Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Novel Chiral Ligands for Palladium-catalyzed Asymmetric Allylic Alkylation/ Asymmetric Tsuji-Trost Reaction: A Review

Author(s): Samar Noreen, Ameer Fawad Zahoor*, Sajjad Ahmad, Irum Shahzadi, Ali Irfan and Sadia Faiz

Volume 23, Issue 11, 2019

Page: [1168 - 1213] Pages: 46

DOI: 10.2174/1385272823666190624145039

Price: $65

Abstract

Asymmetric catalysis holds a prestigious role in organic syntheses since a long time and chiral inductors such as ligands have been used to achieve the utmost desired results at this pitch. The asymmetric version of Tsuji-Trost allylation has played a crucial role in enantioselective synthesis. Various chiral ligands have been known for Pdcatalyzed Asymmetric Allylic Alkylation (AAA) reactions and exhibited excellent catalytic potential. The use of chiral ligands as asymmetric inductors has widened the scope of Tsuji-Trost allylic alkylation reactions.

Therefore, in this review article, a variety of chiral inductors or ligands have been focused for palladium catalyzed asymmetric allylic alkylation (Tsuji-Trost allylation) and in this regard, recently reported literature (2013-2017) has been described. The use of ligands causes the induction of enantiodiscrimination to the allylated products, therefore, the syntheses of various kinds of ligands have been targeted by many research groups to employ in Pd-catalyzed AAA reactions.

Keywords: Asymmetric allylic alkylation, chiral ligands, diamidophosphite ligands, oxazolineligands, palladium catalysis, phosphine ligands.

Graphical Abstract

[1]
Van Leeuwen, P.W.; Kamer, P.C.; Claver, C.; Pàmies, O.; Diéguez, M. Phosphite-containing ligands for asymmetric catalysis. Chem. Rev., 2011, 111(3), 2077-2118.
[http://dx.doi.org/10.1021/cr1002497] [PMID: 21087011]
[2]
(a) Trost, B.M.; Crawley, M.L. Asymmetric transition-metal-catalyzed allylic alkylations: Applications in total synthesis. Chem. Rev., 2003, 103(8), 2921-2944.
[http://dx.doi.org/10.1021/cr020027w] [PMID: 12914486]
(b) Shoba, V.M.; Thacker, N.C.; Bochat, A.J.; Takacs, J.M. Synthesis of chiral tertiary boronic esters by oxime-directed catalytic asymmetric hydroboration. Angew. Chem. Int. Ed. Engl., 2016, 55(4), 1465-1469.
[http://dx.doi.org/10.1002/anie.201509137] [PMID: 26662460]
[3]
Tietze, L.F.; Ila, H.; Bell, H.P. Enantioselective palladium-catalyzed transformations. Chem. Rev., 2004, 104(7), 3453-3516.
[http://dx.doi.org/10.1021/cr030700x] [PMID: 15250747]
[4]
Kimura, M.; Horino, Y.; Mukai, R.; Tanaka, S.; Tamaru, Y. Strikingly simple direct α-allylation of aldehydes with allyl alcohols: Remarkable advance in the Tsuji-Trost reaction. J. Am. Chem. Soc., 2001, 123(42), 10401-10402.
[http://dx.doi.org/10.1021/ja011656a] [PMID: 11603997]
[5]
(a)Dos Santos, S.; Quignard, F.; Sinou, D.; Choplin, A. Allylic substitution catalysed by silica-supported aqueous phase palladium (0) catalysts. Top. Catal., 2000, 13(3), 311-318.
[http://dx.doi.org/10.1023/A:1009082216524]
[6]
Tsuji, J.; Takahashi, H.; Morikawa, M. Organic syntheses by means of noble metal compounds XVII. Reaction of π-allylpalladium chloride with nucleophiles. Tetrahedron Lett., 1965, 6(49), 4387-4388.
[http://dx.doi.org/10.1016/S0040-4039(00)71674-1]
[7]
Trost, B.M.; Fullerton, T.J. New synthetic reactions. Allylic alkylation. J. Am. Chem. Soc., 1973, 95(1), 292-294.
[http://dx.doi.org/10.1021/ja00782a080] [PMID: 1245689]
[8]
(a) Trost, B.M. Cyclizations via palladium‐catalyzed allylic alkylations.[New Synthetic Methods (79)]. Angew. Chem. Int. Ed. Engl., 1989, 28(9), 1173-1192.
[http://dx.doi.org/10.1002/anie.198911731]
(b) Luparia, M.; Oliveira, M.T.; Audisio, D.; Frébault, F.; Goddard, R.; Maulide, N. Catalytic asymmetric diastereodivergent deracemization. Angew. Chem. Int. Ed. Engl., 2011, 50(52), 12631-12635.
[http://dx.doi.org/10.1002/anie.201106321] [PMID: 22058047]
(c) Branchadell, V.; Moreno-Mañas, M.; Pajuelo, F.; Pleixats, R. Density functional study on the regioselectivity of nucleophilic attack in 1, 3-disubstituted (diphosphino)(η3-allyl) palladium cations. Organometallics, 1999, 18(24), 4934-4941.
[http://dx.doi.org/10.1021/om990371s]
[9]
Fristrup, P.; Jensen, T.; Hoppe, J.; Norrby, P.O. Deconvoluting the memory effect in Pd-catalyzed allylic alkylation: Effect of leaving group and added chloride. Chemistry, 2006, 12(20), 5352-5360.
[http://dx.doi.org/10.1002/chem.200600152] [PMID: 16637086]
[10]
Liao, M.C.; Duan, X.H.; Liang, Y.M. Ionic liquid/water as a recyclable medium for Tsuji-Trost reaction assisted by microwave. Tetrahedron Lett., 2005, 46(20), 3469-3472.
