337204666171103142349]
iKaur, N. Photochemical reactions for the synthesis of six-membered Oheterocycles. Curr. Org. Synth., 2018, 15, 298-320.
[http://dx.doi.org/10.2174/1570179414666171011160355]
jKaur, N. Application of silver-promoted reactions in the synthesis of five-membered Oheterocycles. Synth. Commun., 2019, 49, 743-789.
[http://dx.doi.org/10.1080/00397911.2019.1570525]
kKaur, N. Synthesis of seven and higher-membered heterocycles using ruthenium catalysts. Synth. Commun., 2019, 49, 617-661.
[http://dx.doi.org/10.1080/00397911.2018.1555711]
[3]
(a) Kikuchi, H.; Tasaka, H.; Hirai, S.; Takaya, Y.; Iwabuchi, Y.; Ooi, H.; Hatakeyama, S.; Kim, H.S.; Wataya, Y.; Oshima, Y. Potent antimalarial febrifugine analogues against the plasmodium malaria parasite. J. Med. Chem., 2002, 45(12), 2563-2570.
[http://dx.doi.org/10.1021/jm010448q] [PMID: 12036365]
(b) Kaur, N.; Kishore, D. Metal and non-metal based catalysts for oxidation of organic compounds. Catal. Surv. Asia, 2013, 17, 20-42.
[http://dx.doi.org/10.1007/s10563-012-9150-3]
(c) Kaur, N.; Kishore, D. An insight into hexamethylenetetramine: A versatile reagent in organic synthesis. J. Iranian Chem. Soc., 2013, 10, 1193-1228.
[http://dx.doi.org/10.1007/s13738-013-0260-2]
(d) Kaur, N.; Kishore, D. Peroxy acids: Role in organic synthesis. Synth. Commun., 2014, 44(6), 721-747.
[http://dx.doi.org/10.1080/00397911.2012.746369]
(e) Kaur, N.; Tyagi, R.; Kishore, D. Expedient protocols for the installation of 1,5-benzoazepinobased privileged templates on the 2-position of 1,4-benzodiazepine through a phenoxyl spacer. J. Heterocycl. Chem., 2014, 51, E340-E343.
[http://dx.doi.org/10.1002/jhet.1924]
[4]
(a) Kaur, N. Benign approaches for the microwave-assisted synthesis of fivemembered 1,2-N,N-heterocycles. J. Heterocycl. Chem., 2015, 52, 953-973.
[http://dx.doi.org/10.1002/jhet.2129]
(b) Kaur, N. Methods for metal and nonmetal catalyzed synthesis of six-membered oxygen containing polyheterocycles. Curr. Org. Synth., 2017, 14(4), 531-556.
[http://dx.doi.org/10.2174/1570179413666161021104941]
(c) Kaur, N. Photochemical reactions: Synthesis of six-membered N-heterocycles. Curr. Org. Synth., 2017, 14(7), 972-998.
[http://dx.doi.org/10.2174/1570179414666170201150701]
(d) Kaur, N. Ionic liquids: Promising but challenging solvents for the synthesis of Nheterocycles. Mini Rev. Org. Chem., 2017, 14(1), 3-23.
[http://dx.doi.org/10.2174/1570193X13666161019120050]
(e) Kaur, N. Metal catalysts for the formation of six-membered N-polyheterocycles. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2016, 46(7), 983-1020.
[http://dx.doi.org/10.1080/15533174.2014.989620]
(f) Kaur, N. Applications of gold catalysts for the synthesis of five-membered O-heterocycles. Inorg. Nano-Met. Chem, 2017, 47(2), 163-187.
(g) Connolly, D.J.; Cusack, D.; O’Sullivan, T.P.; Guiry, P.J. Synthesis of quinazolinones and quinazolines. Tetrahedron, 2006, 61(43), 10153-10202.
[http://dx.doi.org/10.1016/j.tet.2005.07.010]
[5]
(a) Kaur, N. Metal catalysts: Applications in higher membered N-heterocycles synthesis. J. Iran. Chem. Soc., 2015, 12, 9-45.
[http://dx.doi.org/10.1007/s13738-014-0451-5]
(b) Kaur, N. Insight into microwave-assisted synthesis of benzo derivatives of five membered N,Nheterocycles. Synth. Commun., 2015, 45(11), 1269-1300.
[http://dx.doi.org/10.1080/00397911.2013.827725]
(c) Kaur, N. Synthesis of fused five-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45(12), 1379-1410.
[http://dx.doi.org/10.1080/00397911.2013.828078]
(d) Kaur, N. Microwaveassisted synthesis of seven membered S-heterocycles. Synth. Commun., 2014, 44(22), 3201-3228.
[http://dx.doi.org/10.1080/00397911.2013.798665]
(e) Kaur, N. Six membered N-heterocycles: Microwave-assisted synthesis. Synth. Commun., 2015, 45(1), 1-34.
[http://dx.doi.org/10.1080/00397911.2013.813548]
(f) Kaur, N. Polycyclic six membered N-heterocycles: Microwave-assisted synthesis. Synth. Commun., 2015, 45(1), 35-69.
[http://dx.doi.org/10.1080/00397911.2013.813549]
(g) Hazarkhani, H.; Karimi, B. A facile synthesis of new 3-(2-benzimidazoyl)-2alkyl-4-(3H)-quinazolinones under microwave irradiation. Tetrahedron, 2003, 59, 4757-4760.
[http://dx.doi.org/10.1016/S0040-4020(03)00696-3]
(h) Kaur, N. Mercury-catalyzed synthesis of heterocycles. Synth. Commun., 2018, 48, 2715-2749.
[http://dx.doi.org/10.1080/00397911.2018.1497657]
iKaur, N. Photochemical irradiation: Seven and higher membered Oheterocycles. Synth. Commun., 2018, 48, 2935-2964.
[http://dx.doi.org/10.1080/00397911.2018.1514051]
jKaur, N. Synthesis of seven and higher membered nitrogen containing heterocycles using photochemical irradiation. Synth. Commun., 2018, 48, 2815-2849.
[http://dx.doi.org/10.1080/00397911.2018.1501488]
kKaur, N. Ruthenium catalyzed synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2018, 99, 82-107.
[http://dx.doi.org/10.1016/j.inoche.2018.11.011]
[6]
(a) Maarouf, A.R.; El-Bendary, E.R.; Goda, F.E. HYPERLINK https://www.ncbi.nlm.nih.gov/pubmed/15476284Synthesis and evaluation of some novel quinazolinone derivatives as diuretic agents. Arch. Pharm. Med. Chem., 2004, 337(10), 527-532.
(b) Kaur, N. Applications of palladium dibenzylideneacetone as catalyst in the synthesis of five-membered N-heterocycles. Synth. Commun., 2019, 49, 1205-1230.
(c) Kaur, N. Copper catalyzed synthesis of seven and higher-membered heterocycles. Synth. Commun., 2019, 49, 879-916.
(d) Kaur, N. Ionic liquid assisted synthesis of S-heterocycles. Phosphorus Sulfur and Silicon and the Related Elements., 2019, 194, 165-185.
(e) Kaur, N. Nickel catalysis: six membered heterocycle syntheses. Synth. Commun., 2019, 49, 1103-1133.
(f) Kaur, N. Seven-membered N-heterocycles: metal and non-metal assisted synthesis. Synth. Commun., 2019, 49, 987-1030.
(g) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Synthesis of five-membered O,N-heterocycles using metal and non-metal. Synth. Commun., 2019, 49, 1345-1384.
(h) Kaur, N. Synthetic routes to seven and higher membered S-heterocycles by use of metal and nonmetal catalyzed reactions. Phosphorus Sulfur and Silicon and the Related Elements., 2019, 194, 186-209.
iKaur, N. Synthesis of six-membered N-heterocycles using ruthenium catalysts. Catal. Lett., 2019, 14, 1513-1539.
[7]
(a) Kaur, N. Microwave-assisted synthesis: Fused five membered Nheterocycles. Synth. Commun., 2015, 45(7), 789-823.
[http://dx.doi.org/10.1080/00397911.2013.824984]
(b) Kaur, N. Six membered heterocycles with three and four N-heteroatoms: microwave-assisted synthesis. Synth. Commun., 2015, 45(2), 151-172.
[http://dx.doi.org/10.1080/00397911.2013.813550]
(c) Kaur, N. Application of microwave-assisted synthesis in the synthesis of fused six-membered heterocycles with N-heteroatom. Synth. Commun., 2015, 45(2), 173-201.
[http://dx.doi.org/10.1080/00397911.2013.816734]
(d) Kaur, N. Microwaveassisted synthesis of fused polycyclic six membered N-heterocycles. Synth. Commun., 2015, 45(3), 273-299.
[http://dx.doi.org/10.1080/00397911.2013.816735]
(e) Kaur, N. Review of microwave-assisted synthesis of benzo fused six-membered N,Nheterocycles. Synth. Commun., 2015, 45(3), 300-330.
[http://dx.doi.org/10.1080/00397911.2013.816736]
(f) Kaur, N.; Kishore, D. Synthetic strategies applicable in the synthesis of privileged scaffold: 1,4benzodiazepine. Synth. Commun., 2014, 44(10), 1375-1413.
[http://dx.doi.org/10.1080/00397911.2013.772202]
(g) Orru, R.V.A.; Greef, M. Recent advances in solution phase multicomponent methodology for the synthesis of heterocyclic compounds. Synthesis, 2003, 1471-1499.
[http://dx.doi.org/10.1055/s-2003-40507]
[8]
Wassercheid, P.; Keim, W. Ionic liquids-new ‘solutions’ for transition metal catalysis. Angew. Chem. Int. Ed., 2000, 39, 3772-3789.
[http://dx.doi.org/10.1002/1521-3773(20001103)39:21<3772:AID-ANIE3772>3.0.CO;2-5]
[9]
Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun. (Camb.), 2001, (23), 2399-2407.
[http://dx.doi.org/10.1039/b107270f] [PMID: 12239988]
[10]
(a) Zhao, D.; Wu, M.; Kou, Y.; Min, K. Ionic liquids: Applications in catalysis. Catal. Today, 2002, 74(1-2), 157-189.
[http://dx.doi.org/10.1016/S09205861(01)00541-7]
(b) Kaur, N. Perspectives of ionic liquids applications for the synthesis of five and six-membered O,N-heterocycles. Synth. Commun., 2018, 48(5), 473-495.
[http://dx.doi.org/10.1080/00397911.2017.1406521]
(c) Kaur, N. Synthesis of six and seven-membered heterocycles under ultrasound irradiation. Synth. Commun., 2018, 48(11), 1235-1258.
[http://dx.doi.org/10.1080/00397911.2018.1434894]
(d) Kaur, N. Photochemical reactions as key steps in five-membered N-heterocycles synthesis. Synth. Commun., 2018, 48(11), 1259-1284.
[http://dx.doi.org/10.1080/00397911.2018.1443218]
[11]
Wang, Y.Y.; Li, W.; Dai, L.Y. Bronsted acidic ionic liquids as efficient reaction medium for cyclodehydration of diethylene glycol. Chin. J. Chem., 2008, 26(8), 1390-1394.
[http://dx.doi.org/10.1002/cjoc.200890253]
[12]
(a) Kaur, N. Environmentally benign synthesis of five membered 1,3-N,Nheterocycles by microwave irradiation. Synth. Commun., 2015, 45(8)909943
[http://dx.doi.org/10.1080/00397911.2013.825808]
(b) Kaur, N. Advances in microwave-assisted synthesis for five membered N-heterocycles synthesis. Synth. Commun., 2015, 45(4), 432-457.
[http://dx.doi.org/10.1080/00397911.2013.824982]
(c) Kaur, N. Microwaveassisted synthesis of five membered S-heterocycles. J. Iran. Chem. Soc., 2014, 11, 523-564.
[http://dx.doi.org/10.1007/s13738-013-0325-2]
(d) Kaur, N. Review on the synthesis of six membered N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45(10), 1145-1182.
[http://dx.doi.org/10.1080/00397911.2013.827208]
(e) Kaur, N. Greener and expeditious synthesis of fused six-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45(13), 1493-1519.
[http://dx.doi.org/10.1080/00397911.2013.828236]
(f) Kaur, N. Applications of microwaves in the synthesis of polycyclic six membered N,Nheterocycles. Synth. Commun., 2015, 45(14), 1599-1631.
[http://dx.doi.org/10.1080/00397911.2013.828755]
(g) Kaur, N. Synthesis of five-membered N,N,N- and N,N,N,N-heterocyclic compounds: Applications of microwaves. Synth. Commun., 2015, 45(15), 1711-1742.
[http://dx.doi.org/10.1080/00397911.2013.828756]
(h) Bao, Q.; Qiao, K.; Tomida, D.; Yokoyama, C. Preparation of 5-hydroymethylfurfural by dehydration of fructose in the presence of acidic ionic liquid. Catal. Commun., 2008, 9(6), 1383-1388.
[http://dx.doi.org/10.1016/j.catcom.2007.12.002]
iKaur, N. Ruthenium catalysis in six-membered O-heterocycles synthesis. Synth. Commun., 2018, 48, 1551-1587.
[http://dx.doi.org/10.1080/00397911.2018.1457698]
jKaur, N. Green synthesis of three to five-membered O-heterocycles using ionic liquids. Synth. Commun., 2018, 48, 1588-1613.
[http://dx.doi.org/10.1080/00397911.2018.1458243]
kKaur, N. Ultrasoundassisted green synthesis of five-membered O- and S-heterocycles. Synth. Commun., 2018, 48, 1715-1738.
[http://dx.doi.org/10.1080/00397911.2018.1460671]
lKaur, N. Photochemical mediated reactions in five-membered O-heterocycles synthesis. Synth. Commun., 2018, 48(17), 2119-2149.
[http://dx.doi.org/10.1080/00397911.2018.1485165]
[13]
Shen, J.; Wang, H.; Liu, H.; Sun, Y.; Liu, Z. Bronsted acidic ionic liquids as dual catalyst and solvent for environmentally friendly synthesis of chalcone. J. Mol. Catal. Chem., 2008, 280, 24-28.
[http://dx.doi.org/10.1016/j.molcata.2007.10.021]
[14]
Wang, W.; Shao, L.; Cheng, W.; Yang, J.; He, M. Bronsted acidic ionic liquids as novel catalysts for Prins reaction. Catal. Commun., 2008, 9(3), 337-341.
[http://dx.doi.org/10.1016/j.catcom.2007.07.006]
[15]
(a) Kaur, N. Role of microwaves in the synthesis of fused five membered heterocycles with three N-heteroatoms. Synth. Commun., 2015, 45(4)403431
[http://dx.doi.org/10.1080/00397911.2013.824981]
(b) Kaur, N. Recent impact of microwave-assisted synthesis on benzo derivatives of five membered N-heterocycles. Synth. Commun., 2015, 45(5), 539-568.
[http://dx.doi.org/10.1080/00397911.2013.824983]
(c) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered N-heterocycles. Synth. Commun., 2014, 44(18), 2577-2614.
[http://dx.doi.org/10.1080/00397911.2013.783922]
(d) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six-membered S-heterocycles. Synth. Commun., 2014, 44(18), 2615-2644.
[http://dx.doi.org/10.1080/00397911.2013.792354]
(e) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered O-heterocycles. Synth. Commun., 2014, 44(19), 2739-2755.
[http://dx.doi.org/10.1080/00397911.2013.796382]
(f) Luo, S.; Mi, X.; Zhang, L.; Liu, S.; Xua, H.; Cheng, J.P. Functionalized ionic liquids catalyzed direct aldol reactions. Tetrahedron, 2007, 63(9), 1923-1930.
[http://dx.doi.org/10.1016/j.tet.2006.12.079]
(g) Kaur, N. Palladium acetate and phosphine assisted synthesis of five-membered N-heterocycles. Synth. Commun., 2019, 49, 483-514.
[http://dx.doi.org/10.1080/00397911.2018.1536213]
(h) Chen, Y.; Cao, Y.; Shi, Y.; Xue, Z.; Mu, T. Quantitative research on the vaporization and decomposition of [EMIM][Tf2N] by thermogravimetric analysis-mass spectrometry. Ind. Eng. Chem. Res., 2012, 51(21), 7418-7427.
[http://dx.doi.org/10.1021/ie300247v]
iLi, G.; Xue, Z.; Cao, B.; Yan, C.; Mu, T. Preparation and properties of C═X (X: O, N, S) based distillable ionic liquids and their application for rare earth separation. ACS Sustain. Chem.& Eng., 2016, 4(12), 6258-6262.
[http://dx.doi.org/10.1021/acssuschemeng.6b01984]
[16]
Carvalho, P.J.; Alvarez, V.H.; Marrucho, I.M.; Aznar, M.; Coutinho, J.A.P. High pressure phase behavior of carbon dioxide in 1-butyl-3methylimidazolium bis (trifluoromethylsulfonyl) imide and 1-butyl-3methylimidazolium dicyanamide ionic liquids. J. Supercrit. Fluids, 2009, 50(2), 105-111.
[http://dx.doi.org/10.1016/j.supflu.2009.05.008]
[17]
Le, Z-G.; Chen, Z-C.; Hu, Y.; Zheng, Q-G. Organic reactions in ionic liquids: A simple and highly regioselective N-substitution of pyrrole. Synlett, 2004, 1951-1954.
[18]
Nara, S.J.; Naik, P.U.; Harjani, J.R.; Salunkhe, M.M. Potential of ionic liquids in greener methodologies involving biocatalysis and other synthetically important transformations. Indian J. Chem., 2006, 45B, 2257-2268.
[19]
Sun, X.; Liu, S.; Khan, A.; Zhao, C.; Yan, C.; Mu, T. Ionicity of acetatebased protic ionic liquids: Evidence for both liquid and gaseous phases. New J. Chem., 2014, 38, 3449-3456.
[http://dx.doi.org/10.1039/C4NJ00384E]
[20]
(a) Kaur, N. Palladium catalysts: Synthesis of five-membered N-heterocycles fused with other heterocycles. Catal. Rev., 2015, 57(1), 1-78.
[http://dx.doi.org/10.1080/01614940.2014.976118]
(b) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six membered O-heterocycles. Synth. Commun., 2014, 44(21), 3082-3111.
[http://dx.doi.org/10.1080/00397911.2013.796384]
(c) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six membered O-heterocycles. Synth. Commun., 2014, 44(21), 3047-3081.
[http://dx.doi.org/10.1080/00397911.2013.796383]
(d) Nair, V.; Vellalath, S.; Poonoyh, M.; Suresh, E.; Viji, S. N-Heterocyclic carbene catalyzed reaction of enals and diaryl-1,2-diones via homoenolate: Synthesis of 4,5,5trisubstituted γ-butyrolactones. Synthesis, 2007, 3195-3200.
[http://dx.doi.org/10.1055/s-2007-990781]
(e) Potewar, T.M.; Siddiqui, S.A.; Lahoti, R.J.; Srinivasan, K.V. Efficient and rapid synthesis of 1-substituted1H-1,2,3,4-tetrazoles in the acidic ionic liquid 1-n-butylimidazolium tetrafluoroborate. Tetrahedron Lett., 2007, 48, 1721-1724.
[http://dx.doi.org/10.1016/j.tetlet.2007.01.050]
[21]
Xu, J.M.; Qian, C.; Liu, B.K.; Wu, Q.; Lin, X.F. A fast and highly efficient protocol for Michael addition of N-heterocycles to α,β-unsaturated compound using basic ionic liquid [bmIm]OH as catalyst and green solvent. Tetrahedron, 2007, 63, 986-990.
[http://dx.doi.org/10.1016/j.tet.2006.11.013]
[22]
Hutka, M.; Toma, S. Hydrogen-transfer reduction of aromatic ketones in basic ionic liquids. Monatsh. Chem., 2009, 140, 1189-1194.
[http://dx.doi.org/10.1007/s00706-009-0161-3]
[23]
Ye, C.; Xiao, J.C.; Twamley, B.; LaLonde, A.D.; Norton, M.G.; Shreeve, J.M. Basic ionic liquids: Facile solvents for carbon-carbon bond formation reactions and ready access to palladium nanoparticles. Eur. J. Org. Chem., 2007, 30, 5095-5011.
[http://dx.doi.org/10.1002/ejoc.200700502]
[24]
Xiao, L.F.; Yue, Q.F.; Xia, C.G.; Xu, L. Supported basic ionic liquid: Highly effective catalyst for the synthesis of 1,2-propylene glycol from hydrolysis of propylene carbonate. J. Mol. Catal. Chem., 2008, 279(2), 230-234.
[http://dx.doi.org/10.1016/j.molcata.2007.03.044]
[25]
Liebert, T.; Heinze, T. Interaction of ionic liquids with polysaccharides. Solvents and reaction media for the modification of cellulose. BioResources, 2008, 3, 576-601.
[26]
Pinkert, A.; Marsh, K.N.; Pang, S.; Staiger, M.P. Ionic liquids and their interaction with cellulose. Chem. Rev., 2009, 109(12), 6712-6728.
[http://dx.doi.org/10.1021/cr9001947] [PMID: 19757807]
[27]
Kosan, B.; Michels, C.; Meister, F. Dissolution and forming of cellulose with ionic liquids. Cellulose, 2008, 15, 59-66.
[http://dx.doi.org/10.1007/s10570-007-9160-x]
[28]
Wendler, F.; Kosan, B.; Krieg, M.; Meister, F. Possibilities for the physical modification of cellulose shapes using ionic liquids. Macromol. Symp., 2009, 280, 112-122.
[http://dx.doi.org/10.1002/masy.200950613]
[29]
Cao, Y.; Li, H.; Zhang, Y.; Zhang, J.; He, J. Structure and properties of novel regenerated cellulose films prepared from cornhusk cellulose in room temperature ionic liquids. J. Appl. Polym. Sci., 2010, 116, 547-554.
[http://dx.doi.org/10.1002/app.31273]
[30]
Sescousse, R.; Gavillon, R.; Budtova, T. Aerocellulose from cellulose-ionic liquid solutions: Preparation, properties and comparison with celluloseNaOH and cellulose-NMMO routes. Carbohydr. Polym., 2011, 83, 1766-1774.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.043]
[31]
(a) Stark, A. Ionic liquids in the biorefinery: A critical assessment of their potential. Energy Environ. Sci., 2011, 4, 19-32.
[http://dx.doi.org/10.1039/C0EE00246A]
(b) Mora-Pale, M.; Meli, L.; Doherty, T.V.; Linhardt, R.J.; Dordick, J.S. Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol. Bioeng., 2011, 108(6), 1229-1245.
[http://dx.doi.org/10.1002/bit.23108] [PMID: 21337342]
[32]
(a) Xue, Z.; Qin, L.; Jiang, J.; Mu, T.; Gao, G. Thermal, electrochemical and radiolytic stabilities of ionic liquids. Phys. Chem. Chem. Phys., 2018, 20(13), 8382-8402.
[http://dx.doi.org/10.1039/C7CP07483B] [PMID: 29503990]
(b) Wang, B.; Qin, L.; Mu, T.; Xue, Z.; Gao, G. Are ionic liquids chemically stable? Chem. Rev., 2017, 117(10), 7113-7131.
[http://dx.doi.org/10.1021/acs.chemrev.6b00594] [PMID: 28240867]
(c) Cao, Y.; Mu, T. Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind. Eng. Chem. Res., 2014, 53(20), 8651-8664.
[http://dx.doi.org/10.1021/ie5009597]
[33]
Sun, N.; Rodríguez, H.; Rahman, M.; Rogers, R.D. Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem. Commun. (Camb.), 2011, 47(5), 1405-1421.
[http://dx.doi.org/10.1039/C0CC03990J] [PMID: 21170465]
[34]
Yue, C.; Fang, D.; Liu, L.; Yi, T-F. Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. J. Mol. Liq., 2011, 163, 99-121.
[http://dx.doi.org/10.1016/j.molliq.2011.09.001]
[35]
Wender, P.A.; Verma, V.A.; Paxton, T.J.; Pillow, T.H. Function-oriented synthesis, step economy and drug design. Acc. Chem. Res., 2008, 41(1), 4049.
[http://dx.doi.org/10.1021/ar700155p] [PMID: 18159936]
[36]
Candeias, N.R.; Branco, L.C.; Gois, P.M.P.; Afonso, C.A.M.; Trindade, A.F. More sustainable approaches for the synthesis of N-based heterocycles. Chem. Rev., 2009, 109(6), 2703-2802.
[http://dx.doi.org/10.1021/cr800462w] [PMID: 19385653]
[37]
Smiglak, M.; Metlen, A.; Rogers, R.D. The second evolution of ionic liquids: From solvents and separations to advanced materials-energetic examples from the ionic liquid cookbook. Acc. Chem. Res., 2007, 40(11), 1182-1192.
[http://dx.doi.org/10.1021/ar7001304] [PMID: 17979252]
[38]
Zorn, D.D.; Boatz, J.A.; Gordon, M.S. Electronic structure studies of tetrazolium-based ionic liquids. J. Phys. Chem. B, 2006, 110(23), 11110-11119.
[http://dx.doi.org/10.1021/jp060854r] [PMID: 16771373]
[39]
Joo, Y-H.; Gao, H.; Zhang, Y.; Shreeve, J.M. Inorganic or organic azidecontaining hypergolic ionic liquids. Inorg. Chem., 2010, 49(7), 3282-3288.
[http://dx.doi.org/10.1021/ic902224t] [PMID: 20175509]
[40]
Schneider, S.; Hawkins, T.; Rosander, M.; Vaghjiani, G.; Chambreau, S.; Drake, G. Ionic liquids as hypergolic fuels. Energy Fuels, 2008, 22(4), 2871-2872.
[http://dx.doi.org/10.1021/ef800286b]
[41]
Shamshina, J.L.; Smiglak, M.; Drab, D.M.; Parker, T.G.; Dykes, H.W.H., Jr; Di Salvo, R.; Reich, A.J.; Rogers, R.D. Catalytic ignition of ionic liquids for propellant applications. Chem. Commun. (Camb.), 2010, 46(47), 8965-8967.
[http://dx.doi.org/10.1039/c0cc02162h] [PMID: 20976311]
[42]
Singh, R.P.; Verma, R.D.; Meshri, D.T.; Shreeve, J.M. Energetic nitrogenrich salts and ionic liquids. Angew. Chem. Int. Ed. Engl., 2006, 45(22)35843601
[http://dx.doi.org/10.1002/anie.200504236] [PMID: 16708411]
[43]
Lin, J.H.; Zhang, C.P.; Zhu, Z.Q.; Chen, Q.Y.; Xiao, J.C. A novel pyrrolidinium ionic liquid with 1,1,2,2-tetrafluoro-2-(1,1,2,2tetrafluoroethoxy)ethane-sulfonate anion as a recyclable reaction medium and efficient catalyst for Friedel-Crafts alkylations of indoles with nitroalkenes. J. Fluor. Chem., 2009, 130(4), 394-398.
[http://dx.doi.org/10.1016/j.jfluchem.2009.01.004]
[44]
Liu, S.; Xie, C.; Yu, S.; Liu, F. Dimerization of rosin using Bronsted-Lewis acidic ionic liquid as catalyst. Catal. Commun., 2008, 9(10), 2030-2034.
[http://dx.doi.org/10.1016/j.catcom.2008.03.045]
[45]
Chaskar, A.C.; Bhandari, S.R.; Patil, A.B.; Sharma, O.P.; Mayeker, S. Solvent-free oxidation of alcohols with potassium persulphate in the presence of Bronsted acidic ionic liquids. Synth. Commun., 2009, 39, 366-370.
[http://dx.doi.org/10.1080/00397910802374117]
[46]
Chaturvedi, D. Recent developments on task specific ionic liquids. Curr. Org. Chem., 2011, 15, 1236-1248.
[http://dx.doi.org/10.2174/138527211795202997]
[47]
Toma, S.; Meciarova, M.; Sebesta, R. Are ionic liquids suitable media for organocatalytic reactions? Eur. J. Org. Chem., 2009, 3, 321-327.
[http://dx.doi.org/10.1002/ejoc.200800809]
[48]
Giernoth, R. Task-specific ionic liquids. Angew. Chem. Int. Ed. Engl., 2010, 49(16), 2834-2839.
[http://dx.doi.org/10.1002/anie.200905981] [PMID: 20229544]
[49]
Wu, B.; Liu, W.; Zhang, Y.; Wang, H. Do we understand the recyclability of ionic liquids? Chemistry, 2009, 15(8), 1804-1810.
[http://dx.doi.org/10.1002/chem.200801509] [PMID: 19130527]
[50]
Jain, N.; Kumar, A.; Chauhan, S.; Chausan, S.M.S. Chemical and biochemical transformations in ionic liquids. Tetrahedron, 2005, 61, 1015-1060.
[http://dx.doi.org/10.1016/j.tet.2004.10.070]
[51]
El Seoud, O.A.; Koschella, A.; Fidale, L.C.; Dorn, S.; Heinze, T. Applications of ionic liquids in carbohydrate chemistry: A window of opportunities. Biomacromolecules, 2007, 8(9), 2629-2647.
[http://dx.doi.org/10.1021/bm070062i] [PMID: 17691840]
[52]
Xu, J.M.; Wu, Q.; Zhang, Q.Y.; Zhang, F.; Fu, X. Basic ionic liquid as catalyst and reaction medium: A rapid and facile protocol for aza-Michael addition reactions. Eur. J. Org. Chem., 2007, 1798-1802.
[http://dx.doi.org/10.1002/ejoc.200600999]
[53]
Chowdhury, S.; Mohan, R.S.; Scott, J.L. Reactivity of ionic liquids. Tetrahedron, 2007, 63, 2363-2389.
[http://dx.doi.org/10.1016/j.tet.2006.11.001]
[54]
Gupta, N.S.; Kad, G.L.; Singh, J. Acidic ionic liquid [bmim]HSO4: An efficient catalyst for acetalization and thioacetalization of carbonyl compounds and their subsequent deprotection. Catal. Commun., 2007, 8, 1323-1328.
[http://dx.doi.org/10.1016/j.catcom.2006.11.030]
[55]
Wu, H.H.; Yang, F.; Cui, P.; Tang, J.; He, M.Y. An efficient procedure for protection of carbonyls in Bronsted acidic ionic liquid [Hmim]BF4. Tetrahedron Lett., 2004, 45(25), 4963-4965.
[http://dx.doi.org/10.1016/j.tetlet.2004.04.138]
[56]
Kim, Y.J.; Varma, R.S. Microwave-assisted preparation of 1-butyl-3methylimidazolium tetrachlorogallate and its catalytic use in acetal formation under mild conditions. Tetrahedron Lett., 2005, 46(43), 7447-7449.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.059]
[57]
Hajipour, A.R.; Hosseini, P.; Ruoho, A.E. Application of Bu4N+HSO4− as an ionic liquid and acid catalyst for thioacetalization of aldehydes and ketones. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183(10), 2502-2508.
[http://dx.doi.org/10.1080/10426500801967757]
[58]
Cui, S.; Lu, B.; Cai, Q.; Cai, X.; Li, X.; Xiao, X.; Hou, L.; Han, Y. Highly selective synthesis of diphenylmethane with acidic ionic liquids. Ind. Eng. Chem. Res., 2006, 45(5), 1571-1574.
[http://dx.doi.org/10.1021/ie0510268]
[59]
Hajipour, A.R.; Rafiee, F.; Ruoho, A.E. Facile and selective oxidation of benzylic alcohols to their corresponding carbonyl compounds with sodium nitrate in the presence of Bronsted acidic ionic liquids. Synlett, 2007, 7, 1118-1120.
[http://dx.doi.org/10.1055/s-2007-973903]
[60]
Li, S.; Lin, Y.; Xie, H.; Zhang, S.; Xu, J. Brønsted guanidine acid-base ionic liquids: Novel reaction media for the palladium-catalyzed Heck reaction. Org. Lett., 2006, 8(3), 391-394.
[http://dx.doi.org/10.1021/ol052543p] [PMID: 16435842]
[61]
Zhang, J.; Jiang, T.; Han, B.; Zhu, A. Knoevenagel condensation catalyzed by 1, 1, 3, 3-‐tetramethylguanidium lactate. Synth. Commun., 2006, 36(22), 3305-3317.
[http://dx.doi.org/10.1080/00397910600941190]
[62]
Yavari, I.; Kowsari, E. Ionic liquids as novel and recyclable reaction media for N-alkylation of amino-9, 10-anthraquinones by trialkyl phosphites. Tetrahedron Lett., 2007, 48(21), 3753-3756.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.077]
[63]
Gong, K.; Wang, H.L.; Fang, D.; Liu, Z.L. Basic ionic liquid as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes in aqueous media. Catal. Commun., 2008, 9(5), 650-653.
[http://dx.doi.org/10.1016/j.catcom.2007.07.010]
[64]
Hajipour, A.R.; Khazdooz, L.; Ruoho, A.E. Bronsted acidic ionic liquid as an efficient catalyst for chemoselective synthesis of 1,1 diacetates under solvent free. Catal. Commun., 2008, 9, 89-96.
[http://dx.doi.org/10.1016/j.catcom.2007.05.003]
[65]
(a) Qiao, K.; Yokoyama, C. Koch carbonylation of tertiary alcohols in the presence of acidic ionic liquids. Catal. Commun., 2006, 7, 450-453.
[http://dx.doi.org/10.1016/j.catcom.2005.12.009]
(b) Ogoshi, T.; Onodera, T.; Yamagishi, T.; Nakamoto, Y. Green polymerization of phenol in ionic liquids. Macromolecules, 2008, 41, 8533-8536.
[http://dx.doi.org/10.1021/ma801921e]
(c) Gericke, M.; Fardim, P.; Heinze, T. Ionic liquids--promising but challenging solvents for homogeneous derivatization of cellulose. Molecules, 2012, 17(6), 7458-7502.
[http://dx.doi.org/10.3390/molecules17067458] [PMID: 22706375]
[66]
Radai, Z.; Kiss, N.Z.; Keglevich, G. An overview of the applications of ionic liquids as catalysts and additives in organic chemical reactions. Curr. Org. Chem., 2018, 22(6), 533-556.
[http://dx.doi.org/10.2174/1385272822666171227152013]
[67]
Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Zanatta, N.; Bonacorso, H.G. Ionic liquids in heterocyclic synthesis. Chem. Rev., 2008, 108(6), 2015-2050.
[http://dx.doi.org/10.1021/cr078399y] [PMID: 18543878]
[68]
Sanin, A.V.; Nenaienko, V.G.; Kuzmin, V.S.; Balenkova, E.S. Synthesis of trifluoromethyl derivatives of pyrazolidine- and 2-pyrazoline-1carboxamides and pyrazolidine- and 1-pyrazoline-carbothioamides. Chem. Heterocycl. Compd., 1998, 34, 558-567.
[http://dx.doi.org/10.1007/BF02290939]
[69]
Moreira, D.N.; Frizzo, C.P.; Longhi, K.; Zanatta, N.; Bonacorso, H.G.; Martins, M.A.P. An efficient synthesis of 1-cyanoacetyl-5-halomethyl-4,5dihydro-1H-pyrazoles in ionic liquid. Monatsh. Chem., 2008, 139, 1049-1054.
[http://dx.doi.org/10.1007/s00706-008-0874-8]
[70]
Moreira, D.N.; Longhi, K.; Frizzo, C.P.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. Ionic liquid promoted cyclocondensation reactions to the formation of isoxazoles, pyrazoles and pyrimidines. Catal. Commun., 2010, 11, 476-479.
[http://dx.doi.org/10.1016/j.catcom.2009.12.001]
[71]
Frizzo, C.P.; Marzari, M.R.B.; Buriol, L.; Moreira, D.N.; Rosa, F.A.; Vargas, P.S.; Zanatta, N.; Bonacorso, H.G.; Martins, M.A.P. Ionic liquid effects on the reaction of enaminones and tert-butylhydrazine and applications for the synthesis of pyrazoles. Catal. Commun., 2009, 10, 1967-1970.
[http://dx.doi.org/10.1016/j.catcom.2009.07.005]
[72]
Ibrahim-Ouali, M. Diels-Alder route to steroids and associated structures. Steroids, 2009, 74(2), 133-162.
[http://dx.doi.org/10.1016/j.steroids.2008.10.012] [PMID: 19022272]
[73]
(a) Xiao, Z.; Lei, M.; Hu, L. An unexpected multi-component reaction to synthesis of 3-(5-amino-3-methyl-1H-pyrazol-4-yl)-3-arylpropanoic acids in ionic liquid. Tetrahedron Lett., 2011, 52, 7099-7102.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.099]
(b) Lehmann, F.; Holm, M.; Laufer, S. Three-component combinatorial synthesis of novel dihydropyrano[2,3-c]pyrazoles. J. Comb. Chem., 2008, 10(3), 364-367.
[http://dx.doi.org/10.1021/cc800028m] [PMID: 18407695]
(c) Zhou, J.F.; Tu, S.J.; Zhu, H.Q.; Zhi, S.J. A facile one-pot synthesis of pyrano[2,3-c]pyrazole derivatives under microwave irradiation. Synth. Commun., 2002, 3233633366
[http://dx.doi.org/10.1081/SCC-120014044]
(d) Guo, S.B.; Wang, S.X.; Li, J.T.D. L-‐Proline-‐catalyzed one-pot synthesis of pyrans and pyrano[2,3c]pyrazole derivatives by a grinding method under solvent-free conditions. Synth. Commun., 2007, 37, 2111-2120.
[http://dx.doi.org/10.1080/00397910701396906]
(e) Ren, Z.; Cao, W.; Tong, W.; Jin, Z. Solvent-‐free, one-‐pot synthesis of pyrano[2,3-‐c]pyrazole derivatives in the presence of KF.2H2O by grinding. Synth. Commun., 2005, 35, 2509-2513.
[http://dx.doi.org/10.1080/00397910500212809]
(f) Khurana, J.M.; Nand, B.; Kumar, S. Rapid synthesis of polyfunctionalized pyrano[2,3c]pyrazoles via multicomponent condensation in room-temperature ionic liquids. Synth. Commun., 2011, 41, 405-410.
[http://dx.doi.org/10.1080/00397910903576669]
[74]
Ghahremanzadeh, R.; Sayyafi, M.; Ahadi, S.; Bazgir, A. Novel one-pot, three-component synthesis of spiro[indoline-pyrazolo[4′,3′:5,6]pyrido[2,3d] pyrimidine]trione library. J. Comb. Chem., 2009, 11(3), 393-396.
[http://dx.doi.org/10.1021/cc8001958] [PMID: 19425616]
[75]
Ghahremanzadeh, R.; Moghaddam, M.M.; Ayoob Bazgir, A.; Akhondi, M.M. An efficient four-component synthesis of spiro[indolinepyrazolo[4′, 3′:5,6]pyrido[2,3-d]pyrimidine]triones. Chin. J. Chem., 2012, 30, 321-326.
[http://dx.doi.org/10.1002/cjoc.201180471]
[76]
Shaabani, A.; Soleimani, E.; Maleki, A. Ionic liquid promoted one-pot synthesis of 3-aminoimidazo[1,2-a]pyridines. Tetrahedron Lett., 2006, 4730313034
[http://dx.doi.org/10.1016/j.tetlet.2006.03.011]
[77]
Khurana, J.M.; Magoo, D. Efficient one-pot syntheses of 2H-indazolo[2,1b]phthalazine-triones by catalytic H2SO4 in water-ethanol or ionic liquid. Tetrahedron Lett., 2009, 50, 7300-7303.
[http://dx.doi.org/10.1016/j.tetlet.2009.10.032]
[78]
Shekouhy, M.; Hasaninejad, A. Ultrasound-promoted catalyst-free one-pot four component synthesis of 2H-indazolo[2,1-b]phthalazine-triones in neutral ionic liquid 1-butyl-3-methylimidazolium bromide. Ultrason. Sonochem., 2012, 19(2), 307-313.
[http://dx.doi.org/10.1016/j.ultsonch.2011.07.011] [PMID: 21868275]
[79]
Fazaeli, R.; Aliyan, H.; Fazaeli, N. Heteropoly acid in ionic liquid - an efficient catalyst for the preparation of 2H-indazolo[2,1-b]phthalazine-triones. Open Catal. J., 2010, 3, 14-18.
[http://dx.doi.org/10.2174/1876214X01003010014]
[80]
Shi, D-Q.; Yang, F. Ionic liquid as an efficient promoting medium for synthesis of bis-pyrazolo[3,4-b:4,3-e]pyridines. J. Chin. Chem. Soc. (Taipei), 2008, 55, 755-760.
[http://dx.doi.org/10.1002/jccs.200800113]
[81]
Ghahremanzadeh, R.; Ahadi, S.; Bazgi, A. A one-pot, four-component synthesis of α-carboline derivatives. Tetrahedron Lett., 2009, 50, 7379-7381.
[http://dx.doi.org/10.1016/j.tetlet.2009.10.077]
[82]
Isambert, N. Sanchez Duque, Mdel, M.; Plaquevent, J-C.; Génisson, Y.; Rodriguez, J.; Constantieux, T. Multicomponent reactions and ionic liquids: A perfect synergy for eco-compatible heterocyclic synthesis. Chem. Soc. Rev., 2011, 40(3), 1347-1357.
[http://dx.doi.org/10.1039/C0CS00013B] [PMID: 20963207]
[83]
Liu, X.; Hu, Y.; Fu, W. Basic ionic liquid as catalyst in synthesis of dimethyl 4-(2-(2,6-bis(methoxycarbonyl)pyridine-4-yl)vinyl)pyridine-2,6dicarboxylate. J. Chem., 2018, 1-4.
[http://dx.doi.org/10.1155/2018/9536838]
[84]
Kanagaraj, K.; Pitchumani, K. Solvent-free multicomponent synthesis of pyranopyrazoles: per-6-amino-β-cyclodextrin as a remarkable catalyst and host. Tetrahedron Lett., 2010, 51, 3312-3316.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.087]
[85]
Al-Matar, H.M.; Khalil, K.D.; Adam, A.Y.; Elnagdi, M.H. Green one pot solvent-free synthesis of pyrano[2,3-c]-pyrazoles and pyrazolo[1,5a]pyrimidines. Molecules, 2010, 15(9), 6619-6629.
[http://dx.doi.org/10.3390/molecules15096619] [PMID: 20877248]
[86]
Maleki, B.; Azarifar, D.; Vaghei, R.G.; Veisi, H.; Hojati, S.F.; Gholizadeh, M.; Salehabadi, H.; Moghadam, M.K. 1,3-Dibromo-5,5-dimethylhydantoin or N-bromosuccinimide as efficient reagents for chemoselective deprotection of 1,1-diacetates under solvent-free conditions. Monatsh. Chem., 2009, 140, 1485-1488.
[http://dx.doi.org/10.1007/s00706-009-0212-9]
[87]
Nelson, W.M.; Anastas, P.T.; Williamson, T.C. Green chemistry; Oxford University, 1998.
[88]
Ebrahimi, J.; Mohammadi, A.; Pakjoo, V.; Bahramzade, E.; Habibi, A. Highly efficient solvent-free synthesis of pyranopyrazoles by a Brønstedacidic ionic liquid as a green and reusable catalyst. J. Chem. Sci., 2012, 124, 1013-1017.
[http://dx.doi.org/10.1007/s12039-012-0310-9]
[89]
Zang, H.; Su, Q.; Mo, Y.; Cheng, B-W.; Jun, S. Ionic liquid [EMIM]OAc under ultrasonic irradiation towards the first synthesis of trisubstituted imidazoles. Ultrason. Sonochem., 2010, 17(5), 749-751.
[http://dx.doi.org/10.1016/j.ultsonch.2010.01.015] [PMID: 20194046]
[90]
Siddiqui, S.A.; Narkhede, U.C.; Palimkar, S.S.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Room temperature ionic liquid promoted improved and rapid synthesis of 2,4,5-triaryl imidazoles from aryl aldehydes and 1,2diketones or 훼-hydroxyketone. Tetrahedron, 2005, 61, 3539-3546.
[http://dx.doi.org/10.1016/j.tet.2005.01.116]
[91]
Shaabani, A.; Rahmati, A. 1,1,3,3-N,N,N,N-Tetramethylguanidinium trifluoroacetate ionic liquid-promoted efficient one-pot synthesis of trisubstituted imidazoles. Synth. Commun., 2006, 36, 65-70.
[http://dx.doi.org/10.1080/00397910500328969]
[92]
Khodaei, M.M.; Khosropour, A.R.; Kookhazadeh, M. Enamination of βdicarbonyl compounds catalyzed by CeCl3•7H2O at ambient conditions: Ionic liquid and solvent-free media. Synlett, 2004, 11, 1980-1984.
[http://dx.doi.org/10.1055/s-2004-830879]
[93]
Khodaei, M.M.; Khosropour, A.R.; Ghozati, K. A powerful, practical and chemoselective synthesis of 2-anilinoalkanols catalyzed by Bi (TFA)3 or Bi (OTf)3 in the presence of molten TBAB. Tetrahedron Lett., 2004, 45, 3525-3529.
[http://dx.doi.org/10.1016/j.tetlet.2004.02.139]
[94]
Khosropour, A.R.; Khodaei, M.M.; Kookhazadeh, M. A mild, efficient and environmentally friendly method for the regio- and chemoselective synthesis of enaminones using Bi (TFA)3 as a reusable catalyst in aqueous medium. Tetrahedron Lett., 2004, 45, 1725-1728.
[http://dx.doi.org/10.1016/j.tetlet.2003.12.093]
[95]
Khosropour, A.R.; Khodaei, M.M.; Bigzadeh, M.; Jokar, M. A one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones from primary alcohols promoted by Bi(NO3)3•5H2O in two different media: Organic solvent and ionic liquid. Hetrocycles, 2005, 65, 767-773.
[http://dx.doi.org/10.3987/COM-04-10257]
[96]
Sakirolla, R.; Krishnaji, T.; Yaeghoobi, M.; Rahman, N.A. Di-cationic ionic liquid catalyzed synthesis of 1,5-benzothiazepines. Asian J. Chem., 2018, 30(1), 107-115.
[http://dx.doi.org/10.14233/ajchem.2018.20920]
[97]
Sharma, R.; Abdullaha, M.; Bharate, S.B. Metal-‐free ionic-‐liquid-‐mediated synthesis of benzimidazoles and quinazolin-‐4(3H)-‐ones from benzylamines. Asian J. Org. Chem., 2017, 6(10), 1370-1374.
[http://dx.doi.org/10.1002/ajoc.201700214]
[98]
Zhao, N.; Wang, Y-L.; Wang, J-Y. A rapid and convenient synthesis of derivatives of imidazoles under microwave irradiation. J. Chin. Chem. Soc. (Taipei), 2005, 52, 535-538.
[http://dx.doi.org/10.1002/jccs.200500078]
[99]
Wolkenberg, S.E.; Wisnoski, D.D.; Leister, W.H.; Wang, Y.; Zhao, Z.; Lindsley, C.W. Efficient synthesis of imidazoles from aldehydes and 1,2diketones using microwave irradiation. Org. Lett., 2004, 6(9), 1453-1456.
[http://dx.doi.org/10.1021/ol049682b] [PMID: 15101765]
[100]
Khodaei, M.M.; Bahrami, K.; Kavianinia, I. p-TSA catalyzed synthesis of 2,4,5-triarylimidazoles from ammonium heptamolybdate tetrahydrate in TBAI. J. Chin. Chem. Soc. (Taipei), 2007, 54, 829-833.
[http://dx.doi.org/10.1002/jccs.200700121]
[101]
Breslow, R. Biomimetic chemistry and artificial enzymes: Catalysis by design. Acc. Chem. Res., 1995, 28, 146-153.
[http://dx.doi.org/10.1021/ar00051a008]
[102]
Shaterian, H.R.; Ranjbar, M. An environmental friendly approach for the synthesis of highly substituted imidazoles using Brønsted acidic ionic liquid, N-methyl-2-pyrrolidonium hydrogen sulfate, as reusable catalyst. J. Mol. Liq., 2011, 160, 40-49.
[http://dx.doi.org/10.1016/j.molliq.2011.02.012]
[103]
Alvim, H.G.O.; Correa, J.R.; Assumpção, J.A.F.; da Silva, W.A.; Rodrigues, M.O.; de Macedo, J.L.; Fioramonte, M.; Gozzo, F.C.; Gatto, C.C.; Neto, B.A.D. Heteropolyacid-containing ionic liquid-catalyzed multicomponent synthesis of bridgehead nitrogen heterocycles: Mechanisms and mitochondrial staining. J. Org. Chem., 2018, 83(7), 4044-4053.
[http://dx.doi.org/10.1021/acs.joc.8b00472] [PMID: 29547280]
[104]
Banerjee, B. [Bmim]BF4: A versatile ionic liquid for the synthesis of diverse bioactive heterocycles. Chem. Select, 2017, 2(27), 8362-8376.
[http://dx.doi.org/10.1002/slct.201701700]
[105]
Lombardino, J.G.; Wiseman, E.H. Preparation and antiinflammatory activity of some nonacidic trisubstituted imidazoles. J. Med. Chem., 1974, 17(11), 1182-1188.
[http://dx.doi.org/10.1021/jm00257a011] [PMID: 4415171]
[106]
Philips, A.P.; White, H.L.; Rosen, S. Antithrombotic triphenylimidazoles. Eur. Pat. Appl., 1982, EP 58890..
[107]
Lantos, I.; Zhang, W.Y.; Shiu, X.; Eggleston, D.S. Synthesis of imidazoles via hetero-Cope rearrangements. J. Org. Chem., 1993, 58, 7092-7095.
[http://dx.doi.org/10.1021/jo00077a033]
[108]
Zhang, C.; Moran, E.J.; Woiwade, T.F.; Short, K.M.; Mjalli, A.M.M. Synthesis of tetra substituted imidazoles via α-(N-acyl-N-alkylamino)-βketoamides on Wang Resin. Tetrahedron Lett., 1996, 37, 751-754.
[http://dx.doi.org/10.1016/0040-4039(95)02310-0]
[109]
Claiborne, C.F.; Liverton, N.J.; Nguyen, K.T. An efficient synthesis of tetrasubstituted imidazoles from N-(2-Oxo)-amides. Tetrahedron Lett., 1998, 39, 8939-8942.
[http://dx.doi.org/10.1016/S0040-4039(98)02058-9]
[110]
Bleicher, K.H.; Gerber, F.; Wuthrich, Y.; Alanine, A.; Capretta, A. Parallel synthesis of substituted imidazoles from 1,2-aminoalcohols. Tetrahedron Lett., 2002, 43, 7687-7690.
[http://dx.doi.org/10.1016/S0040-4039(02)01839-7]
[111]
Liu, J.; Chem, J.; Zhao, J.; Zhao, Y.; Li, L.; Zhang, H. A modified procedure for the synthesis of 1-arylimidazoles. Synthesis, 2003, 35, 2661-2666.
[112]
Sarshar, S.; Siev, D.; Mjalli, A.M.M. Imidazole libraries on solid support. Tetrahedron Lett., 1996, 37, 835-838.
[http://dx.doi.org/10.1016/0040-4039(95)02334-8]
[113]
Frantz, D.E.; Morency, L.; Soheili, A.; Murry, J.A.; Grabowski, E.J.J.; Tillyer, R.D. Synthesis of substituted imidazoles via organocatalysis. Org. Lett., 2004, 6(5), 843-846.
[http://dx.doi.org/10.1021/ol0498803] [PMID: 14986989]
[114]
Weinmann, H.; Harre, M.; Koeing, K.; Merten, E.; Tilstam, U. Efficient and environmentally friendly synthesis of 2-amino-imidazole. Tetrahedron Lett., 2002, 43, 593-595.
[http://dx.doi.org/10.1016/S0040-4039(01)02226-2]
[115]
Balalaie, S.; Hashemi, M.M.; Akhbari, M. A novel one-pot synthesis of tetrasubstituted imidazoles under solvent-free conditions and microwave irradiation. Tetrahedron Lett., 2003, 44, 1709-1711.
[http://dx.doi.org/10.1016/S0040-4039(03)00018-2]
[116]
Balalaie, S.; Arabanian, A. One-pot synthesis of tetrasubstituted imidazoles catalyzed by zeolite HY and silica gel under microwave irradiation. Green Chem., 2000, 2, 274-276.
[http://dx.doi.org/10.1039/b006201o]
[117]
Usyatinsky, A.Y.; Khemelnitsky, Y.L. Microwave-assisted synthesis of substituted imidazoles on a solid support under solvent-free conditions. Tetrahedron Lett., 2000, 41, 5031-5034.
[http://dx.doi.org/10.1016/S0040-4039(00)00771-1]
[118]
Cobb, J.M.; Grimster, N.; Khan, N.; Lai, J.Y.Q.; Payne, H.J.; Payne, L.J.; Raynham, T.; Taylor, J. Parallel synthesis of 1,2,4-trisubstituted imidazoles via N-alkyl-N-(β-keto)amides using a carbazate linker. Tetrahedron Lett., 2002, 43, 7557-7560.
[http://dx.doi.org/10.1016/S0040-4039(02)01810-5]
[119]
Xu, L.; Wan, Li. -F.; Salehi, H.; Deng, W.; Guo, Q.-X. Microwave-assisted one-pot synthesis of trisubstituted imidazoles on solid support. Heterocycles, 2004, 63, 1613-1618.
[http://dx.doi.org/10.3987/COM-04-10045]
[120]
Xia, M.; Lu, Y-D. A novel neutral ionic liquid catalyzed solvent-free synthesis of 2,4,5-trisubstituted imidazoles under microwave irradiation. J. Mol. Catal. Chem., 2007, 265, 205-208.
[http://dx.doi.org/10.1016/j.molcata.2006.10.004]
[121]
Majumder, A.; Gupta, R.; Jain, A. Microwave-assisted synthesis of nitrogencontaining heterocycles. Green Chem. Lett. Rev., 2013, 6, 151-182.
[http://dx.doi.org/10.1080/17518253.2012.733032]
[122]
Martinez-Palou, R. Ionic liquid and microwave-assisted organic synthesis: A “Green” and synergic couple. J. Mex. Chem. Soc., 2007, 51(4), 252-264.
[123]
Marzouk, A.A.; Abbasov, V.M.; Talybov, A.H. Short time one-spot synthesis of 2, 4, 5-trisubstituted-imidazoles using morpholinium hydrogen sulphate as green and reusable catalysts. Chem. J., 2012, 02, 179-184.
[124]
Zhong, W.; Wang, G.; Chen, K. Unexpected tandem reaction of new type Morita Baylis-Hillman adducts promoted by [HMIM]HSO4/NANO3 system. Heterocycles, 2012, 85, 43-56.
[http://dx.doi.org/10.3987/COM-11-12333]
[125]
Maradolla, M.B.; Allam, S.K.; Mandha, A.; Chandramouli, G.V.P. One pot synthesis of benzoxazoles, benzthiazoles and benzimidazoles from carboxylic acids using ionic liquids. ARKIVOC, 2008, 15, 42-46.
[126]
Wassercheid, P.; Keim, W. Ionic liquids-new ‘solutions’ for transition metal catalysis. Angew. Chem. Int. Ed., 2000, 39, 3772-3789.
[http://dx.doi.org/10.1002/1521-3773(20001103)39:21<3772:AID-ANIE3772>3.0.CO;2-5]
[127]
Ramprasad, J.; Nayak, N.; Dalimba, U.; Yogeeswari, P.; Sriram, D. Ionic liquid promoted one-pot synthesis of thiazole-imidazo[2,1-b] [1,3,4]thiadiazole hybrids and their antitubercular activity. MedChemComm, 2016, 7(2), 338-344.
[http://dx.doi.org/10.1039/C5MD00346F] [PMID: 30108749]
[128]
(a) Boroujeni, K.P.; Zhianinas, A.; Jafarinasa, M. Polystyrene-supported pyridinium chloroaluminate ionic liquid as a new heterogeneous Lewis acid catalyst for selective synthesis of benzimidazoles. J. Serb. Chem. Soc., 2013, 78, 155-164.
[http://dx.doi.org/10.2298/JSC120401089P]
(b) Boroujeni, K.P.; Jafarinasab, M. Polystyrene-supported chloroaluminate ionic liquid as a new heterogeneous Lewis acid catalyst for Knoevenagel condensation. Chin. Chem. Lett., 2012, 23, 1067-1070.
[http://dx.doi.org/10.1016/j.cclet.2012.06.019]
(c) Boroujeni, K.P.; Ghasemi, P. Synthesis and application of a novel strong and stable supported ionic liquid catalyst with both Lewis and Brønsted acid sites. Catal. Commun., 2013, 37, 50-54.
[http://dx.doi.org/10.1016/j.catcom.2013.03.025]
[129]
Nadaf, R.N.; Siddiqui, S.A.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Room temperature ionic liquid promoted regioselective synthesis of 2-aryl benzimidazoles, benzoxazoles and benzthiazoles under ambient conditions. J. Mol. Catal. Chem., 2004, 214, 155-160.
[http://dx.doi.org/10.1016/j.molcata.2003.10.064]
[130]
Mohammadpoor-Baltork, I.; Khosropour, A.R.; Hojati, S.F. Mild and efficient synthesis of benzoxazoles, benzothiazoles, benzimidazoles, and oxazolo [4,5-b] pyridines catalyzed by Bi (III) salts under solvent-free conditions. Monatsh. Chem., 2007, 138, 663-667.
[http://dx.doi.org/10.1007/s00706-007-0655-9]
[131]
Zhang, Z-H.; Yin, L.; Wang, Y-M. An expeditious synthesis of benzimidazole derivatives catalyzed by Lewis acids. Catal. Commun., 2007, 8, 1126-1131.
[http://dx.doi.org/10.1016/j.catcom.2006.10.022]
[132]
Zhang, Z-H.; Li, T-S.; Li, J-J. A highly effective sulfamic acid/methanol catalytic system for the synthesis of benzimidazole derivatives at room temperature. Monatsh. Chem., 2007, 138, 89-94.
[http://dx.doi.org/10.1007/s00706-006-0566-1]
[133]
Aridoss, G.; Laali, K.K. Building heterocyclic systems with RC(OR)2+ carbocations in recyclable Brønsted acidic ionic liquids: Facile synthesis of 1substituted 1H-1,2,3,4-tetrazoles, benzazoles and other ring systems with CH(OEt)3 and EtC(OEt)3 in [EtNH3][NO3] and.[PMIM(SO3H)][OTf] Eur. J. Org. Chem., 2011, 2827-2835.
[http://dx.doi.org/ [http://dx.doi.org/10.1002/ejoc.201100128]
[134]
Qasim, S.S.; Ali, S.S. Microwave assisted a novel synthesis for new substituted imidazoles. Der Pharma. Chem., 2011, 3, 518-522.
[135]
Chawla, A.; Sharma, A.; Sharma, A.K. Review: A convenient approach for the synthesis of imidazole derivatives using microwaves. Pharma. Chem., 2012, 4, 116-140.
[136]
Bienaymé, H.; Bouzid, K. A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-aminoimidazoles. Angew. Chem. Int. Ed. Engl., 1998, 37(16), 2234-2237.
[http://dx.doi.org/10.1002/(SICI)15213773(19980904)37:16<2234:AID-ANIE2234>3.0.CO;2-R] [PMID: 29711433]
[137]
Blackburn, C. A three-component solid-phase synthesis of 3aminoimidazo[1,2-a]azines. Tetrahedron Lett., 1998, 39, 5469-5472.
[http://dx.doi.org/10.1016/S0040-4039(98)01113-7]
[138]
Chernyak, N.; Gevorgyan, V. General and efficient copper-catalyzed threecomponent coupling reaction towards imidazoheterocycles: One-pot synthesis of alpidem and zolpidem. Angew. Chem. Int. Ed. Engl., 2010, 49(15), 2743-2746.
[http://dx.doi.org/10.1002/anie.200907291] [PMID: 20213787]
[139]
Shaabani, A.; Soleimani, E.; Maleki, A. Ionic liquid promoted one-pot synthesis of 3-aminoimidazo[1,2-a]pyridines. Tetrahedron Lett., 2006, 47, 3031-3034.
[http://dx.doi.org/10.1016/j.tetlet.2006.03.011]
[140]
Howard, A.S. Comprehensive heterocyclic chemistry. Pergamon Press; , 1996, pp. 1-8. 262
[141]
Gudmundsson, K.S.; Williams, J.D.; Drach, J.C.; Townsend, L.B. Synthesis and antiviral activity of novel erythrofuranosyl imidazo[1,2-a]pyridine Cnucleosides constructed via palladium coupling of iodoimidazo[1,2a]pyridines and dihydrofuran. J. Med. Chem., 2003, 46(8), 1449-1455.
[http://dx.doi.org/10.1021/jm020339r] [PMID: 12672244]
[142]
Geronikaki, A.; Babaev, E.; Dearden, J.; Dehaen, W.; Filimonov, D.; Galaeva, I.; Krajneva, V.; Lagunin, A.; Macaev, F.; Molodavkin, G.; Poroikov, V.; Pogrebnoi, S.; Saloutin, V.; Stepanchikova, A.; Stingaci, E.; Tkach, N.; Vlad, L.; Voronina, T. Design, synthesis, computational and biological evaluation of new anxiolytics. Bioorg. Med. Chem., 2004, 12(24), 6559-6568.
[http://dx.doi.org/10.1016/j.bmc.2004.09.016] [PMID: 15556772]
[143]
Ohta, M.; Suzuki, T.; Koide, T.; Matsuhisa, A.; Furuya, T.; Miyata, K.; Yanagisawa, I. Novel 5-hydroxytryptamine (5-HT3) receptor antagonists. I. Synthesis and structure-activity relationships of conformationally restricted fused imidazole derivatives. Chem. Pharm. Bull. (Tokyo), 1996, 44(5), 991-999.
[http://dx.doi.org/10.1248/cpb.44.991] [PMID: 8689729]
[144]
Enguehard-Gueiffier, C.; Fauvelle, F.; Debouzy, J.C.; Peinnequin, A.; Thery, I.; Dabouis, V.; Gueiffier, A. 2,3-Diarylimidazo[1,2-a]pyridines as potential inhibitors of UV-induced keratinocytes apoptosis: Synthesis, pharmacological properties and interactions with model membranes and oligonucleotides by NMR. Eur. J. Pharm. Sci., 2005, 24(2-3), 219-227.
[http://dx.doi.org/10.1016/j.ejps.2004.10.009] [PMID: 15661494]
[145]
Cai, L.; Brouwer, C.; Sinclair, K.; Cuevas, J.; Pike, V.W. Titanium(IV) chloride promoted synthesis of new imidazo[1,2-a]pyridine derivatives under microwave conditions. Synthesis, 2006, 2006(1), 133-145.
[http://dx.doi.org/10.1055/s-2005-918490]
[146]
Kiselyov, A.S. A novel three-component reaction of N-fluoropyridinium salts: A facile approach to imidazo[1,2-a]pyridines. Tetrahedron Lett., 2005, 46, 4487-4490.
[http://dx.doi.org/10.1016/j.tetlet.2005.04.124]
[147]
Castera, C.; Crozet, M.D.; Vanelle, P. An efficient synthetic route to new imidazo[1,2-a]pyridines by cross-coupling reactions in aqueous medium. Heterocycles, 2005, 65, 2979-2989.
[http://dx.doi.org/10.3987/COM-05-10548]
[148]
Basso, D.; Broggini, G.; Passarella, D.; Pilati, T.; Terraneo, A.; Zecchi, G. Synthetic approach to imidazo[1,2-a]pyridine derivatives by the intramolecular nitrone cycloaddition methodology. Tetrahedron, 2002, 58, 4445-4450.
[http://dx.doi.org/10.1016/S0040-4020(02)00404-0]
[149]
Arrault, A.; Touzeau, F.; Guillaumet, G.; Leger, J.M.; Jarry, C.; Merour, J.Y. Synthesis of functionalised pyrido[4,3-b][1,4]oxazine and imidazo[1,2a]pyridine derivatives. Tetrahedron, 2002, 58, 8145-8152.
[http://dx.doi.org/10.1016/S0040-4020(02)00875-X]
[150]
Chen, Y.; Lam, Y.; Lai, Y.H. Solid-phase synthesis of imidazo[1,2a]pyridine using sodium benzenesulfinate as a traceless linker. Org. Lett., 2002, 4(22), 3935-3937.
[http://dx.doi.org/10.1021/ol026797b] [PMID: 12599496]
[151]
Groebke, K.; Weber, L.; Mehlin, F. Synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett, 1998, 661-663.
[http://dx.doi.org/10.1055/s-1998-1721]
[152]
Blackburn, C.; Guan, B.; Fleming, P.; Shiosaki, K.; Tsai, S. Parallel synthesis of 3-aminoimidazo[1,2-a]pyridines and pyrazines by a new threecomponent condensation. Tetrahedron Lett., 1998, 39, 3635-3638.
[http://dx.doi.org/10.1016/S0040-4039(98)00653-4]
[153]
Mandair, G.S.; Light, M.; Russell, A.; Hursthouse, M.; Bradley, M. Reevaluation of the outcome of a multiple component reaction-2- and 3-aminoimidazo[1,2-a]pyrimidines? Tetrahedron Lett., 2002, 43, 4267-4269.
[http://dx.doi.org/10.1016/S0040-4039(02)00709-8]
[154]
Palepu, R.; Gharibi, H.; Bloor, D.M.; Wyn-Jones, E. Electrochemical studies associated with the micellization of cationic surfactants in aqueous mixtures of ethylene glycol and glycerol. Langmuir, 1993, 9, 110-112.
[http://dx.doi.org/10.1021/la00025a025]
[155]
Zarnegar, Z.; Safari, J. Heterogenization of an imidazolium ionic liquid based on magnetic carbon nanotubes as a novel organocatalyst for the synthesis of 2-amino-chromenes via a microwave-assisted multicomponent strategy. New J. Chem., 2016, 40, 7986-7995.
[http://dx.doi.org/10.1039/C6NJ01631F]
[156]
Pathak, A.K.; Ameta, C.; Ameta, R.; Punjabi, P.B. Microwave-‐assisted organic synthesis in ionic liquids. J. Heterocycl. Chem., 2016, 53(6)16971705
[http://dx.doi.org/10.1002/jhet.2515]
[157]
Dupont, J. On the solid, liquid and solution structural organization of imidazolium ionic liquids. J. Braz. Chem. Soc., 2004, 15, 341-350.
[http://dx.doi.org/10.1590/S0103-50532004000300002]
[158]
Bowers, J.; Butts, C.P.; Martin, P.J.; Vergara-Gutierrez, M.C.; Heenan, R.K. Aggregation behavior of aqueous solutions of ionic liquids. Langmuir, 2004, 20(6), 2191-2198.
[http://dx.doi.org/10.1021/la035940m] [PMID: 15835670]
[159]
Miskolczy, Z.; Sebok-Nagy, K.; Biczok, L.; Gokturk, S. Aggregation and micelle formation of ionic liquids in aqueous solution. Chem. Phys. Lett., 2004, 400, 296-300.
[http://dx.doi.org/10.1016/j.cplett.2004.10.127]
[160]
Modaressi, A.; Sifaoui, H.; Mielcarz, M.; Domanska, U.; Rogalski, M. Influence of the molecular structure on the aggregation of imidazolium ionic liquids in aqueous solutions. Colloids Surf., 2007, A302, 181-185.
[http://dx.doi.org/10.1016/j.colsurfa.2007.02.020]
[161]
Dong, B.; Li, N.; Zheng, L.; Yu, L.; Inoue, T. Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir, 2007, 23(8), 4178-4182.
[http://dx.doi.org/10.1021/la0633029] [PMID: 17346069]
[162]
Blesic, M.; Marques, M.H.; Plechkova, N.V.; Seddon, K.R.; Rebelo, L.P.N.; Lopes, A. Self-aggregation of ionic liquids: Micelle formation in aqueous solution. Green Chem., 2007, 9, 481-490.
[http://dx.doi.org/10.1039/b615406a]
[163]
Baltazar, Q.Q.; Chandawalla, J.; Sawyer, K.; Anderson, J.L. Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids. Colloids Surf., 2007, A302, 150-156.
[http://dx.doi.org/10.1016/j.colsurfa.2007.02.012]
[164]
Holbrey, J.D.; Seddon, K.R. Ionic liquids. Clean Prod. Process., 1999, 1, 223-236.
[165]
Earle, M.J.; Seddon, K.R. Ionic liquids. Green solvents for the future. Pure Appl. Chem., 2000, 72, 1391-1398.
[http://dx.doi.org/10.1351/pac200072071391]
[166]
Wilks, J.S. Properties of ionic liquid solvents for catalysis. J. Mol. Catal. Chem., 2004, 214, 11-17.
[http://dx.doi.org/10.1016/j.molcata.2003.11.029]
[167]
Shubin, V.G.; Borodkin, G.I. Electrophilic reactions of aromatic and heteroaromatic compounds in ionic liquids. Russ. J. Org. Chem., 2006, 42, 1761-1783.
[168]
Calo, V.; Nacci, A.; Monopoli, A. Effects of ionic liquids on Pd-‐catalysed carbon–carbon bond formation. Eur. J. Org. Chem., 2006, 17, 3791-3802.
[http://dx.doi.org/10.1002/ejoc.200600045]
[169]
Wasserscheid, P.; Keim, W. Ionic liquids - new “solutions” for transition metal catalysis. Angew. Chem. Int. Ed. Engl., 2000, 39(21), 3772-3789.
[http://dx.doi.org/10.1002/1521-3773(20001103)39:21<3772:AID-ANIE3772>3.0.CO;2-5] [PMID: 11091453]
[170]
Seddon, K.R. Molten salt chemistry; Reidel Publishing Co., 1987.
[171]
Parchinsky, V.Z.; Shuvalova, O.; Ushakova, O.; Kravchenko, D.V.; Krasavin, M. Multi-component reactions between 2-aminopyrimidine, aldehydes and isonitriles: The use of a nonpolar solvent suppresses formation of multiple products. Tetrahedron Lett., 2006, 47, 947-951.
[http://dx.doi.org/10.1016/j.tetlet.2005.11.152]
[172]
Shaabani, A.; Maleki, A. Ionic liquid promoted one-pot three-component reaction: Synthesis of annulated imidazo[1,2-a]azines using trimethylsilylcyanide. Monatsh. Chem., 2007, 138, 51-56.
[http://dx.doi.org/10.1007/s00706-006-0567-0]
[173]
Hajipour, A.R.; Ghayeb, Y.; Sheikhan, N.; Ruoho, A.E. Brønsted acidic ionic liquid as an efficient and reusable catalyst for one-pot, three-component synthesis of pyrimidinone derivatives via Biginelli-type reaction under solventfree conditions. Synth. Commun., 2011, 41, 2226-2233.
[http://dx.doi.org/10.1080/00397911.2010.501474]
[174]
Fisher, J.G.; Straley, J.M. US Patent 3. 1975, 928(311)
[175]
Craig, L.E. US Patent 2. 1957, 785(133)
[176]
Rival, Y.; Grassy, G.; Michel, G. Synthesis and antibacterial activity of some imidazo[1,2-a]pyrimidine derivatives. Chem. Pharm. Bull. (Tokyo), 1992, 40(5), 1170-1176.
[http://dx.doi.org/10.1248/cpb.40.1170] [PMID: 1394630]
[177]
Ding, M.; Guo, H. Ionic liquid catalyzed one-‐pot synthesis of 2H-‐pyridazino[1,2-‐a]indazole-‐1,6,9(11H)-‐triones via three-‐component reaction under solvent-‐free conditions. J. Heterocycl. Chem., 2016, 53(6), 2061-2065.
[http://dx.doi.org/10.1002/jhet.1736]
[178]
Sundberg, R.J.; Dahlhausen, D.J.; Manikumar, G. Preparation of 2-‐aryl and 2-‐aryloxymethyl imidazo[1,2-‐a]pyridines and related compounds. J. Heterocycl. Chem., 1988, 25, 129-137.
[http://dx.doi.org/10.1002/jhet.5570250119]
[179]
Spitzer, W.A. US Patent 4. 1987, 636(502)
[180]
Xie, Y-Y. Organic reactions in ionic liquids: Ionic liquid-‐accelerated one-‐pot synthesis of 2-‐arylimidazo[1,2-‐a]pyrimidines. Synth. Commun., 2005, 35, 1741-1746.
[http://dx.doi.org/10.1081/SCC-200063911]
[181]
Chen, Z-C.; Xie, Y-Y.; Zheng, Q-G. Organic reactions in ionic liquids: Cyclocondensation of α-bromoketones with 2-aminopyridine. J. Chem. Res. (S), 2003, 10, 614-615.
[182]
Cao, D.; Zhang, Y.; Liu, C.; Wang, B.; Sun, Y.; Abdukadera, A.; Hu, H.; Liu, Q. Ionic liquid promoted diazenylation of N-heterocyclic compounds with aryltriazenes under mild conditions. Org. Lett., 2016, 18(9), 2000-2003.
[http://dx.doi.org/10.1021/acs.orglett.6b00605] [PMID: 27096379]
[183]
Enguehard, C.; Allouchi, H.; Gueiffier, A.; Buchwald, S.L. Easy access to novel substituted 6-aminoimidazo[1,2-a]pyridines using palladium- and copper-catalyzed aminations. J. Org. Chem., 2003, 68(11), 4367-4370.
[http://dx.doi.org/10.1021/jo0341463] [PMID: 12762738]
[184]
(a) Katritzky, A.R.; Qiu, G.; Long, Q.H.; He, H.Y.; Steel, P.J. Efficient syntheses of imidazolo[1,2-a]pyridines and -[2, 1-a]isoquinolines. J. Org. Chem., 2000, 65(26), 9201-9205.
[http://dx.doi.org/10.1021/jo0012602] [PMID: 11149870]
(b) Nevagi, R.J.; Dighe, S.N.; Dighe, S.N.; Chaskar, P.K.; Srinivasan, K.V.; Jain, K.S. Use of ionic liquids as neoteric solvents in the synthesis of fused heterocycles. Arch. Pharm. (Weinheim), 2014, 347(8), 540-551.
[http://dx.doi.org/10.1002/ardp.201400018] [PMID: 24853356]
[185]
Artyomov, V.A.; Shestopalov, A.M.; Litvinov, V.P. Synthesis of imidazo[1,2-a]pyridines from pyridines and p-bromophenacyl bromide Omethyloxime. Synthesis, 1996, 8, 927-929.
[http://dx.doi.org/10.1055/s-1996-4322]
[186]
Waseem, M.A. Shireen, Srivastava, A.; Srivastava, A.; Siddiqui, R.I.R. Water and ionic liquid synergy: A novel approach for the synthesis of benzothiazole-2(3H)-one. J. Saudi Chem. Soc., 2015, 19(3), 334-339.
[http://dx.doi.org/10.1016/j.jscs.2014.05.006]
[187]
Gao, X.; Yu, B.; Yang, Z.; Zhao, Y.; Zhang, H.; Hao, L.; Han, B.; Liu, Z. Ionic liquid-catalyzed C-S bond construction using CO2 as a C1 building block under mild conditions: A metal-free route to synthesis of benzothiazoles. ACS Catal., 2015, 5(11), 6648-6652.
[http://dx.doi.org/10.1021/acscatal.5b01874]
[188]
Siddiqui, S.A.; Potewar, T.M.; Lahoti, R.J.; Srinivasan, K.V. Ionic liquid promoted facile one-pot synthesis of 1-pyridylimidazo[1,5-a] pyridines from dipyridylketone and aryl aldehydes. Synthesis, 2006, 17, 2849-2854.
[189]
Du, Y.; Tian, F. Protic acidic ionic liquids promoted formation of 1,5benzodiazepines: Remar-kable effects of cations and anions on their performances. J. Chem. Res., 2006, 8, 486-489.
[http://dx.doi.org/10.3184/030823406778256423]
[190]
Karthikeyan, G.; Perumal, P.T. Ionic liquid promoted simple and efficient synthesis of enamino esters and enaminones from 1,3-dicarbonyl compounds - one-pot, three-component reaction for the synthesis of substituted pyridines. Can. J. Chem., 2005, 83, 1746-1751.
[http://dx.doi.org/10.1139/v05-186]
[191]
Greaves, T.L.; Drummond, C.J. Protic ionic liquids: properties and applications. Chem. Rev., 2008, 108(1), 206-237.
[http://dx.doi.org/10.1021/cr068040u] [PMID: 18095716]
[192]
Kathiravan, S.; Raghunathan, R. Synthesis of pyrrolo[2,3-a]pyrrolizidino derivatives through intramolecular 1,3-dipolar cycloaddition in ionic liquid medium. Synth. Commun., 2013, 43(1), 147-155.
[http://dx.doi.org/10.1080/00397911.2011.594545]
[193]
Zhang, M-M.; Lu, L.; Zhou, Y-J.; Wang, X-S. Iodine-catalyzed synthesis of pyrrolo[1,2-a]quinazoline-3a-carboxylic acid derivatives in ionic liquids. Res. Chem. Intermed., 2012, 52(36), 12897-12905.
[194]
Tominaga, Y.; Motokawa, S.; Shiroshita, Y. A new synthesis of imidazo[1,2-‐a]pyridine and imidazo[2,1-‐a]isoquinoline derivatives. J. Heterocycl. Chem., 1987, 24, 1365-1369.
[http://dx.doi.org/10.1002/jhet.5570240527]
[195]
Hou, R-S.; Wang, H-M.; Huang, H-Y.; Chen, L-C. Synthesis of imidazo[2,1a]isoquinolines from tosyloxyketones and 1-aminoisoquinoline in ionic liquid solvent. J. Chin. Chem. Soc. (Taipei), 2004, 51, 1417-1420.
[http://dx.doi.org/10.1002/jccs.200400208]
[196]
Bonhôte, P.; Dias, A.P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem., 1996, 35(5), 1168-1178.
[http://dx.doi.org/10.1021/ic951325x] [PMID: 11666305]
[197]
Suarez, P.A.Z.; Dillius, J.E.L.; Einloft, S.; de Souza, R.F.; Dupont, J. The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes. Polyhedron, 1996, 15, 1217-1219.
[http://dx.doi.org/10.1016/0277-5387(95)00365-7]
[198]
Tu, S.; Li, C.; Li, G.; Cao, L.; Shao, Q.; Zhou, D.; Jiang, B.; Zhou, J.; Xia, M. Microwave-assisted combinatorial synthesis of polysubstituent imidazo[1,2-a]quinoline, pyrimido[1,2-a]quinoline and quinolino[1,2a]quinazoline derivatives. J. Comb. Chem., 2007, 9(6), 1144-1148.
[http://dx.doi.org/10.1021/cc700124g] [PMID: 17953448]
[199]
Ahmadi, S.J.; Hosseinpour, M.; Sadjadi, S. Nanocrystalline copper(II) oxidecatalyzed one-pot synthesis of imidazo[1,2-a]quinoline and quinolino[1,2a]quinazoline derivatives via a three-component condensation. Synth. Commun., 2011, 41(3), 426-435.
[http://dx.doi.org/10.1080/00397910903576693]
[200]
Dadhania, A.N.; Patel, V.K.; Raval, D.K. A convenient and efficient protocol for the one pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by ionic liquids under ultrasound irradiation. J. Braz. Chem. Soc., 2011, 22(3), 511-516.
[http://dx.doi.org/10.1590/S0103-50532011000300014]
[201]
Dadhania, A.N.; Patel, V.K.; Raval, D.K. Catalyst-free sonochemical synthesis of 1,8-dioxo-octahydroxanthene derivatives in carboxy functionalized ionic liquid. C. R. Chim., 2012, 15(5), 378-383.
[http://dx.doi.org/10.1016/j.crci.2012.01.006]
[202]
Patel, D.S.; Avalani, J.R.; Raval, D.K. Ionic liquid catalyzed convenient synthesis of imidazo[1,2-a]quinoline under sonic condition. J. Braz. Chem. Soc., 2012, 23(10), 1951-1954.
[http://dx.doi.org/10.1590/S0103-50532012005000051]
[203]
Revanker, G.R.; Matthews, T.R.; Robins, R.K. Synthesis and antimicrobial activity of certain imidazo[1,2-a]pyrimidines. J. Med. Chem., 1975, 18(12), 1253-1255.
[http://dx.doi.org/10.1021/jm00246a018] [PMID: 811799]
[204]
Rival, Y.; Grassy, G.; Taudou, A.; Ecalle, R. Antifungal activity in vitro of some imidazo[1,2-a]pyrimidine derivatives. Eur. J. Med. Chem., 1991, 26, 13-18.
[http://dx.doi.org/10.1016/0223-5234(91)90208-5]
[205]
Avalani, J.R.; Patel, D.S.; Raval, D.K. 1-Methylimidazolium trifluoroacetate [Hmim]Tfa: Mild and efficient Bronsted acidic ionic liquid for Hantzsch reaction under microwave irradiation. J. Chem. Sci., 2012, 124(5), 1091-1096.
[http://dx.doi.org/10.1007/s12039-012-0306-5]
[206]
Heravi, M.R.P.; Fakhr, F. Ultrasound-promoted synthesis of 2-amino-6(arylthio)-4-arylpyridine-3,5-dicarbonitriles using ZrOCl2.8H2O/NaNH2 as the catalyst in the ionic liquid [bmim]BF4 at room temperature. Tetrahedron Lett., 2011, 5, 6779-6782.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.031]
[207]
Sundberg, R.J.; Dahlhausen, D.J.; Manikumar, G.; Mavunkel, B.; Biswas, A.; Srinivasan, V.; King, F.; Waid, P. Preparation of 2-aryl and 2aryloxymethyl imidazo[1,2-a]pyridines and related compounds. J. Heterocycl. Chem., 1988, 25, 129-137.
[http://dx.doi.org/10.1002/jhet.5570250119]
[208]
Xu, D.Q.; Liu, B.Y.; Xu, Z.Y. Synthesis of 2-arylimidazo[1,2-a]pyrimidines in ionic liquids. Chin. Chem. Lett., 2003, 10, 1002-1004.
[209]
Yadav, A.K.; Kumar, M.; Yadav, T.; Jain, R. An ionic liquid mediated onepot synthesis of substituted thiazolidinones and benzimidazoles. Tetrahedron Lett., 2009, 50, 5031-5034.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.091]
[210]
Kidwai, M.; Rastogi, S. Green route to the 2,6-disubstituted imidazo[2,1-b]1,3,4-thiadiazoles by the cyclocondensation of α-bromoacetophenone derivative and 1,3,4- thiadiazoles using ionic liquids. Lett. Org. Chem., 2006, 3, 149-152.
[http://dx.doi.org/10.2174/157017806775224233]
[211]
Kidwai, M.; Rastogi, S. Green synthesis of substituted imidazothiadiazoles using ionic liquid. Indian J. Chem., 2006, 45B, 2321-2324.
[212]
Dzyuba, S.V.; Bartsch, R.A. Recent advances in applications of roomtemperature ionic liquid/supercritical CO2 systems. Angew. Chem. Int. Ed. Engl., 2003, 42(2), 148-150.
[http://dx.doi.org/10.1002/anie.200390070] [PMID: 12532342]
[213]
Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[214]
Dupont, J.; de Souza, R.F.; Suarez, P.A.Z. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev., 2002, 102(10), 3667-3692.
[http://dx.doi.org/10.1021/cr010338r] [PMID: 12371898]
[215]
Prasanna, B.; Srinivas, B.; Jagannadham, Y.; Rao, S. An efficient synthesis of thiazolo and thiadiazolo quinoxaline derivatives in ionic liquid. E-J. Chem., 2012, 9, 893-898.
[http://dx.doi.org/10.1155/2012/865414]
[216]
Li, Y-L.; Du, B-X.; Wang, X-S.; Shi, D-Q.; Tu, S-J. One-pot synthesis of pyrano[2,3-d]pyrimidine derivatives in ionic liquid medium. J. Chem. Res. S., 2006, 3, 157-159.
[217]
(a) Zhao, Y-B.; Yan, Z-Y.; Liang, Y-M. Efficient synthesis of 1,4disubstituted 1,2,3-triazoles in ionic liquid/water system. Tetrahedron Lett., 2006, 47, 1545-1549.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.004]
(b) Syamala, M. Recent progress in three-component reactions. An update. Org. Prep. Proced. Int., 2009, 41, 1-68.
[http://dx.doi.org/10.1080/00304940802711218]
[218]
D’Anna, F.; Frenna, V.; Noto, R.; Pace, V.; Spinelli, D. Can the absence of solvation of neutral reagents by ionic liquids be responsible for the high reactivity in base-assisted intramolecular nucleophilic substitutions in these solvents? J. Org. Chem., 2005, 70(7), 2828-2831.
[http://dx.doi.org/10.1021/jo048485n] [PMID: 15787580]
[219]
Lingampalle, D.; Jawale, D.; Waghmare, R.; Mane, R. Ionic liquid-mediated, one-pot synthesis for 4-thiazolidinones. Synth. Commun., 2010, 40, 2397-2401.
[http://dx.doi.org/10.1080/00397910903245174]
[220]
Boulton, A.J.; Katritzky, A.R.; Hamid, A. Heterocyclic rearrangements. Part X. A generalised monocyclic rearrangement. J. Chem. Soc., 1967, 2005-2007.
[221]
Patil, S.A.; Patil, S.A.; Patil, R. Microwave-assisted synthesis of chromenes: biological and chemical importance. Future Med. Chem., 2015, 7(7), 893-909.
[http://dx.doi.org/10.4155/fmc.15.38] [PMID: 26061107]
[222]
Moghaddam, M.M.; Bazgir, A.; Mehdi, A.M.; Ghahremanzadeh, R. Alum (KAl(SO4)2•12H2O) catalyzed multicomponent transformation: simple, efficient, and green route to synthesis of functionalized spiro[chromeno[2,3d]py-rimidine-5,3′-indoline]tetraones in ionic liquid media. Chin. J. Chem., 2012, 30, 709-714.
[http://dx.doi.org/10.1002/cjoc.201280014]
[223]
Frenna, V.; Vivona, N.; Consiglio, G.; Corrao, A.; Spinelli, D. Mononuclear heterocyclic rearrangements. Part 7. Evidence for general base catalysis in the rearrangement of the Z-phenylhydrazone of 3-benzoyl-5-phenyl-1,2,4oxadiazole into 2,5-diphenyl-4-benzoylamino-1,2,3-triazole in dioxan–water. J. Chem. Soc., Perkin Trans. 2, 1981, 18, 1325-1328.
[http://dx.doi.org/10.1039/P29810001325]
[224]
Frenna, V.; Vivona, N.; Caronia, A.; Consiglio, G.; Spinelli, D. Mononuclear heterocyclic rearrangements. Part 10. Kinetic study of the amine-catalysed rearrangement of the Z-p-nitrophenylhydrazone of 3-benzoyl-5-phenyl-1,2,4oxadiazole into 4-benzoylamino-2-p-nitrophenyl-5-phenyl-1,2,3-triazole in benzene. J. Chem. Soc., Perkin Trans. 2, 1983, 8, 1203-1207.
[http://dx.doi.org/10.1039/p29830001203]
[225]
Frenna, V.; Vivona, N.; Consiglio, G.; Spinelli, D. Mononuclear heterocyclic rearrangements. Part 9. A kinetic study of the rearrangement of the Zphenylhydrazone of 3-benzoyl-5-phenyl-1,2,4-oxadiazole into 4benzoylamino-2,5-diphenyl-1,2,3-triazole in methanol, dioxan, ethyl acetate, and acetonitrile. J. Chem. Soc., Perkin Trans. 2, 1983, 8, 1199-1202.
[http://dx.doi.org/10.1039/p29830001199]
[226]
Frenna, V.; Vivona, N.; Consiglio, G.; Spinelli, D. Mononuclear heterocyclic rearrangements. Part 13. Substituent effects on the rearrangement of some Zarylhydrazones of 3-benzoyl-5-phenyl-1,2,4-oxadiazole to 2-aryl-4benzoylamino-5-phenyl-1,2,3-triazoles in benzene, dioxane, ethyl acetate, acetonitrile, and methanol. J. Chem. Soc., Perkin Trans. 2, 1986, 8, 1183-1187.
[http://dx.doi.org/10.1039/p29860001183]
[227]
Cosimelli, B.; Guernelli, S.; Spinelli, D.; Buscemi, S.; Frenna, V.; Macaluso, G. On the synthesis and reactivity of the Z-2,4-dinitrophenylhydrazone of 5amino-3-benzoyl-1,2,4-oxadiazole. J. Org. Chem., 2001, 66(18), 6124-6129.
[http://dx.doi.org/10.1021/jo0157270] [PMID: 11529740]
[228]
D’Anna, F.; Ferroni, F.; Frenna, V.; Guernelli, S.; Lanza, C.Z.; Macaluso, G.; Pace, V.; Petrillo, G.; Spinelli, D.; Spisani, R. On the application of the extended Fujita-Nishioka equation to polysubstituted systems. A kinetic study of the rearrangement of several poly-substituted Z-arylhydrazones of 3benzoyl-5-phenyl-1,2,4-oxadiazole into 2-aryl-4-benzoylamino-5-phenyl1,2,3-triazoles in dioxane/water. Tetrahedron, 2005, 6, 167-178.
[http://dx.doi.org/10.1016/j.tet.2004.10.054]
[229]
Guernelli, S.; Noto, R.; Sbriziolo, C.; Spinelli, D.; Liveri, M.L. Effects of nonionic micelles on the rate of mononuclear heterocyclic rearrangement of Z-phenylhydrazones of 5-substituted 3-benzoyl-1,2,4-oxadiazoles. J. Colloid Interface Sci., 2001, 239(1), 217-221.
[http://dx.doi.org/10.1006/jcis.2001.7558] [PMID: 11397067]
[230]
Xie, J.W.; Li, P.; Wang, T.; Zhou, F.T. Efficient and mild synthesis of functionalized 2,3-dihydrofuran derivatives via domino reaction in water. Tetrahedron Lett., 2011, 52, 2379-2382.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.093]
[231]
D’Anna, F.; Frenna, V.; Noto, R.; Pace, V.; Spinelli, D. Room temperature ionic liquids structure and its effect on the mononuclear rearrangement of heterocycles: an approach using thermodynamic parameters. J. Org. Chem., 2006, 71(26), 9637-9642.
[http://dx.doi.org/10.1021/jo0615549] [PMID: 17168580]
[232]
Potewar, T.M.; Siddiqui, S.A.; Lahoti, R.J.; Srinivasan, K.V. Efficient and rapid synthesis of 1-substituted-1H-1,2,3,4-tetrazoles in the acidic ionic liquid 1-n-butylimidazolium tetrafluoroborate. Tetrahedron Lett., 2007, 48, 1721-1724.
[http://dx.doi.org/10.1016/j.tetlet.2007.01.050]
[233]
Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis, 2nd ed; Wiley-VCH, 2003.
[234]
Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun. (Camb.), 2001, 23(23), 2399-2407.
[http://dx.doi.org/10.1039/b107270f] [PMID: 12239988]
[235]
Wilkes, J.S. A short history of ionic liquids-from molten salts to neoteric solvents. Green Chem., 2002, 4, 73-80.
[http://dx.doi.org/10.1039/b110838g]
[236]
Gholap, A.R.; Venkatesan, K.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Ionic liquid promoted novel and efficient one pot synthesis of 3,4dihydropyrimidin-2-(1H)-ones at ambient temperature under ultrasound irradiation. Green Chem., 2004, 6, 147-150.
[http://dx.doi.org/10.1039/b314015f]
[237]
Kanakaraju, S.; Prasanna, B.; Basavoju, S.; Chandramouli, G.V.P. Ionic liquid catalyzed one-pot multi-component synthesis, characterization and antibacterial activity of novel chromeno[2,3-d] pyrimidin-8-amine derivatives. J. Mol. Struct., 2012, 1017, 60-64.
[http://dx.doi.org/10.1016/j.molstruc.2012.02.044]
[238]
Kanakaraju, S.; Prasanna, B.; Chandramouli, G.V.P. An efficient one-pot three-component synthesis of novel sulfanyl tetrazoles using ionic liquids. J. Chem., 2013, 1-6.
[http://dx.doi.org/10.1155/2013/104690]
[239]
Kanakaraju, S.; Prasanna, B.; Chandramouli, G.V.P. Ionic liquid mediated a facile and convenient synthesis of new selanyl tetrazoles via one-pot threecomponent reaction. J. Chem. Pharm. Res., 2012, 4, 2994-2998.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy