Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

The Role of Gut Microbiota in Antimicrobial Resistance: A Mini-Review

Author(s): Farzaneh Firoozeh and Mohammad Zibaei*

Volume 18, Issue 3, 2020

Page: [201 - 206] Pages: 6

DOI: 10.2174/2211352517666190716154013

Abstract

In the current world, development and spread of antimicrobial resistance among bacteria have been raised and antimicrobial-resistant bacteria are one of the most important health challenges. The antimicrobial resistance genes can easily move and transfer among diverse bacterial species and strains. The human gut microbiota consists of a dense microbial population including trillions of microorganisms. Recently, studies have shown that the bacteria which make the major part of gut microbiota, harbor a variety of antimicrobial resistance genes which are called gut resistome. The transfer of resistance genes from commensal bacteria to gut-resident opportunistic bacteria may involve in the emergence of multi-drug resistant (MDR) bacteria. Thus, the main aim of the current mini-review was to study the mechanisms of exchange of antimicrobial resistance genes by commensal and opportunistic pathogenic bacteria in the human gut.

Keywords: Gut microbiota, antimicrobial resistance, AMR, MDR, resistome, gene transfer.

Graphical Abstract

[1]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[2]
Zhang, R.; Eggleston, K.; Rotimi, V.; Zeckhauser, R.J. Antibiotic resistance as a global threat: evidence from China, Kuwait and the United States. Global. Health, 2006, 2, 6.
[http://dx.doi.org/10.1186/1744-8603-2-6] [PMID: 16603071]
[3]
Firoozeh, F.; Shahcheraghi, F.; Zahraei Salehi, T.; Karimi, V.; Aslani, M.M. Identification of antimicrobial resistance profile and class I integrongs among Salmonella enterica serovars isolated from human clinical specimens in Tehran, Iran. Iran. J. Microbiol., 2011, 3, 75-80.
[4]
Firoozeh, F.; Shahcheraghi, F.; Zahraei Salehi, T.; Aslani, M.M.; Banisaeed, R. First CTX-M type β-lactamase-producing and ciprofloxacin resistant Salmonella infection acquired by a child in Iran. Int. J. Entric Pathog., 2013, 1, 77-79.
[http://dx.doi.org/10.17795/ijep13774]
[5]
Neamati, F.; Firoozeh, F.; Saffari, M.; Zibaei, M. Characterization of virulence genes and antimicrobial resistance pattern in uropathogenic Escherichia coli strains isolated from hospitalized patients in Kashan, Iran. Jundishapur J. Microbiol., 2015, 8, e17514
[6]
Perry, J.A.; Westman, E.L.; Wright, G.D. The antibiotic resistome: what’s new? Curr. Opin. Microbiol., 2014, 21, 45-50.
[http://dx.doi.org/10.1016/j.mib.2014.09.002] [PMID: 25280222]
[7]
Akhi, M.T.; Farzaneh, F.; Oskouei, M. Study of entrococcal susceptibility patterns isolated from clinical specimens in Ta-briz, Iran. Pak. J. Med. Sci., 2009, 25, 211-216.
[8]
Firoozeh, F.; Zibaei, M.; Soleimani-Asl, Y. Detection of plas-mid-mediated qnrA and qnrB genes among the quinolone-resistant Escherichia coli isolated from urinary tract infections in Iran. J. Infect. Dev. Ctries., 2014, 8, 818-822.
[http://dx.doi.org/10.3855/jidc.3746] [PMID: 25022290]
[9]
Afzali, H.; Firoozeh, F.; Amiri, A.; Moniri, R.; Zibaei, M. Characterization of CTX-M-type extend-spectrum β-lactamase producing Klebsiella spp. in Kashan, Iran. Jundishapur J. Microbiol., 2015, 8(10)e27967
[http://dx.doi.org/10.5812/jjm.27967] [PMID: 26587221]
[10]
Amiri, A.; Firoozeh, F.; Moniri, R.; Zibaei, M. Prevalence of CTX-M-type and PER extended-spectrum β-lactamases among Klebsiella spp. isolated from clinical specimens in university hospital in Kashan, Iran. Iran. Red Crescent Med. J., 2016, 18(3)e22260
[http://dx.doi.org/10.5812/ircmj.22260] [PMID: 27247786]
[11]
Shams, E.; Firoozeh, F.; Moniri, R.; Zibaei, M. Prevalence of plasmid-mediated quinolone resistance genes among extend-ed-spectrum β-lactamase-producing Klebsiella pneumoniae human isolates in Iran. J. Pathogens, 2015, 2015434391
[12]
Bagheri Josheghani, S.; Moniri, R.; Firoozeh, F.; Sehat, M.; Dasteh Goli, Y. Susceptibility pattern and distribution of oxa-cillinases and bla PER-1 genes among multidrug resistant Acinetobacter baumannii in a teaching Hospital in Iran. J. Pathogens, 2015, 2015957259
[13]
Saffari, M.; Firoozeh, F.; Pourbabaee, M.; Zibaei, M. Evalua-tion of metallo-β-Lactamase-production and carriage of bla-VIM genes in Pseudomonas aeruginosa isolated from burn wound infections in Isfahan. Arch. Trauma Res., 2016, 5(4)e34343
[http://dx.doi.org/10.5812/atr.34343] [PMID: 28144604]
[14]
Firoozeh, F.; Aghaseyed-Hosseini, M.; Zibaei, M.; Piroozmand, A. Detection of blaKPC and blaGES carbapenemase genes in Klebsiella pneumoniae isolated from hospitalized pa-tients in Kashan, Iran. Recent Pat. Antiinfect. Drug Discov, 2016, 11(2), 183-188.
[http://dx.doi.org/10.2174/1574891X11666160813192556] [PMID: 27527726]
[15]
Pourbabaee, M.; Firoozeh, F.; Saffari, M.; Zibaei, M.; Sehat, M.; Radan, M. Detection of bla-IMP-1 and bla-IMP-2 genes among metallo-β-lactamase-producing Pseudomonas aeru-ginosa isolated from burn patients in Isfahan. Alborz Univ. Med. J., 2016, 5, 1-7.
[http://dx.doi.org/10.18869/acadpub.aums.5.1.1]
[16]
Agha-Seyed Hosseini, M.; Firoozeh, F.; Piroozmand, A.; Gi-lasi, H.R. Carbapenemase-producing Klebsiella pneumoniae strains among clinical specimens in Kashan (2014-2015). Kashan Uni. Med. J., 2016, 20, 267-273.
[17]
Mahluji, Z.; Firoozeh, F.; Khorshidi, A.; Zibaei, M. The fre-quency of class 1 integrons in multi-drug resistant Klebsiella pneumoniae isolated from clinical samples using polymerase chain reaction assay. Majallah-i Ilmi-i Danishgah-i Ulum-i Pizishki-i Kurdistan, 2016, 21, 68-78.
[18]
Firoozeh, F.; Mahluji, Z.; Shams, E.; Khorshidi, A.; Zibaei, M. New Delhi metallo-β-lactamase-1-producing Klebsiella pneumoniae isolates in hospitalized patients in Kashan, Iran. Iran. J. Microbiol., 2017, 9(5), 283-287.
[PMID: 29296273]
[19]
Saffari, M.; Karami, S.; Firoozeh, F.; Sehat, M. Evaluation of biofilm-specific antimicrobial resistance genes in Pseudomonas aeruginosa isolates in Farabi Hospital. J. Med. Microbiol., 2017, 66(7), 905-909.
[http://dx.doi.org/10.1099/jmm.0.000521] [PMID: 28721848]
[20]
Bagheri Josheghani, S.; Moniri, R.; Firoozeh, F.; Sehat, M.; Dastehgoli, K.; Koosha, H.; Khaltabadi Farahani, R. Emergence of blaOXA-carrying carbapenem resistance in multidrug-resistant Acinetobacter baumannii in the intensive care unit. Iran. Red Crescent Med. J., 2016, 19(5)e27327
[21]
Fick, J.; Söderström, H.; Lindberg, R.H.; Phan, C.; Tysklind, M.; Larsson, D.G. Contamination of surface, ground, and drinking water from pharmaceutical production. Environ. Toxicol. Chem., 2009, 28(12), 2522-2527.
[http://dx.doi.org/10.1897/09-073.1] [PMID: 19449981]
[22]
Firoozeh, F.; Zahraei Salehi, T.; Shahcheraghi, F.; Karimi, V.; Aslani, M.M. Characterization of antimicrobial resistance pat-terns and class I integrons among Salmonella enterica serovar Enteritidis isolated from human and poultry. FEMS Microbiol. Immunol., 2011, 64, 237-243.
[http://dx.doi.org/10.1111/j.1574-695X.2011.00883.x] [PMID: 22066813]
[23]
Firoozeh, F.; Zahraei-Salehi, T.; Shahcheraghi, F. Molecular clonality and detection of class 1 integron in multidrug-resistant Salmonella enterica isolates from animal and human in Iran. Microb. Drug Resist., 2014, 20(6), 517-524.
[http://dx.doi.org/10.1089/mdr.2013.0198] [PMID: 24866249]
[24]
Kumar, A.; Chordia, N. Role of microbes in human health. Appli. Microbiol. Open Access, 2017, 3, 131.
[http://dx.doi.org/10.4172/2471-9315.1000131]
[25]
van Schaik, W. The human gut resistome. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2015, 370(1670) 201400
[http://dx.doi.org/10.1098/rstb.2014.0087]
[26]
Sekirov, I.; Russell, S.L.; Antunes, L.C.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev., 2010, 90(3), 859-904.
[http://dx.doi.org/10.1152/physrev.00045.2009] [PMID: 20664075]
[27]
Faith, J.J.; Guruge, J.L.; Charbonneau, M.; Subramanian, S.; Seedorf, H.; Goodman, A.L.; Clemente, J.C.; Knight, R.; Heath, A.C.; Leibel, R.L.; Rosenbaum, M.; Gordon, J.I. The long-term stability of the human gut microbiota. Science, 2013, 341(6141)1237439
[http://dx.doi.org/10.1126/science.1237439] [PMID: 23828941]
[28]
Dethlefsen, L.; Relman, D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA, 2011, 108(Suppl. 1), 4554-4561.
[http://dx.doi.org/10.1073/pnas.1000087107] [PMID: 20847294]
[29]
Vincent, J.L. Nosocomial infections in adult intensive-care units. Lancet, 2003, 361(9374), 2068-2077.
[http://dx.doi.org/10.1016/S0140-6736(03)13644-6] [PMID: 12814731]
[30]
Arias, C.A.; Murray, B.E. The rise of the Enterococcus: beyond vancomycin resistance. Nat. Rev. Microbiol., 2012, 10(4), 266-278.
[http://dx.doi.org/10.1038/nrmicro2761] [PMID: 22421879]
[31]
Penders, J.; Stobberingh, E.E.; Savelkoul, P.H.; Wolffs, P.F. The human microbiome as a reservoir of antimicrobial resistance. Front. Microbiol., 2013, 4, 87.
[http://dx.doi.org/10.3389/fmicb.2013.00087] [PMID: 23616784]
[32]
Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J., 2017, 474(11), 1823-1836.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[33]
Rodríguez, J.M.; Murphy, K.; Stanton, C.; Ross, R.P.; Kober, O.I.; Juge, N.; Avershina, E.; Rudi, K.; Narbad, A.; Jenmalm, M.C.; Marchesi, J.R.; Collado, M.C. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis., 2015, 26, 26050.
[PMID: 25651996]
[34]
Avershina, E.; Storrø, O.; Øien, T.; Johnsen, R.; Pope, P.; Rudi, K. Major faecal microbiota shifts in composition and diversity with age in a geographically restricted cohort of mothers and their children. FEMS Microbiol. Ecol., 2014, 87(1), 280-290.
[http://dx.doi.org/10.1111/1574-6941.12223] [PMID: 24112053]
[35]
Aagaard, K.; Riehle, K.; Ma, J.; Segata, N.; Mistretta, T.A.; Coarfa, C.; Raza, S.; Rosenbaum, S.; Van den Veyver, I.; Milosavljevic, A.; Gevers, D.; Huttenhower, C.; Petrosino, J.; Versalovic, J. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One, 2012, 7(6)e36466
[http://dx.doi.org/10.1371/journal.pone.0036466] [PMID: 22719832]
[36]
Salminen, S.; Gibson, G.R.; McCartney, A.L.; Isolauri, E. Influence of mode of delivery on gut microbiota composition in seven year old children. Gut, 2004, 53(9), 1388-1389.
[http://dx.doi.org/10.1136/gut.2004.041640] [PMID: 15306608]
[37]
Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H. Ko-vatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; Khan, M.T.; Zhang, J.; Li, J.; Xiao, L.; Al-Aama, J.; Zhang, D.; Lee, Y.S.; Kotowska, D.; Colding, C.; Tremaroli, V.; Yin, Y.; Bergman, S.; Xu, X.; Madsen, L.; Kristiansen, K.; Dahlgren, J.; Wang, J. Dynamics and stabilization of the hu-man gut microbiome during the first year of life. Cell Host Microbe, 2015, 17(6), 852.
[PMID: 26308884]
[38]
Bäckhed, F. Programming of host metabolism by the gut microbiota. Ann. Nutr. Metab., 2011, 58(Suppl. 2), 44-52.
[http://dx.doi.org/10.1159/000328042] [PMID: 21846980]
[39]
Aljudaibi, A. Bacteria a benefit cell. Biomed. J. Sci. Tech. Res., 2017, 1, 1-3.
[40]
Rajilić-Stojanović, M.; de Vos, W.M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev., 2014, 38(5), 996-1047.
[http://dx.doi.org/10.1111/1574-6976.12075] [PMID: 24861948]
[41]
Zoetendal, E.G.; Rajilic-Stojanovic, M.; de Vos, W.M. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut, 2008, 57(11), 1605-1615.
[http://dx.doi.org/10.1136/gut.2007.133603] [PMID: 18941009]
[42]
Clarke, G.; Stilling, R.M.; Kennedy, P.J.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Minireview: Gut microbiota: the neglected endocrine organ. Mol. Endocrinol., 2014, 28(8), 1221-1238.
[http://dx.doi.org/10.1210/me.2014-1108] [PMID: 24892638]
[43]
Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; Bertalan, M.; Borruel, N.; Casellas, F.; Fernandez, L.; Gautier, L.; Hansen, T.; Hattori, M.; Hayashi, T.; Kleerebezem, M.; Kurokawa, K.; Leclerc, M.; Levenez, F.; Manichanh, C.; Nielsen, H.B.; Nielsen, T.; Pons, N.; Poulain, J.; Qin, J.; Sicheritz-Ponten, T.; Tims, S.; Torrents, D.; Ugarte, E.; Zoetendal, E.G.; Wang, J.; Guarner, F.; Pedersen, O.; de Vos, W.M.; Brunak, S.; Doré, J.; Antolín, M.; Artiguenave, F.; Blottiere, H.M.; Almeida, M.; Brechot, C.; Cara, C.; Chervaux, C.; Cultrone, A.; Delorme, C.; Denariaz, G.; Dervyn, R.; Foerstner, K.U.; Friss, C.; van de Guchte, M.; Guedon, E.; Haimet, F.; Huber, W.; van Hylckama-Vlieg, J.; Jamet, A.; Juste, C.; Kaci, G.; Knol, J.; Lakhdari, O.; Layec, S.; Le Roux, K.; Maguin, E.; Mérieux, A.; Melo Minardi, R.; M’rini, C.; Muller, J.; Oozeer, R.; Parkhill, J.; Renault, P.; Rescigno, M.; Sanchez, N.; Sunagawa, S.; Torrejon, A.; Turner, K.; Vandemeulebrouck, G.; Varela, E.; Winogradsky, Y.; Zeller, G.; Weissenbach, J.; Ehrlich, S.D.; Bork, P. MetaHIT Consortium. Enterotypes of the human gut microbiome. Nature, 2011, 473(7346), 174-180.
[http://dx.doi.org/10.1038/nature09944] [PMID: 21508958]
[44]
Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; Mende, D.R.; Li, J.; Xu, J.; Li, S.; Li, D.; Cao, J.; Wang, B.; Liang, H.; Zheng, H.; Xie, Y.; Tap, J.; Lepage, P.; Bertalan, M.; Batto, J.M.; Hansen, T.; Le Paslier, D.; Linneberg, A.; Nielsen, H.B.; Pelletier, E.; Renault, P.; Sicheritz-Ponten, T.; Turner, K.; Zhu, H.; Yu, C.; Li, S.; Jian, M.; Zhou, Y.; Li, Y.; Zhang, X.; Li, S.; Qin, N.; Yang, H.; Wang, J.; Brunak, S.; Doré, J.; Guarner, F.; Kristiansen, K.; Pedersen, O.; Parkhill, J.; Weissenbach, J.; Bork, P.; Ehrlich, S.D.; Wang, J. MetaHIT Consortium. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285), 59-65.
[http://dx.doi.org/10.1038/nature08821] [PMID: 20203603]
[45]
Almeida, A.; Mitchell, A.L.; Boland, M.; Forster, S.C.; Gloor, G.B.; Tarkowska, A.; Lawley, T.D.; Finn, R.D. A new genomic blueprint of the human gut microbiota. Nature, 2019, 568(7753), 499-504.
[http://dx.doi.org/10.1038/s41586-019-0965-1] [PMID: 30745586]
[46]
von Wintersdorff, C.J.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.; Wolffs, P.F. Dissemination of antimicrobial resistance in mi-crobial ecosystems through horizontal gene transfer. Front. Microbiol., 2016, 7, 173.
[http://dx.doi.org/10.3389/fmicb.2016.00173] [PMID: 26925045]
[47]
Smillie, C.S.; Smith, M.B.; Friedman, J.; Cordero, O.X.; David, L.A.; Alm, E.J. Ecology drives a global network of gene exchange connecting the human microbiome. Nature, 2011, 480(7376), 241-244.
[http://dx.doi.org/10.1038/nature10571] [PMID: 22037308]
[48]
Lerner, A.; Matthias, T.; Aminov, R. Potential effects of hori-zontal gene exchange in the human gut. Front. Immunol., 2017, 8, 1630.
[http://dx.doi.org/10.3389/fimmu.2017.01630] [PMID: 29230215]
[49]
Kazimierczak, K.A.; Scott, K.P.; Kelly, D.; Aminov, R.I. Tetracycline resistome of the organic pig gut. Appl. Environ. Microbiol., 2009, 75(6), 1717-1722.
[http://dx.doi.org/10.1128/AEM.02206-08] [PMID: 19168656]
[50]
Aminov, R.I.; Mackie, R.I. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol. Lett., 2007, 271(2), 147-161.
[http://dx.doi.org/10.1111/j.1574-6968.2007.00757.x] [PMID: 17490428]
[51]
Barondess, J.J.; Beckwith, J. A bacterial virulence determinant encoded by lysogenic coliphage lambda. Nature, 1990, 346(6287), 871-874.
[http://dx.doi.org/10.1038/346871a0] [PMID: 2144037]
[52]
Jiang, X.; Ellabaan, M.M.H.; Charusanti, P.; Munck, C.; Blin, K.; Tong, Y.; Weber, T.; Sommer, M.O.A.; Lee, S.Y. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat. Commun., 2017, 8, 15784.
[http://dx.doi.org/10.1038/ncomms15784] [PMID: 28589945]
[53]
Sperandio, V.; Torres, A.G.; Jarvis, B.; Nataro, J.P.; Kaper, J.B. Bacteria-host communication: the language of hormones. Proc. Natl. Acad. Sci. USA, 2003, 100(15), 8951-8956.
[http://dx.doi.org/10.1073/pnas.1537100100] [PMID: 12847292]
[54]
Aminov, R.I. Horizontal gene exchange in environmental microbiota. Front. Microbiol., 2011, 2, 158.
[http://dx.doi.org/10.3389/fmicb.2011.00158] [PMID: 21845185]
[55]
Okeke, I.N.; Peeling, R.W.; Goossens, H.; Auckenthaler, R.; Olmsted, S.S.; de Lavison, J.F.; Zimmer, B.L.; Perkins, M.D.; Nordqvist, K. Diagnostics as essential tools for containing antibacterial resistance. Drug Resist. Updat., 2011, 14(2), 95-106.
[http://dx.doi.org/10.1016/j.drup.2011.02.002] [PMID: 21398170]
[56]
van der Veen, E.L.; Schilder, A.G.; Timmers, T.K.; Rovers, M.M.; Fluit, A.C.; Bonten, M.J.; Leverstein-van Hall, M.A. Effect of long-term trimethoprim/sulfamethoxazole treatment on resistance and integron prevalence in the intestinal flora: a randomized, double-blind, placebo-controlled trial in children. J. Antimicrob. Chemother., 2009, 63(5), 1011-1016.
[http://dx.doi.org/10.1093/jac/dkp050] [PMID: 19297377]
[57]
Bartoloni, A.; Bartalesi, F.; Mantella, A.; Dell’Amico, E.; Roselli, M.; Strohmeyer, M.; Barahona, H.G.; Barrón, V.P.; Paradisi, F.; Rossolini, G.M. High prevalence of acquired antimicrobial resistance unrelated to heavy antimicrobial consumption. J. Infect. Dis., 2004, 189(7), 1291-1294.
[http://dx.doi.org/10.1086/382191] [PMID: 15031799]
[58]
Grenet, K.; Guillemot, D.; Jarlier, V.; Moreau, B.; Dubourdieu, S.; Ruimy, R.; Armand-Lefevre, L.; Bau, P.; Andremont, A. Antibacterial resistance, Wayampis Amerindians, French Guyana. Emerg. Infect. Dis., 2004, 10(6), 1150-1153.
[http://dx.doi.org/10.3201/eid1006.031015] [PMID: 15207074]
[59]
Holmes, E.; Li, J.V.; Marchesi, J.R.; Nicholson, J.K. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab., 2012, 16(5), 559-564.
[http://dx.doi.org/10.1016/j.cmet.2012.10.007] [PMID: 23140640]
[60]
Overdevest, I.; Willemsen, I.; Rijnsburger, M.; Eustace, A.; Xu, L.; Hawkey, P.; Heck, M.; Savelkoul, P.; Vandenbroucke-Grauls, C.; van der Zwaluw, K.; Huijsdens, X.; Kluytmans, J. Extended-spectrum β-lactamase genes of Escherichia coli in chicken meat and humans, The Netherlands. Emerg. Infect. Dis., 2011, 17(7), 1216-1222.
[http://dx.doi.org/10.3201/eid1707.110209] [PMID: 21762575]
[61]
Geser, N.; Stephan, R.; Korczak, B.M.; Beutin, L.; Hächler, H. Molecular identification of extended-spectrum-β-lactamase genes from Enterobacteriaceae isolated from healthy human carriers in Switzerland. Antimicrob. Agents Chemother., 2012, 56(3), 1609-1612.
[http://dx.doi.org/10.1128/AAC.05539-11] [PMID: 22155836]
[62]
Gijón, D.; Curiao, T.; Baquero, F.; Coque, T.M.; Cantón, R. Fecal carriage of carbapenemase-producing Enterobacteriaceae: a hidden reservoir in hospitalized and nonhospitalized patients. J. Clin. Microbiol., 2012, 50(5), 1558-1563.
[http://dx.doi.org/10.1128/JCM.00020-12] [PMID: 22403422]
[63]
Severin, J.A.; Lestari, E.S.; Kloezen, W.; Lemmens-den Toom, N.; Mertaniasih, N.M.; Kuntaman, K.; Purwanta, M.; Duerink, D.O.; Hadi, U.; van Belkum, A.; Verbrugh, H.A.; Goessens, W.H. “Antimicrobial Resistance in Indonesia, Prevalence and Prevention” (AMRIN) study group. Faecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae among humans in Java, Indonesia, in 2001-2002. Trop. Med. Int. Health, 2012, 17(4), 455-461.
[http://dx.doi.org/10.1111/j.1365-3156.2011.02949.x] [PMID: 22248076]
[64]
Vo, A.T.; van Duijkeren, E.; Fluit, A.C.; Wannet, W.J.; Verbruggen, A.J.; Maas, H.M.; Gaastra, W. Antibiotic resistance, integrons and Salmonella genomic island 1 among non-typhoidal Salmonella serovars in The Netherlands. Int. J. Antimicrob. Agents, 2006, 28(3), 172-179.
[http://dx.doi.org/10.1016/j.ijantimicag.2006.05.027] [PMID: 16911867]
[65]
Carattoli, A. Resistance plasmid families in Enterobacteriaceae. Antimicrob. Agents Chemother., 2009, 53(6), 2227-2238.
[http://dx.doi.org/10.1128/AAC.01707-08] [PMID: 19307361]
[66]
Lepage, P.; Leclerc, M.C.; Joossens, M.; Mondot, S.; Blottière, H.M.; Raes, J.; Ehrlich, D.; Doré, J. A metagenomic insight into our gut’s microbiome. Gut, 2013, 62(1), 146-158.
[http://dx.doi.org/10.1136/gutjnl-2011-301805] [PMID: 22525886]
[67]
Hu, Y.; Yang, X.; Qin, J.; Lu, N.; Cheng, G.; Wu, N.; Pan, Y.; Li, J.; Zhu, L.; Wang, X.; Meng, Z.; Zhao, F.; Liu, D.; Ma, J.; Qin, N.; Xiang, C.; Xiao, Y.; Li, L.; Yang, H.; Wang, J.; Yang, R.; Gao, G.F.; Wang, J.; Zhu, B. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat. Commun., 2013, 4, 2151.
[http://dx.doi.org/10.1038/ncomms3151] [PMID: 23877117]
[68]
Wright, G.D. The antibiotic resistome. Expert Opin. Drug Discov., 2010, 5(8), 779-788.
[http://dx.doi.org/10.1517/17460441.2010.497535] [PMID: 22827799]
[69]
Durso, L.M.; Harhay, G.P.; Bono, J.L.; Smith, T.P. Virulence-associated and antibiotic resistance genes of microbial populations in cattle feces analyzed using a metagenomic approach. J. Microbiol. Methods, 2011, 84(2), 278-282.
[http://dx.doi.org/10.1016/j.mimet.2010.12.008] [PMID: 21167876]
[70]
Singh, K.M.; Jakhesara, S.J.; Koringa, P.G.; Rank, D.N.; Joshi, C.G. Metagenomic analysis of virulence-associated and antibiotic resistance genes of microbes in rumen of Indian buffalo (Bubalus bubalis). Gene, 2012, 507(2), 146-151.
[http://dx.doi.org/10.1016/j.gene.2012.07.037] [PMID: 22850272]

© 2024 Bentham Science Publishers | Privacy Policy