[http://dx.doi.org/10.1016/j.tetlet.2005.04.002]
[11]
Nomura, N.; Yoshida, N.; Tsurugi, K.; Aoi, K. Versatile carbon-carbon bond-forming polycondensation between terpene derivatives and malonic esters via palladium-catalyzed allylic substitution reaction. Macromolecules, 2003, 36(9), 3007-3009.
[http://dx.doi.org/10.1021/ma034125a]
[12]
Tsukanov, S.V.; Comins, D.L. Concise total synthesis of the frog alkaloid (-)-205B. Angew. Chem. Int. Ed. Engl., 2011, 50(37), 8626-8628.
[http://dx.doi.org/10.1002/anie.201103596] [PMID: 21793144]
[13]
Wanner, M.J.; Claveau, E.; Van Maarseveen, J.H.; Hiemstra, H. Enantioselective syntheses of corynanthe alkaloids by chiral Brønsted acid and palladium catalysis. Chemistry, 2011, 17(49), 13680-13683.
[http://dx.doi.org/10.1002/chem.201103150] [PMID: 22069165]
[14]
Harada, K.; Imai, A.; Uto, K.; Carter, R.G.; Kubo, M.; Hioki, H.; Fukuyama, Y. Synthesis of jiadifenin using Mizoroki–Heck and Tsuji–Trost reactions. Tetrahedron, 2015, 71(15), 2199-2209.
[http://dx.doi.org/10.1016/j.tet.2015.02.090]
[15]
Guiry, P.J.; Saunders, C.P. The development of bidentate P, N ligands for asymmetric catalysis. Adv. Synth. Catal., 2004, 346(5), 497-537.
[http://dx.doi.org/10.1002/adsc.200303138]
[16]
Guisado-Barrios, G.; Muñoz, B.K.; Kamer, P.C.; Lastdrager, B.; Van der Marel, G.; Overhand, M.; Vega-Vázquez, M.; Martin-Pastor, M. Cyclic decapeptide gramicidin S derivatives containing phosphines: novel ligands for asymmetric catalysis. Dalton Trans., 2013, 42(6), 1973-1978.
[http://dx.doi.org/10.1039/C2DT31782F] [PMID: 23235486]
[17]
Philipova, I.; Stavrakov, G.; Dimitrov, V. Camphane-based aminophosphine ligands for Pd-catalyzed asymmetric allylic alkylation. Tetrahedron Asymmetry, 2013, 24(20), 1253-1256.
[http://dx.doi.org/10.1016/j.tetasy.2013.09.003]
[18]
Deng, W.H.; Ye, F.; Bai, X.F.; Zheng, Z.J.; Cui, Y.M.; Xu, L.W. Multistereogenic phosphine ligand‐promoted palladium‐catalyzed allylic alkylation of cyanoesters. ChemCatChem, 2015, 7(1), 75-79.
[http://dx.doi.org/10.1002/cctc.201402733]
[19]
Trost, B.M.; Miller, J.R.; Hoffman, C.M. Jr A highly enantio- and diastereoselective molybdenum-catalyzed asymmetric allylic alkylation of cyanoesters. J. Am. Chem. Soc., 2011, 133(21), 8165-8167.
[http://dx.doi.org/10.1021/ja2029602] [PMID: 21534526]
[20]
Ye, F.; Zheng, Z.J.; Deng, W.H.; Zheng, L.S.; Deng, Y.; Xia, C.G.; Xu, L.W. Modulation of multifunctional N,O,P ligands for enantioselective copper-catalyzed conjugate addition of diethylzinc and trapping of the zinc enolate. Chem. Asian J., 2013, 8(9), 2242-2253.
[http://dx.doi.org/10.1002/asia.201300544] [PMID: 23983068]
[21]
Bayardon, J.; Maronnat, M.; Langlois, A.; Rousselin, Y.; Harvey, P.D.; Jugé, S. Modular P-chirogenic phosphine-sulfide ligands: Clear evidence for both electronic effect and P-chirality driving enantioselectivity in palladium-catalyzed allylations. Organometallics, 2015, 34(17), 4340-4358.
[http://dx.doi.org/10.1021/acs.organomet.5b00585]
[22]
Szulc, I.; Kołodziuk, R.; Kryczka, B.; Zawisza, A. New phosphine–imine ligands derived from ᴅ-gluco- and ᴅ-galactosamine in Pd-catalysed asymmetric allylic alkylation. Tetrahedron Lett., 2015, 56(33), 4740-4743.
[http://dx.doi.org/10.1016/j.tetlet.2015.06.031]
[23]
Philipova, I.; Stavrakov, G.; Vassilev, N.; Nikolova, R.; Shivachev, B.; Dimitrov, V. Cytisine as a scaffold for ortho-diphenylphosphino-benzenecarboxamide ligands for Pd-catalyzed asymmetric allylic alkylation. J. Organomet. Chem., 2015, 778, 10-20.
[http://dx.doi.org/10.1016/j.jorganchem.2014.12.001]
[24]
Balogh, S.; Farkas, G.; Tóth, I.; Bakos, J. Synthesis of new N-substituted chiral phosphine–phosphoramidite ligands and their application in asymmetric hydrogenations and allylic alkylations. Tetrahedron Asymmetry, 2015, 26(12-13), 666-673.
[http://dx.doi.org/10.1016/j.tetasy.2015.05.001]
[25]
Yamamoto, K.; Shimizu, T.; Igawa, K.; Tomooka, K.; Hirai, G.; Suemune, H.; Usui, K. Rational design and synthesis of [5] helicene-derived phosphine ligands and their application in Pd-catalyzed asymmetric reactions. Sci. Rep., 2016, 6, 36211-36218.
[http://dx.doi.org/10.1038/srep36211] [PMID: 27824074]
[26]
Nelson, B.M.; Chavda, M.K.; Oliphant, J.; King, J.M.; Szczepura, L.F.; Hitchcock, S.R. Enantiomerically divergent pathways in Tsuji-Trost reactions: Exploiting the structural differences between β-acyloxy-o-(diphenylphosphino) benzamides and β-amido-o-(diphenylphosphino) benzoates. Tetrahedron Asymmetry, 2016, 27(20-21), 1075-1080.
[http://dx.doi.org/10.1016/j.tetasy.2016.08.012]
[27]
Alvarado-Beltran, I.; González, M.L.; Escudie, Y.; Maerten, E.; Saffon-Merceron, N.; Fabing, I.; Toledano, C.A.; Baceiredo, A. Synthesis of original phosphine-sulfoxide ligands for asymmetric allylic alkylation. Tetrahedron, 2016, 72(13), 1662-1667.
[http://dx.doi.org/10.1016/j.tet.2016.02.012]
[28]
Zhang, R.; Xie, B.; Chen, G.S.; Qiu, L.; Chen, Y.X. Synthesis of novel chiral biquinolyl diphosphine ligand and its applications in palladium-catalyzed asymmetric allylic substitution reactions. Tetrahedron Lett., 2016, 57(8), 845-848.
[http://dx.doi.org/10.1016/j.tetlet.2016.01.007]
[29]
van Leeuwen, P.W.; Kamer, P.C.; Claver, C.; Pàmies, O.; Diéguez, M. Phosphite-containing ligands for asymmetric catalysis. Chem. Rev., 2011, 111(3), 2077-2118.
[http://dx.doi.org/10.1021/cr1002497] [PMID: 21087011]
[30]
Lega, M.; Margalef, J.; Ruffo, F.; Pàmies, O.; Diéguez, M. Application of pyranoside phosphite-pyridine ligands to enantioselective metal-catalyzed allylic substitutions and conjugate 1, 4-additions. Tetrahedron Asymmetry, 2013, 24(17), 995-1000.
[http://dx.doi.org/10.1016/j.tetasy.2013.06.011]
[31]
Margalef, J.; Lega, M.; Ruffo, F.; Pàmies, O.; Diéguez, M. The application of pyranoside phosphite-pyridine ligands to enantioselective Ir-catalyzed hydrogenations of highly unfunctionalized olefins. Tetrahedron Asymmetry, 2012, 23(13), 945-951.
[http://dx.doi.org/10.1016/j.tetasy.2012.06.025]
[32]
Mazuela, J.; Pàmies, O.; Diéguez, M. A new modular phosphite-pyridine ligand library for asymmetric Pd-catalyzed allylic substitution reactions: A study of the key Pd-π-allyl intermediates. Chemistry, 2013, 19(7), 2416-2432.
[http://dx.doi.org/10.1002/chem.201203365] [PMID: 23297053]
[33]
Coll, M.; Pàmies, O.; Diéguez, M. Highly versatile Pd-thioether-phosphite catalytic systems for asymmetric allylic alkylation, amination, and etherification reactions. Org. Lett., 2014, 16(7), 1892-1895.
[http://dx.doi.org/10.1021/ol500758y] [PMID: 24661010]
[34]
Coll, M.; Pàmies, O.; Diéguez, M. Thioether-phosphite: New ligands for the highly enantioselective Ir-catalyzed hydrogenation of minimally functionalized olefins. Chem. Commun. (Camb.), 2011, 47(32), 9215-9217.
[http://dx.doi.org/10.1039/c1cc13300d] [PMID: 21738925]
[35]
Nakai, Y.; Uozumi, Y. Cycloisomerization of 1,6-enynes: Asymmetric multistep preparation of a hydrindane framework in water with polymeric catalysts. Org. Lett., 2005, 7(2), 291-293.
[http://dx.doi.org/10.1021/ol047700j] [PMID: 15646980]
[36]
Bravo, M.J.; Favier, I.; Saffon, N.; Ceder, R.M.; Muller, G.; Gómez, M.; Rocamora, M. Efficient palladium catalysts containing original imidazolium-tagged chiral diamidophosphite ligands for asymmetric allylic substitutions in neat ionic liquid. Organometallics, 2014, 33(3), 771-779.
[http://dx.doi.org/10.1021/om4011577]
[37]
Bravo, M.J.; Ceder, R.M.; Grabulosa, A.; Muller, G.; Rocamora, M.; Bayón, J.C.; Peral, D. Metal complexes containing enantiopure bis (diamidophosphite) ligands in asymmetric allylic substitution and hydroformylation reactions. Organometallics, 2015, 34(15), 3799-3808.
[http://dx.doi.org/10.1021/acs.organomet.5b00457]
[38]
Bravo, M.J.; Ceder, R.M.; Grabulosa, A.; Muller, G.; Rocamora, M.; Font-Bardia, M. Palladium allylic complexes with enantiopure bis (diamidophosphite) ligands bearing a cyclohexane-1, 2-diamine skeleton as catalysts in the allylic substitution reaction. J. Organomet. Chem., 2017, 830, 42-55.
[http://dx.doi.org/10.1016/j.jorganchem.2016.12.007]
[39]
Gavrilov, K.N.; Shiryaev, A.A.; Zheglov, S.V.; Potapova, O.V.; Chuchelkin, I.V.; Novikov, I.M.; Rastorguev, E.A.; Davankov, V.A. Development of P*-monodentate diamidophosphites with a C1-symmetric 1,2-diamine backbone: The effects of substituents in the 1,3,2-diazaphospholidine cycle on Pd-catalyzed asymmetric allylations. Tetrahedron Asymmetry, 2013, 24(7), 409-417.
[http://dx.doi.org/10.1016/j.tetasy.2013.02.010]
[40]
Gavrilov, K.N.; Zheglov, S.V.; Shiryaev, A.A.; Potapova, O.V.; Gavrilov, V.K.; Volov, A.N.; Zamilatskov, I.A.; First, P.P. *-bidentate phosphine-phosphite-type ligand with a P*-stereocenter in the phosphite moiety: Synthesis and application in the Pd-catalyzed asymmetric allylic alkylation. Russ. Chem. Bull. Int. Ed., 2013, 62(4), 1097-1102.
[41]
Gavrilov, K.N.; Zheglov, S.V.; Groshkin, N.N.; Gavrilov, V.K.; Maksimova, M.G.; Volov, A.N.; Zamilatskov, I.A. Phosphorylated (S)-tert-leucinol isophthalic diamide as a ligand for Pd-catalyzed asymmetric allylic substitution. Russ. Chem. Bull. Int. Ed., 2014, 63(12), 2635-2640.
[42]
Gavrilov, K.N.; Shiryaev, A.A.; Zheglov, S.V.; Gavrilov, V.K.; Groshkin, N.N.; Maksimova, M.G.; Volov, A.N.; Zamilatskov, I.A. Nonsimple relationships between the P*-chiral diamidophosphite and the arylphosphine moieties in Pd-catalyzed asymmetric reactions: Combinatorialapproach and P,P*-bidentate phosphine-diamidophosphites. Tetrahedron, 2014, 70(3), 616-624.
[http://dx.doi.org/10.1016/j.tet.2013.12.006]
[43]
Gavrilov, K.N.; Zheglov, S.V.; Gavrilov, V.K.; Chuchelkin, I.V.; Novikov, I.M.; Shiryaev, A.A.; Volov, A.N.; Zamilatskov, I.A. Diamidophosphites with remote P*-stereocentres and their performance in Pd-catalyzed enantioselective reactions. Tetrahedron Asymmetry, 2014, 25(15), 1116-1121.
[http://dx.doi.org/10.1016/j.tetasy.2014.06.010]
[44]
Gavrilov, K.N.; Zheglov, S.V.; Maksimova, M.G.; Chuchelkin, I.V.; Novikov, I.M.; Ponomarev, G.V.; Erzina, D.R.; Mikhel, I.S. Application of hydroxyporphyrins-based phosphite-type ligands to asymmetric Pd-catalyzed droxyporphyrins-based phosphite-type ligands to asymmetric Pd-catalyzed allylic substitution reactions. Maкpoгeтepoциклы., 2015, 8(3), 266-273.
[http://dx.doi.org/10.6060/mhc150664g]
[45]
Novikov, I.M.; Zheglov, S.V.; Gavrilov, K.N. First ligand of phosphite nature based on 5, 10, 15, 20-tetrakis (4-hydroxyphenyl) porphin. Russ. J. Org. Chem., 2015, 51(8), 1202-1205.
[http://dx.doi.org/10.1134/S107042801508028X]
[46]
Gavrilov, K.N.; Zheglov, S.V.; Gavrilov, V.K.; Zamilatskov, I.A. Diamidophosphite based on (1R, 2R)-1, 2-bis (3-hydroxybenzamido) cyclohexane in Pd-catalyzed enantioselective allylation. Russ. Chem. Bull. Int. Ed., 2016, 65(3), 680-684.
[47]
Gavrilov, K.N.; Zheglov, S.V.; Novikov, I.M.; Lugovsky, V.V.; Zimarev, V.S.; Mikhel, I.S. Diamidophosphite–oxazolines with a pyridine core in Pd-catalyzed asymmetric reactions. Tetrahedron Asymmetry, 2016, 27(24), 1260-1268.
[http://dx.doi.org/10.1016/j.tetasy.2016.10.008]
[48]
Gavrilov, K.N.; Zheglov, S.V.; Gavrilov, V.K.; Maksimova, M.G.; Tafeenko, V.A.; Chernyshev, V.V.; Birin, K.P.; Mikhel, I.S. Palladium catalyzed asymmetric reactions assisted by P*, P*-bidentate bisdiamidophosphites based on 1, 4-diols. Tetrahedron, 2017, 73(5), 461-471.
[http://dx.doi.org/10.1016/j.tet.2016.12.023]
[49]
Gavrilov, K.N.; Zheglov, S.V.; Chuchelkin, I.V.; Maksimova, M.G.; Firsin, I.D.; Fitch, A.N.; Maximychev, A.V.; Perepukhov, A.M. Tartaric acid-derived chiral phosphite-type P,N-ligands: Behavioural features in Pd-catalyzed asymmetric transformations. Tetrahedron Asymmetry, 2017, 28(11), 1633-1643.
[http://dx.doi.org/10.1016/j.tetasy.2017.09.011]
[50]
Gavrilov, K.N.; Shiryaev, A.A.; Zheglov, S.V.; Bochelyuk, M.S.; Chuchelkin, I.V.; Tafeenko, V.A.; Chernyshev, V.V.; Zamilatskov, I.A.; Mikhel, I.S. NOBIN-based chiral phosphite-type ligands and their application in asymmetric catalysis. Tetrahedron Lett., 2015, 56(33), 4756-4761.
[http://dx.doi.org/10.1016/j.tetlet.2015.06.047]
[51]
Xing, A.P.; Pang, Z.B.; Li, H.F.; Wang, L.L. Efficient novel 1, 2-diphosphite ligands derived from d-mannitol in the Pd-catalyzed asymmetric allylic alkylation. Tetrahedron, 2014, 70(46), 8822-8828.
[http://dx.doi.org/10.1016/j.tet.2014.10.011]
[52]
Zhao, Q.L.; Wang, L.L.; Kwong, F.Y.; Chan, A.S. Cu-catalyzed enantioselective conjugate addition of diethylzinc to cyclic enones with chiral phosphite ligands derived from 1, 2: 5, 6-di-O-cyclohexylidene-d-mannitol. Tetrahedron Asymmetry, 2007, 18(16), 1899-1905.
[http://dx.doi.org/10.1016/j.tetasy.2007.07.008]
[53]
Zhao, Q.L.; Miao, X.; Wang, L.L. Enantioselective hydrogenation of functionalized olefins catalyzed by Rh-catalyzed bidentatephosphite complex. Tetrahedron Asymmetry, 2013, 24, 104-107.
[http://dx.doi.org/10.1016/j.tetasy.2012.12.001]
[54]
Zhao, Q.L.; Wang, L.L.; Xing, A.P. Synthesis of novel diphosphite ligands derived from ᴅ-mannitol and their application in Cu-catalyzed enantioselective conjugate addition of organozinc to enones. Tetrahedron Asymmetry, 2010, 21, 2993-2998.
[http://dx.doi.org/10.1016/j.tetasy.2010.12.009]
[55]
Teichert, J.F.; Feringa, B.L. Phosphoramidites: Privileged ligands in asymmetric catalysis. Angew. Chem. Int. Ed. Engl., 2010, 49(14), 2486-2528.
[http://dx.doi.org/10.1002/anie.200904948] [PMID: 20333685]
[56]
Gavrilov, K.N.; Zheglov, S.V.; Novikov, I.M.; Chuchelkin, I.V.; Gavrilov, V.K.; Lugovsky, V.V.; Zamilatskov, I.A. Palladium-catalyzed enantioselective allylation in the presence of phosphoramidites derived from (Sa)-3-SiMe 3-BINOL, (R,S)-semi-TADDOL, and (R,R)-TADDOL. Russ. Chem. Bull. Int. Ed., 2015, 64(7), 1595-1601.
[57]
Majdecki, M.; Jurczak, J.; Bauer, T. Palladium‐catalyzed enantioselective allylic substitution in the presence of monodentate furanoside phosphoramidites. ChemCatChem, 2015, 7(5), 799-807.
[http://dx.doi.org/10.1002/cctc.201402933]
[58]
Bauer, T.; Majdecki, M.; Jurczak, J. Sugar-based monodentate phosphoramidite ligands for Cu-catalyzed enantioselective conjugate addition to enones. Tetrahedron, 2013, 69(7), 1930-1939.
[http://dx.doi.org/10.1016/j.tet.2012.12.049]
[59]
Feng, B.; Pu, X.Y.; Liu, Z.C.; Xiao, W.J.; Chen, J.R. Highly enantioselective Pd-catalyzed indole allylic alkylation using binaphthyl-based phosphoramidite-thioether ligands. Org. Chem. Front., 2016, 3(10), 1246-1249.
[http://dx.doi.org/10.1039/C6QO00227G]
[60]
Fache, F.; Schulz, E.; Tommasino, M.L.; Lemaire, M. Nitrogen-containing ligands for asymmetric homogeneous and heterogeneous catalysis. Chem. Rev., 2000, 100(6), 2159-2232.
[http://dx.doi.org/10.1021/cr9902897] [PMID: 11749286]
[61]
Ye, F.; Zheng, Z.J.; Li, L.; Yang, K.F.; Xia, C.G.; Xu, L.W. Development of a novel multifunctional n,p ligand for highly enantioselective palladium-catalyzed asymmetric allylic etherification of alcohols and silanols. Chemistry, 2013, 19(46), 15452-15457.
[http://dx.doi.org/10.1002/chem.201303233] [PMID: 24123352]
[62]
Liu, Q.L.; Chen, W.; Jiang, Q.Y.; Bai, X.F.; Li, Z.; Xu, Z.; Xu, L.W. A ᴅ‐camphor‐based Schiff Base as a highly efficient N, P-ligand for enantioselective palladium‐catalyzed allylic substitutions. ChemCatChem, 2016, 8(8), 1495-1499.
[http://dx.doi.org/10.1002/cctc.201600084]
[63]
McManus, H.A.; Guiry, P.J. Recent developments in the application of oxazoline-containing ligands in asymmetric catalysis. Chem. Rev., 2004, 104(9), 4151-4202.
[http://dx.doi.org/10.1021/cr040642v] [PMID: 15352789]
[64]
Hargaden, G.C.; Guiry, P.J. Recent applications of oxazoline-containing ligands in asymmetric catalysis. Chem. Rev., 2009, 109(6), 2505-2550.
[http://dx.doi.org/10.1021/cr800400z] [PMID: 19378971]
[65]
Balaraman, K.; Vasanthan, R.; Kesavan, V.; Novel, O.N.N. O-tetradentate ligand from tartaric acid. Tetrahedron, 2013, 69(30), 6162-6169.
[http://dx.doi.org/10.1016/j.tet.2013.05.049]
[66]
Balaraman, K.; Vasanthan, R.; Kesavan, V. Asymmetric Henry reaction catalyzed by novel chiral bioxazolines from tartaric acid. Synthesis, 2012, 44(15), 2455-2462.
[http://dx.doi.org/10.1055/s-0031-1289811]
[67]
Jayakumar, S.; Prakash, M.; Balaraman, K.; Kesavan, V. Highly enantioselective alkylation of allyl acetates using tartrate‐derived bioxazoline ligands. Eur. J. Org. Chem., 2014, 2014(3), 606-615.
[http://dx.doi.org/10.1002/ejoc.201301208]
[68]
Craig, R.A., II; Stoltz, B.M. Synthesis and exploration of electronically modified (R)-5, 5-dimethyl-(p-CF3) 3-i-PrPHOX in palladium-catalyzed enantio-and diastereoselective allylic alkylation: A practical alternative to (R)-(p-CF3)3-t-BuPHOX. Tetrahedron Lett., 2015, 56(32), 4670-4673.
[http://dx.doi.org/10.1016/j.tetlet.2015.06.039] [PMID: 26257445]
[69]
Kraft, J.; Golkowski, M.; Ziegler, T. Spiro-fused carbohydrate oxazoline ligands: Synthesis and application as enantio-discrimination agents in asymmetric allylic alkylation. Beilstein J. Org. Chem., 2016, 12, 166-171.
[http://dx.doi.org/10.3762/bjoc.12.18] [PMID: 26877819]
[70]
Hao, X.Q.; Dong, Y.N.; Gao, B.; Li, K.; Zhao, X.M.; Xu, Y.; Song, M.P. Biimidazoline ligands for palladium-catalyzed asymmetric allylic alkylation. Tetrahedron Asymmetry, 2015, 26(23), 1360-1368.
[http://dx.doi.org/10.1016/j.tetasy.2015.10.007]
[71]
Solinas, M.; Sechi, B.; Chelucci, G.; Baldino, S.; Pedro, J.R.; Blay, G. Synthesis and application of new iminopyridine ligands in the enantioselective palladium-catalyzed allylic alkylation. J. Mol. Catal. Chem., 2014, 385, 73-77.
[http://dx.doi.org/10.1016/j.molcata.2014.01.006]
[72]
(a) Blay, G.; Climent, E.; Fernández, I.; Hernández-Olmos, V.; Pedro, J.R. Modular iminopyridine ligands. Application to the enantioselective copper (II)-catalyzed Henry reaction. Tetrahedron Asymmetry, 2006, 17(14), 2046-2049.
[http://dx.doi.org/10.1016/j.tetasy.2006.07.025]
(b) Blay, G.; Climent, E.; Fernández, I.; Hernández-Olmos, V.; Pedro, J.R. Enantioselective Henry reaction catalyzed with copper (II)–iminopyridine complexes. Tetrahedron Asymmetry, 2007, 18(13), 1603-1612.
[http://dx.doi.org/10.1016/j.tetasy.2007.06.023]
[73]
Fortman, G.C.; Nolan, S.P. N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: A perfect union. Chem. Soc. Rev., 2011, 40(10), 5151-5169.
[http://dx.doi.org/10.1039/c1cs15088j] [PMID: 21731956]
[74]
Shirasaki, H.; Kawakami, M.; Yamada, H.; Arakawa, R.; Sakaguchi, S. Highly tunable anionic tethered N-heterocyclic carbene of Pd (II) complexes for asymmetric allylic alkylation reaction. J. Organomet. Chem., 2013, 726, 46-55.
[http://dx.doi.org/10.1016/j.jorganchem.2012.12.015]
[75]
(a) Caló, V.; Sole, R.D.; Nacci, A.; Schingaro, E.; Scordari, F. Synthesis and crystal structure of bis (2,3‐dihydro‐3‐methylbenzothiazole‐2‐ylidene) palladium (II) diiodide: The first palladium complex with benzothiazole carbene ligands Suitable for Homogeneous Catalysis. Eur. J. Org. Chem., 2000, 2000(6), 869-871.
[http://dx.doi.org/10.1002/(SICI)1099-0690(200003)2000:6869::AIDEJOC869 3.0.CO;2-I]
(b) Calo, V.; Nacci, A.; Monopoli, A. Pd–benzothiazol-2-ylidene complex in ionic liquids: Efficient catalyst for carbon–carbon coupling reactions. J. Organomet. Chem., 2005, 690(24-25), 5458-5466.
[http://dx.doi.org/10.1016/j.jorganchem.2005.07.097]
[76]
Bai, D.C.; Yu, F.L.; Wang, W.Y.; Chen, D.; Li, H.; Liu, Q.R.; Ding, C.H.; Chen, B.; Hou, X.L. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism. Nat. Commun., 2016, 7, 11806.
[http://dx.doi.org/10.1038/ncomms11806] [PMID: 27283477]
[77]
Monopoli, A.; Cotugno, P.; Zambonin, C.G.; Ciminale, F.; Nacci, A. Highly selective palladium-benzothiazole carbene-catalyzed allylation of active methylene compounds under neutral conditions. Beilstein J. Org. Chem., 2015, 11, 994-999.
[http://dx.doi.org/10.3762/bjoc.11.111] [PMID: 26199653]
[78]
Caló, V.; Del Sole, R.; Nacci, A.; Schingaro, E.; Scordari, F. Synthesis and crystal structure of bis(2,3‐dihydro‐3‐methylbenzothiazole‐2‐ylidene)palladium(II) diiodide: The first palladium complex with benzothiazole carbene ligands suitable for homogeneous catalysis. Eur. J. Org. Chem., 2000, 869-871.
[http://dx.doi.org/10.1002/(SICI)1099-0690(200003)2000:6<869:AID-EJOC869>3.0.CO;2-I]
[79]
Yamaguchi, Y.; Suzuki, Y.; Matsumoto, S.; Anezaki, S.; Asami, M. Palladium- catalyzed asymmetric allylic alkylation using C2-symmetric chiral bidentate bis (N-heterocyclic carbene) ligands with the o-xylylene dentate bis (N-heterocyclic carbene) ligands with the o-xylylene framework. Chem. Lett., 2016, 45(7), 798-800.
[http://dx.doi.org/10.1246/cl.160235]
[80]
Anezaki, S.; Yamaguchi, Y.; Asami, M. Syntheses of novel C-2 symmetric chiral bidentate bis (N-heterocyclic carbene) ligands and their molybdenum complexes. Chem. Lett., 2010, 39(4), 398-399.
[http://dx.doi.org/10.1246/cl.2010.398]
[81]
Ngodwana, L.; Bose, S.; Smith, V.J.; van Otterlo, W.A.; Arnott, G.E. A bidentate resorcinarene‐based palladium carbene complex. Eur. J. Inorg. Chem., 2017, 2017(13), 1923-1929.
[http://dx.doi.org/10.1002/ejic.201601424]
[82]
Mellah, M.; Voituriez, A.; Schulz, E. Chiral sulfur ligands for asymmetric catalysis. Chem. Rev., 2007, 107(11), 5133-5209.
[http://dx.doi.org/10.1021/cr068440h] [PMID: 17944520]
[83]
(a) Trost, B.M.; Rao, M. Development of chiral sulfoxide ligands for asymmetric catalysis. Angew. Chem. Int. Ed. Engl., 2015, 54(17), 5026-5043.
[http://dx.doi.org/10.1002/anie.201411073] [PMID: 25801825]
(b) Otocka, S.; Kwiatkowska, M.; Madalińska, L.; Kiełbasiński, P. Chiral organosulfur ligands/catalysts with a stereogenic sulfur atom: Applications in asymmetric synthesis. Chem. Rev., 2017, 117(5), 4147-4181.
[http://dx.doi.org/10.1021/acs.chemrev.6b00517] [PMID: 28191933]
[84]
Du, L.; Cao, P.; Xing, J.; Lou, Y.; Jiang, L.; Li, L.; Liao, J. Hydrogen‐bond‐promoted palladium catalysis: Allylic alkylation of indoles with unsymmetrical 1, 3‐disubstituted allyl acetates using chiral bis (sulfoxide) Pphosphine ligands. Angew. Chem., 2013, 125(15), 4301-4305.
[http://dx.doi.org/10.1002/ange.201209485]
[85]
(a) Chen, J.; Li, D.; Ma, H.; Cun, L.; Zhu, J.; Deng, J.; Liao, J. Catalytic asymmetric diethylzinc addition to diphenylphosphionyl imines using chiral tert-butanesulfinylphosphine ligands. Tetrahedron Lett., 2008, 49(48), 6921-6923.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.111]
(b) Chen, J.; Lang, F.; Li, D.; Cun, L.; Zhu, J.; Deng, J.; Liao, J. Palladium-catalyzed asymmetric allylic nucleophilic substitution reactions using chiral tert-butanesulfinylphosphine ligands. Tetrahedron Asymmetry, 2009, 20(17), 1953-1956.
[http://dx.doi.org/[http://dx.doi.org/10.1016/j.tetasy.2009.07.041]]
(c) Lang, F.; Li, D.; Chen, J.; Chen, J.; Li, L.; Cun, L.; Zhu, J.; Liao, J. tert‐Butanesulfinylphosphines: Simple chiral ligands in rhodium‐catalyzed asymmetric addition of arylboronic acids to electron‐deficient olefins. Adv. Synth. Catal., 2010, 352(5), 843-846.
[http://dx.doi.org/10.1002/adsc.200900792]
[86]
Cheng, H.G.; Feng, B.; Chen, L.Y.; Guo, W.; Yu, X.Y.; Lu, L.Q.; Chen, J.R.; Xiao, W.J. Rational design of sulfoxide-phosphine ligands for Pd-catalyzed enantioselective allylic alkylation reactions. Chem. Commun. (Camb.), 2014, 50(22), 2873-2875.
[http://dx.doi.org/10.1039/C3CC49488H] [PMID: 24488036]
[87]
Feng, B.; Cheng, H.G.; Chen, J.R.; Deng, Q.H.; Lu, L.Q.; Xiao, W.J. Palladium/sulfoxide-phosphine-catalyzed highly enantioselective allylic etherification and amination. Chem. Commun. (Camb.), 2014, 50(67), 9550-9553.
[http://dx.doi.org/10.1039/C4CC03920C] [PMID: 25012792]
[88]
Gao, N.; Zhao, X.M.; Cai, C.S.; Cai, J.W. Enantioselective synthesis of monofluorinated allylic compounds: Pd-catalyzed asymmetric allylations of dimethyl 2-fluoromalonate using new N-sulfinyl-based ligands. Org. Biomol. Chem., 2015, 13(37), 9551-9558.
[http://dx.doi.org/10.1039/C5OB01434D] [PMID: 26288320]
[89]
Hao, X.Q.; Shen, M.Z.; Jian, N.G.; Pang, W.; Shen, X.J.; Zhu, X.; Song, M.P. Synthesis of chiral S, N-thioimidazoline ligands for palladium-catalyzed asymmetric allylic alkylations. Tetrahedron Asymmetry, 2016, 27(4-5), 163-170.
[http://dx.doi.org/10.1016/j.tetasy.2016.01.015]
[90]
Zielińska-Błajet, M.; Rewucki, P.; Walenczak, S. Sulfur-containing derivatives from (1R)-(−)-myrtenal designed as chiral ligands. Tetrahedron, 2016, 72(27-28), 3851-3857.
[http://dx.doi.org/10.1016/j.tet.2016.05.001]
[91]
Atkinson, R.C.; Gibson, V.C.; Long, N.J. The syntheses and catalytic applications of unsymmetrical ferrocene ligands. Chem. Soc. Rev., 2004, 33(5), 313-328.
[http://dx.doi.org/10.1039/b316819k] [PMID: 15272371]
[92]
Štěpnička, P.; Škoch, K.; Císařová, I. Synthesis, molecular structure, and catalytic evaluation of centrostereogenic ferrocenophane phosphines. Organometallics, 2013, 32(2), 623-635.
[http://dx.doi.org/10.1021/om3011245]
[93]
Sánchez-Rodríguez, E.P.; Hochberger-Roa, F.; Corona-Sánchez, R.; Barquera-Lozada, J.E.; Toscano, R.A.; Urrutigoïty, M.; Gouygou, M.; Ortega-Alfaro, M.C.; López-Cortés, J.G. Chiral bidentate [N,S]-ferrocene ligands based on a thiazoline framework. Synthesis and use in palladium-catalyzed asymmetric allylic alkylation. Dalton Trans., 2017, 46(5), 1510-1519.
[http://dx.doi.org/10.1039/C6DT04119A] [PMID: 28091644]
[94]
Lai, Z.W.; Yang, R.F.; Ye, K.Y.; Sun, H.; You, S.L. Synthesis of 1-[bis(trifluoromethyl)phosphine]-1′-oxazolinylferrocene ligands and their application in regio- and enantioselective Pd-catalyzed allylic alkylation of monosubstituted allyl substrates. Beilstein J. Org. Chem., 2014, 10, 1261-1266.
[http://dx.doi.org/10.3762/bjoc.10.126] [PMID: 24991277]
[95]
(a) You, S.L.; Zhu, X.Z.; Luo, Y.M.; Hou, X.L.; Dai, L.X. Highly regio- and enantioselective Pd-catalyzed allylic alkylation and amination of monosubstituted allylic acetates with novel ferrocene P,N-ligands. J. Am. Chem. Soc., 2001, 123(30), 7471-7472.
[http://dx.doi.org/10.1021/ja016121w] [PMID: 11472198]
(b) Zheng, W.H.; Sun, N.; Hou, X.L. Highly regio- and enantioselective palladium-catalyzed allylic alkylation and amination of dienyl esters with 1,1′-P,N-ferrocene ligands. Org. Lett., 2005, 7(23), 5151-5154.
[http://dx.doi.org/10.1021/ol051882f] [PMID: 16268525]
(c) Zheng, W.H.; Zheng, B.H.; Zhang, Y.; Hou, X.L. Highly regio-, diastereo-, and enantioselective Pd-catalyzed allylic alkylation of acyclic ketone enolates with monosubstituted allyl substrates. J. Am. Chem. Soc., 2007, 129(25), 7718-7719.
[http://dx.doi.org/10.1021/ja071098l] [PMID: 17539637]
(d) Fang, P.; Ding, C.H.; Hou, X.L.; Dai, L.X. Palladium-catalyzed regio-and enantio-selective allylic substitution reaction of monosubstituted allyl substrates with benzyl alcohols. Tetrahedron Asymmetry, 2010, 21(9-10), 1176-1178.
[http://dx.doi.org/10.1016/j.tetasy.2010.03.045]
[96]
Ma, J.; Li, C.; Zhang, D.; Lei, Y.; Li, M.; Jiang, R.; Chen, W. A new type of ferrocene-based phosphine-tert-butylsulfinamide ligand: Synthesis and application in asymmetric catalysis. RSC Adv, 2015, 5(45), 35888-35892.
[http://dx.doi.org/10.1039/C5RA03010B]
[97]
Yao, L.; Nie, H.; Zhang, D.; Wang, L.; Zhang, Y.; Chen, W.; Li, Z.; Liu, X.; Zhang, S. Chiral Ferrocenyl N, Nligands with intramolecular hydrogen bonds for highly enantioselective allylic alkylations. ChemCatChem, 2018, 10(4), 804-809.
[http://dx.doi.org/10.1002/cctc.201701461]
[98]
Weaver, J.D.; Recio, A., III; Grenning, A.J.; Tunge, J.A. Transition metal-catalyzed decarboxylative allylation and benzylation reactions. Chem. Rev., 2011, 111(3), 1846-1913.
[http://dx.doi.org/10.1021/cr1002744] [PMID: 21235271]
[99]
Leth, L.A.; Glaus, F.; Meazza, M.; Fu, L.; Thøgersen, M.K.; Bitsch, E.A.; Jørgensen, K.A. Decarboxylative [4+2] cycloaddition by synergistic palladium and organocatalysis. Angew. Chem. Int. Ed. Engl., 2016, 55(49), 15272-15276.
[http://dx.doi.org/10.1002/anie.201607788] [PMID: 27897423]
[100]
Mei, G.J.; Bian, C.Y.; Li, G.H.; Xu, S.L.; Zheng, W.Q.; Shi, F. Catalytic asymmetric construction of the tryptanthrin skeleton via an enantioselective decarboxylative [4 + 2] cyclization. Org. Lett., 2017, 19(12), 3219-3222.
[http://dx.doi.org/10.1021/acs.orglett.7b01336] [PMID: 28541051]
[101]
Mei, G.J.; Li, D.; Zhou, G.X.; Shi, Q.; Cao, Z.; Shi, F. A catalytic asymmetric construction of a tetrahydroquinoline-based spirooxindole framework via a diastereo- and enantioselective decarboxylative [4+2] cycloaddition. Chem. Commun. (Camb.), 2017, 53(72), 10030-10033.
[http://dx.doi.org/10.1039/C7CC05595A] [PMID: 28836635]
[102]
Uberman, P.M.; Caira, M.R.; Martín, S.E. A chiral bis (arsine) ligand: Synthesis and applications in palladium-catalyzed asymmetric allylic alkylations. Organometallics, 2013, 32(11), 3220-3226.
[http://dx.doi.org/10.1021/om400144s]
[103]
Rovira, L.; Fernández-Pérez, H.; Vidal-Ferran, A. Palladium-based supramolecularly regulated catalysts for asymmetric allylic substitutions. Organometallics, 2016, 35(4), 528-533.
[http://dx.doi.org/10.1021/acs.organomet.5b00962]
[104]
Mino, T.; Asakawa, M.; Shima, Y.; Yamada, H.; Yagishita, F.; Sakamoto, M. Chiral N-(t-butyl)-N-methylaniline type ligands: Synthesis and application to palladium-catalyzed asymmetric allylic alkylation. Tetrahedron, 2015, 71(35), 5985-5993.
[http://dx.doi.org/10.1016/j.tet.2015.01.027]
[105]
Mino, T.; Nishikawa, K.; Asano, M.; Shima, Y.; Ebisawa, T.; Yoshida, Y.; Sakamoto, M. Chiral N-1-adamantyl-N-trans-cinnamylaniline type ligands: synthesis and application to palladium-catalyzed asymmetric allylic alkylation of indoles. Org. Biomol. Chem., 2016, 14(31), 7509-7519.
[http://dx.doi.org/10.1039/C6OB01354F] [PMID: 27425209]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy