Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Use of Natural Components Derived from Oil Seed Plants for Treatment of Inflammatory Skin Diseases

Author(s): Monika Styrczewska, Magdalena Zuk, Aleksandra Boba, Iwan Zalewski and Anna Kulma*

Volume 25, Issue 20, 2019

Page: [2241 - 2263] Pages: 23

DOI: 10.2174/1381612825666190716111700

Price: $65

Abstract

The incidence of inflammatory skin diseases is increasing, so the search for relevant therapeutics is of major concern. Plants are rich in phytochemicals which can alleviate many symptoms. In this review, we concentrate on compounds found in the seeds of widely cultivated plants, regularly used for oil production. The oils from these plants are often used to alleviate the symptoms of inflammatory diseases through synergetic action of unsaturated fatty acids and other phytochemicals most commonly derived from the terpenoid pathway. The knowledge of the chemical composition of oil seeds and the understanding of the mechanisms of action of single components should allow for a more tailored approach for the treatment for many diseases. In many cases, these seeds could serve as an efficient material for the isolation of pure phytochemicals. Here we present the content of phytochemicals, assumed to be responsible for healing properties of plant oils in a widely cultivated oil seed plants and review the proposed mechanism of action for fatty acids, selected mono-, sesqui-, di- and triterpenes, carotenoids, tocopherol and polyphenols.

Keywords: Inflammatory skin diseases, oil, terpenoids, carotenoids, fatty acid, phenylpropanoids.

[1]
Lee SH, Jeong SK, Ahn SK. An update of the defensive barrier function of skin. Yonsei Med J 2006; 47(3): 293-306.
[http://dx.doi.org/10.3349/ymj.2006.47.3.293] [PMID: 16807977]
[2]
Murthy AS, Leslie K. Autoinflammatory Skin Disease: a review of concepts and applications to general dermatology. Dermatology (Basel) 2016; 232(5): 534-40.
[http://dx.doi.org/10.1159/000449526] [PMID: 27871068]
[3]
Karimkhani C, Dellavalle RP, Coffeng LE, et al. global skin disease morbidity and mortality: an update from the global burden of disease study 2013. JAMA Dermatol 2017; 153(5): 406-12.
[http://dx.doi.org/10.1001/jamadermatol.2016.5538] [PMID: 28249066]
[4]
Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. nat rev immunol 2014; 14(5): 289- 301.
[http://dx.doi.org/10.1038/nri3646] [PMID: 24722477]
[5]
Richmond JM, Harris JE. Immunology and skin in health and disease. Cold Spring Harb Perspect Med 2014; 4(12)a015339
[http://dx.doi.org/10.1101/cshperspect.a015339]
[6]
Krueger JG, Bowcock A. Psoriasis pathophysiology: current concepts of pathogenesis 2005 64(Suppl 2): ii30-ii36.
[http://dx.doi.org/10.1136/ard.2004.031120]
[7]
Wojas-Pelc A, Ciszek-Lenda M, Kurnyta M, Marcinkiewicz J. Cytokine network in psoriasis. Cross-talk between keratinocytes and cells of the skin immune system. Cent Eur J Immunol 2006; 31: 111-6.
[8]
Albanesi C, Pastore S. Pathobiology of chronic inflammatory skin diseases: interplay between keratinocytes and immune cells as a target for anti-inflammatory drugs. Curr Drug Metab 2010; 11(3): 210-27.
[http://dx.doi.org/10.2174/138920010791196328] [PMID: 20406192]
[9]
Di Meglio P. The Multitasking Organ: Recent Insights into Skin Immune Function. Immunity 2011; 35(6): 857-69.
[10]
Albanesi C, Federici M, Giustizieri ML, Scarponi C, Girolomoni G. Suppressor of cytokine signaling-1 inhibits interferon-γ-induced activation of human keratinocytes. Ann N Y Acad Sci 2002; 973: 79-82.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04610.x] [PMID: 12485838]
[11]
Madonna S, Scarponi C, Pallotta S, Cavani A, Albanesi C. Antiapoptotic effects of suppressor of cytokine signaling 3 and 1 in psoriasis Cell Death Dis 2012 28: 3: e334.
[http://dx.doi.org/10.1038/cddis.2012.69]
[12]
Michalak-Stoma A, Pietrzak A, Szepietowski JC, Zalewska-Janowska A, Paszkowski T, Chodorowska G. Cytokine network in psoriasis revisited. Eur Cytokine Netw 2011; 22(4): 160-8.
[PMID: 22236965]
[13]
Raker VK, Becker C, Steinbrink K. The cAMP Pathway as Therapeutic Target in Autoimmune and Inflammatory Diseases. Front Immunol 2016; 7: 123.
[http://dx.doi.org/10.3389/fimmu.2016.00123] [PMID: 27065076]
[14]
Wilkinson JD, Williamson EM. Cannabinoids inhibit human keratinocyte proliferation through a non-CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis. J Dermatol Sci 2007; 45(2): 87-92.
[http://dx.doi.org/10.1016/j.jdermsci.2006.10.009] [PMID: 17157480]
[15]
Pucci M, Rapino C, Di Francesco A, Dainese E, D’Addario C, Maccarrone M. Epigenetic control of skin differentiation genes by phytocannabinoids. Br J Pharmacol 2013; 170(3): 581-91.
[http://dx.doi.org/10.1111/bph.12309] [PMID: 23869687]
[16]
Karsak M, Gaffal E, Date R, et al. Attenuation of allergic contact dermatitis through the endocannabinoid system. Science 2007; 316(5830): 1494-7.
[http://dx.doi.org/10.1126/science.1142265] [PMID: 17556587]
[17]
Veeresham C. Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res 2012; 3(4): 200-1.
[http://dx.doi.org/10.4103/2231-4040.104709] [PMID: 23378939]
[18]
Naldi L, Parazzini F, Peli L, et al. Dietary factors and the risk of psoriasis. Results of an Italian case-control study. Br J Dermatol 1996; 134(1): 101-6.
[http://dx.doi.org/10.1111/j.1365-2133.1996.tb07846.x] [PMID: 8745893]
[19]
Kragballe K, Fogh K. A low-fat diet supplemented with dietary fish oil (Max-EPA) results in improvement of psoriasis and in formation of leukotriene B5. Acta Derm Venereol 1989; 69(1): 23-8.
[PMID: 2563604]
[20]
Evans JA, Johnson EJ. The role of phytonutrients in skin health. Nutrients 2010; 2(8): 903-28.
[http://dx.doi.org/10.3390/nu2080903] [PMID: 22254062]
[21]
Pérez-Sánchez A, Barrajón-Catalán E, Herranz-López M, Micol V. Nutraceuticals for Skin Care: A comprehensive review of human clinical studies. Nutrients 2018; 10(4)E403
[http://dx.doi.org/10.3390/nu10040403] [PMID: 29587342]
[22]
Jung TD, Choi SI, Choi SH, et al. Changes in the anti-allergic activities of sesame by bioconversion. Nutrients 2018; 10(2)E210
[http://dx.doi.org/10.3390/nu10020210] [PMID: 29443928]
[23]
Calder PC. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans 2017; 45(5): 1105-15.
[http://dx.doi.org/10.1042/BST20160474] [PMID: 28900017]
[24]
Finucane OM, Lyons CL, Murphy AM, et al. Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1β secretion and insulin resistance despite obesity. Diabetes 2015; 64(6): 2116-28.
[http://dx.doi.org/10.2337/db14-1098] [PMID: 25626736]
[25]
Danby SG, AlEnezi T, Sultan A, et al. Effect of olive and sunflower seed oil on the adult skin barrier: implications for neonatal skin care. Pediatr Dermatol 2013; 30(1): 42-50.
[http://dx.doi.org/10.1111/j.1525-1470.2012.01865.x] [PMID: 22995032]
[26]
Melnik B, Plewig G. Are disturbances of omega-6-fatty acid metabolism involved in the pathogenesis of atopic dermatitis? Acta Derm Venereol Suppl (Stockh) 1992; 176: 77-85.
[PMID: 1476044]
[27]
Bamford JT, Ray S, Musekiwa A, van Gool C, Humphreys R, Ernst E. Oral evening primrose oil and borage oil for eczema. Cochrane Database Syst Rev 2013; (4): CD004416
[http://dx.doi.org/10.1002/14651858.CD004416.pub2] [PMID: 23633319]
[28]
Fenner J, Silverberg NB. Oral supplements in atopic dermatitis. Clin Dermatol 2018; 36(5): 653-8.
[http://dx.doi.org/10.1016/j.clindermatol.2018.05.010] [PMID: 30217278]
[29]
Kanehara S, Ohtani T, Uede K, Furukawa F. Undershirts coated with borage oil alleviate the symptoms of atopic dermatitis in children. Eur J Dermatol 2007; 17(5): 448-9.
[PMID: 17673396]
[30]
Kim KP, Jeon S, Kim MJ, Cho Y. Borage oil restores acidic skin pH by up-regulating the activity or expression of filaggrin and enzymes involved in epidermal lactate, free fatty acid, and acidic free amino acid metabolism in essential fatty acid-deficient Guinea pigs. Nutr Res 2018; 58: 26-35.
[http://dx.doi.org/10.1016/j.nutres.2018.06.003] [PMID: 30340812]
[31]
Lee JY, Zhao L, Youn HS, et al. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J Biol Chem 2004; 279(17): 16971-9.
[http://dx.doi.org/10.1074/jbc.M312990200] [PMID: 14966134]
[32]
Callaway J, Schwab U, Harvima I, et al. Efficacy of dietary hempseed oil in patients with atopic dermatitis. J Dermatolog Treat 2005; 16(2): 87-94.
[http://dx.doi.org/10.1080/09546630510035832] [PMID: 16019622]
[33]
Freitas HR, Isaac AR, Malcher-Lopes R, Diaz BL, Trevenzoli IH, De Melo Reis RA. Polyunsaturated fatty acids and endocannabinoids in health and disease. Nutr Neurosci 2018; 21(10): 695-714.
[http://dx.doi.org/10.1080/1028415X.2017.1347373] [PMID: 28686542]
[34]
Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez A. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 2009; 100(1): 261-8.
[http://dx.doi.org/10.1016/j.biortech.2008.06.039] [PMID: 18693011]
[35]
Montserrat-de la Paz S, Marín-Aguilar F, García-Giménez MD, Fernández-Arche MA. Hemp (Cannabis sativa L.) seed oil: analytical and phytochemical characterization of the unsaponifiable fraction. J Agric Food Chem 2014; 62(5): 1105-10.
[http://dx.doi.org/10.1021/jf404278q] [PMID: 24422510]
[36]
Hasiewicz-Derkacz K, Kulma A, Czuj T, et al. Natural phenolics greatly increase flax (Linum usitatissimum) oil stability. BMC Biotechnol 2015; 15: 62.
[http://dx.doi.org/10.1186/s12896-015-0178-0] [PMID: 26123633]
[37]
Orsavova J, Misurcova L, Ambrozova JV, Vicha R, Mlcek J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int J Mol Sci 2015; 16(6): 12871-90.
[http://dx.doi.org/10.3390/ijms160612871] [PMID: 26057750]
[38]
Rezig L, Chouaibi M, Ojeda-Amador RM, et al. Cucurbita maxima Pumpkin Seed Oil: from the Chemical Properties to the Different Extracting Techniques. Not Bot Horti Agrobo 2018; 46(2): 1-7.
[39]
Timoszuk M, Bielawska K, Skrzydlewska E. Evening Primrose (Oenothera biennis) Biological Activity Dependent on Chemical Composition. Antioxidants 2018; 7(8)E108
[http://dx.doi.org/10.3390/antiox7080108] [PMID: 30110920]
[40]
Ivanova-Petropulos V, Mitrev S, Stafilov T, et al. Characterisation of traditional Macedonian edible oils by their fatty acid composition and their volatile compounds. Food Res Int 2015; 77: 506-14.
[http://dx.doi.org/10.1016/j.foodres.2015.08.014]
[41]
Özbek H, Yilmaz B. Anti-inflammatory and hypoglycemic activities of alpha-pinene 2017; Acta Pharma Sci 55(4): 7.
[42]
Yu L, Yan J, Sun Z. D-limonene exhibits anti-inflammatory and antioxidant properties in an ulcerative colitis rat model via regulation of iNOS, COX-2, PGE2 and ERK signaling pathways. Mol Med Rep 2017; 15(4): 2339-46.
[http://dx.doi.org/10.3892/mmr.2017.6241] [PMID: 28260017]
[43]
Gayathri B, Manjula N, Vinaykumar KS, Lakshmi BS, Balakrishnan A. Pure compound from Boswellia serrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibition of TNFα, IL-1β, NO and MAP kinases. Int Immunopharmacol 2007; 7(4): 473-82.
[44]
Han X, Rodriguez D, Parker TL. Biological activities of frankincense essential oil in human dermal fibroblasts. Biochim Open 2017; 4: 31-5.
[http://dx.doi.org/10.1016/j.biopen.2017.01.003] [PMID: 29450138]
[45]
Kim D-S, Lee H-J, Jeon Y-D, et al. Alpha-Pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am J Chin Med 2015; 43(4): 731-42.
[http://dx.doi.org/10.1142/S0192415X15500457] [PMID: 26119957]
[46]
Rufino A, Ribeiro M, Judas F, et al. anti-inflammatory and chondroprotective activity of (+)-pinene: structural and enantiomeric selectivity. J Nat Prod 2014; 77(2): 264-9.
[47]
Li X-J, Yang Y-J, Li Y-S, Zhang W, Tang H-B. α-Pinene, linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2. J Ethnopharmacol 2016; 179: 22-6.
[48]
Karthikeyan R, Kanimozhi G, Prasad NR, Agilan B, Ganesan M, Srithar G. Alpha pinene modulates UVA-induced oxidative stress, DNA damage and apoptosis in human skin epidermal keratinocytes. Life Sci 2018; 212: 150-8.
[http://dx.doi.org/10.1016/j.lfs.2018.10.004] [PMID: 30292828]
[49]
Rehman MU, Tahir M, Khan AQ, et al. D-limonene suppresses doxorubicin-induced oxidative stress and inflammation via repression of COX-2, iNOS, and NFκB in kidneys of Wistar rats. Exp Biol Med (Maywood) 2014; 239(4): 465-76.
[http://dx.doi.org/10.1177/1535370213520112] [PMID: 24586096]
[50]
Wang X, Li G, Shen W. Protective effects of D-Limonene against transient cerebral ischemia in stroke-prone spontaneously hypertensive rats. Exp Ther Med 2018; 15(1): 699-706.
[51]
Bråred Christensson J, Forsström P, Wennberg A-M, Karlberg A-T, Matura M. Air oxidation increases skin irritation from fragrance terpenes. Contact Dermat 2009; 60(1): 32-40.
[http://dx.doi.org/10.1111/j.1600-0536.2008.01471.x]
[52]
Audrain H, Kenward C, Lovell CR, et al. Allergy to oxidized limonene and linalool is frequent in the U.K. Br J Dermatol 2014; 171(2): 292-7.
[http://dx.doi.org/10.1111/bjd.13037] [PMID: 24702129]
[53]
Bourgou S, Pichette A, Marzouk B, Legault J. Bioactivities of black cumin essential oil and its main terpenes from Tunisia. S Afr J Bot 2010; 76(2): 210-6.
[http://dx.doi.org/10.1016/j.sajb.2009.10.009]
[54]
Guan D, Li Y, Peng X, Zhao H, Mao Y, Cui Y. Thymoquinone protects against cerebral small vessel disease: Role of antioxidant and anti-inflammatory activities. J Biol Regul Homeost Agents 2018; 32(2): 225-31.
[PMID: 29685000]
[55]
Umar S, Zargan J, Umar K, Ahmad S, Katiyar CK, Khan HA. Modulation of the oxidative stress and inflammatory cytokine response by thymoquinone in the collagen induced arthritis in Wistar rats. Chem Biol Interact 2012; 197(1): 40-6.
[http://dx.doi.org/10.1016/j.cbi.2012.03.003] [PMID: 22450443]
[56]
Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res 2003; 17(4): 299-305.
[http://dx.doi.org/10.1002/ptr.1309] [PMID: 12722128]
[57]
Xie G, Chen N, Soromou LW, et al. p-Cymene protects mice against lipopolysaccharide-induced acute lung injury by inhibiting inflammatory cell activation. Molecules 2012; 17(7): 8159-73.
[http://dx.doi.org/10.3390/molecules17078159] [PMID: 22772811]
[58]
Zhong W, Chi G, Jiang L, et al. p-Cymene Modulates In Vitro and In Vivo Cytokine Production by Inhibiting MAPK and NF-κB Activation. 2013; 36(3): 529-37.
[59]
Herman A, Herman AP. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: a review. J Pharm Pharmacol 2015; 67(4): 473-85.
[http://dx.doi.org/10.1111/jphp.12334] [PMID: 25557808]
[60]
Camargos HS, Moreira RA, Mendanha SA, Fernandes KS, Dorta ML, Alonso A. Terpenes increase the lipid dynamics in the Leishmania plasma membrane at concentrations similar to their IC50 values. PLoS One 2014; 9(8)e104429
[http://dx.doi.org/10.1371/journal.pone.0104429] [PMID: 25101672]
[61]
Citti C, Pacchetti B, Vandelli MA, Forni F, Cannazza G. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA). J Pharm Biomed Anal 2018; 149: 532-40.
[http://dx.doi.org/10.1016/j.jpba.2017.11.044] [PMID: 29182999]
[62]
Fischedick JT, Hazekamp A, Erkelens T, Choi YH, Verpoorte R. Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. Phytochemistry 2010; 71(17-18): 2058-73.
[http://dx.doi.org/10.1016/j.phytochem.2010.10.001] [PMID: 21040939]
[63]
Lutterodt H, Luther M, Slavin M, et al. Fatty acid profile, thymoquinone content, oxidative stability, and antioxidant properties of cold-pressed black cumin seed oils. Lebensm Wiss Technol 2010; 43(9): 1409-13.
[http://dx.doi.org/10.1016/j.lwt.2010.04.009]
[64]
Uriarte PS, Goicoechea E, Guillen MD. Volatile components of several virgin and refined oils differing in their botanical origin. J Sci Food Agric 2011; 91(10): 1871-84.
[http://dx.doi.org/10.1002/jsfa.4400] [PMID: 21480271]
[65]
Elzinga S, Fischedick J, Podkolinski R, Raber J. Cannabinoids and Terpenes as Chemotaxonomic Markers in Cannabis. Nat Prod Chem Res 2015; 3(4)1000181
[66]
Gertsch J, Leonti M, Raduner S, et al. Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci USA 2008; 105(26): 9099-104.
[http://dx.doi.org/10.1073/pnas.0803601105] [PMID: 18574142]
[67]
Bento AF, Marcon R, Dutra RC, et al. β-Caryophyllene inhibits dextran sulfate sodium-induced colitis in mice through CB2 receptor activation and PPARγ pathway. Am J Pathol 2011; 178(3): 1153-66.
[http://dx.doi.org/10.1016/j.ajpath.2010.11.052] [PMID: 21356367]
[68]
Prashar A, Locke IC, Evans CS. Cytotoxicity of clove (Syzygium aromaticum) oil and its major components to human skin cells. Cell Prolif 2006; 39(4): 241-8.
[http://dx.doi.org/10.1111/j.1365-2184.2006.00384.x] [PMID: 16872360]
[69]
Dahham S, Tabana Y, Ahamed MBK, Abdul Majid AMS. Molecules and medicinal chemistry, saad2015
[70]
Sköld M, Karlberg AT, Matura M, Börje A. The fragrance chemical beta-caryophyllene-air oxidation and skin sensitization. Food Chem Toxicol 2006; 44(4): 538-45.
[http://dx.doi.org/10.1016/j.fct.2005.08.028] [PMID: 16226832]
[71]
Medeiros R, Passos GF, Vitor CE, et al. Effect of two active compounds obtained from the essential oil of Cordia verbenacea on the acute inflammatory responses elicited by LPS in the rat paw. Br J Pharmacol 2007; 151(5): 618-27.
[http://dx.doi.org/10.1038/sj.bjp.0707270] [PMID: 17471174]
[72]
Dudley MW, Dueber MT, West CA. Biosynthesis of the macrocyclic diterpene casbene in castor bean (Ricinus communis L.) seedlings: changes in enzyme levels induced by fungal infection and intracellular localization of the pathway. Plant Physiol 1986; 81(2): 335-42.
[http://dx.doi.org/10.1104/pp.81.2.335] [PMID: 16664817]
[73]
Dudley MW, Green TR, West CA. Biosynthesis of the macrocyclic diterpene casbene in castor bean (Ricinus communis L.) seedlings: the purification and properties of farnesyl transferase from elicited seedlings. Plant Physiol 1986; 81(2): 343-8.
[http://dx.doi.org/10.1104/pp.81.2.343] [PMID: 16664818]
[74]
Schmelz EA, Huffaker A, Sims JW, et al. Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J 2014; 79(4): 659-78.
[http://dx.doi.org/10.1111/tpj.12436] [PMID: 24450747]
[75]
Wang X, Meng Q, Peng X, Hu G, Qiu M. Identification of new diterpene esters from green Arabica coffee beans, and their platelet aggregation accelerating activities. Food Chem 2018; 263: 251-7.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.081] [PMID: 29784314]
[76]
Díaz-Viciedo R, Hortelano S, Girón N, et al. Modulation of inflammatory responses by diterpene acids from Helianthus annuus L. Biochem Biophys Res Commun 2008; 369(2): 761-6.
[http://dx.doi.org/10.1016/j.bbrc.2008.02.104] [PMID: 18313400]
[77]
Morikawa T, Xu F, Kashima Y, Matsuda H, Ninomiya K, Yoshikawa M. Novel dolabellane-type diterpene alkaloids with lipid metabolism promoting activities from the seeds of Nigella sativa. Org Lett 2004; 6(6): 869-72.
[http://dx.doi.org/10.1021/ol036239c] [PMID: 15012052]
[78]
Morikawa T, Xu F, Ninomiya K, Matsuda H, Yoshikawa M. Nigellamines A3, A4, A5, and C, new dolabellane-type diterpene alkaloids, with lipid metabolism-promoting activities from the Egyptian medicinal food black cumin. Chem Pharm Bull (Tokyo) 2004; 52(4): 494-7.
[http://dx.doi.org/10.1248/cpb.52.494] [PMID: 15056976]
[79]
Styrczewska M, Kulma A, Ratajczak K, Amarowicz R, Szopa J. Cannabinoid-like anti-inflammatory compounds from flax fiber. Cell Mol Biol Lett 2012; 17(3): 479-99.
[http://dx.doi.org/10.2478/s11658-012-0023-6] [PMID: 22706678]
[80]
Asakawa Y, Hashimoto T, Takikawa K, Tori M, Ogawa S. Prenyl bibenzyls from the liverworts Radula perrottetii and Radula complanata. Phytochemistry 1991; 30(1): 235-51.
[http://dx.doi.org/10.1016/0031-9422(91)84130-K]
[81]
Bohlmann F, Hoffmann E. Cannabigerol-ähnliche verbindungen aus Helichrysum umbraculigerum. Phytochemistry 1979; 18(8): 1371-4.
[http://dx.doi.org/10.1016/0031-9422(79)83025-3]
[82]
Turner SE, Williams CM, Iversen L, Whalley BJ. Molecular Pharmacology of Phytocannabinoids. Prog Chem Org Nat Prod 2017; 103: 61-101.
[http://dx.doi.org/10.1007/978-3-319-45541-9_3]
[83]
Di Marzo V, Piscitelli F. The Endocannabinoid System and its Modulation by Phytocannabinoids. Neurotherapeutics 2015; 12(4): 692-8.
[http://dx.doi.org/10.1007/s13311-015-0374-6] [PMID: 26271952]
[84]
Tubaro A, Giangaspero A, Sosa S, et al. Comparative topical anti-inflammatory activity of cannabinoids and cannabivarins. Fitoterapia 2010; 81(7): 816-9.
[http://dx.doi.org/10.1016/j.fitote.2010.04.009]
[85]
Maccarrone M, Di Rienzo M, Battista N, et al. The endocannabinoid system in human keratinocytes. Evidence that anandamide inhibits epidermal differentiation through CB1 receptor-dependent inhibition of protein kinase C, activation protein-1, and transglutaminase. J Biol Chem 2003; 278(36): 33896-903.
[http://dx.doi.org/10.1074/jbc.M303994200] [PMID: 12815050]
[86]
Norooznezhad AH, Norooznezhad F. Cannabinoids: Possible agents for treatment of psoriasis via suppression of angiogenesis and inflammation. Med Hypotheses 2017; 99: 15-8.
[http://dx.doi.org/10.1016/j.mehy.2016.12.003] [PMID: 28110689]
[87]
Río CD, Millán E, García V, Appendino G, DeMesa J, Muñoz E. The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders. Biochem Pharmacol 2018; 157: 122-33.
[http://dx.doi.org/10.1016/j.bcp.2018.08.022] [PMID: 30138623]
[88]
Vaia M, Petrosino S, De Filippis D, et al. Palmitoylethanolamide reduces inflammation and itch in a mouse model of contact allergic dermatitis. Eur J Pharmacol 2016; 791: 669-74.
[http://dx.doi.org/10.1016/j.ejphar.2016.10.005] [PMID: 27720681]
[89]
Petrosino S, Cristino L, Karsak M, et al. Protective role of palmitoylethanolamide in contact allergic dermatitis. Allergy 2010; 65(6): 698-711.
[http://dx.doi.org/10.1111/j.1398-9995.2009.02254.x] [PMID: 19909294]
[90]
Thiele JJ, Hsieh SN, Ekanayake-Mudiyanselage S, Vitamin E. Vitamin E: critical review of its current use in cosmetic and clinical dermatology. Dermatol Surg 2005; 31(7 Pt 2): 805-13.
[http://dx.doi.org/10.1111/j.1524-4725.2005.31724] [PMID: 16029671]
[91]
Thiele JJ, Ekanayake-Mudiyanselage S. Vitamin E in human skin: organ-specific physiology and considerations for its use in dermatology. Mol Aspects Med 2007; 28(5-6): 646-67.
[http://dx.doi.org/10.1016/j.mam.2007.06.001] [PMID: 17719081]
[92]
Lopez-Torres M, Thiele JJ, Shindo Y, Han D, Packer L. Topical application of alpha-tocopherol modulates the antioxidant network and diminishes ultraviolet-induced oxidative damage in murine skin. Br J Dermatol 1998; 138(2): 207-15.
[http://dx.doi.org/10.1046/j.1365-2133.1998.02062.x] [PMID: 9602862]
[93]
Yuen KS, Halliday GM. alpha-Tocopherol, an inhibitor of epidermal lipid peroxidation, prevents ultraviolet radiation from suppressing the skin immune system. Photochem Photobiol 1997; 65(3): 587-92.
[http://dx.doi.org/10.1111/j.1751-1097.1997.tb08610.x] [PMID: 9077145]
[94]
Fernández-García E. Skin protection against UV light by dietary antioxidants. Food Funct 2014; 5(9): 1994-2003.
[http://dx.doi.org/10.1039/C4FO00280F] [PMID: 24964816]
[95]
Gensler HL, Magdaleno M. Topical vitamin E inhibition of immunosuppression and tumorigenesis induced by ultraviolet irradiation. Nutr Cancer 1991; 15(2): 97-106.
[http://dx.doi.org/10.1080/01635589109514117] [PMID: 2038569]
[96]
Cohn W, Gross P, Grun H, Loechleiter F. Tocopherol transport and absorption. Proc Nutr Soc 1992; 51(2): 179-88.
[97]
Mecocci P, Polidori MC, Troiano L, et al. Plasma antioxidants and longevity: a study on healthy centenarians. Free Radic Biol Med 2000; 28(8): 1243-8.
[http://dx.doi.org/10.1016/S0891-5849(00)00246-X] [PMID: 10889454]
[98]
Godic A, Poljšak B, Adamic M, Dahmane R. The role of antioxidants in skin cancer prevention and treatment. Oxid Med Cell Longev 2014; 2014860479
[http://dx.doi.org/10.1155/2014/860479] [PMID: 24790705]
[99]
Kagan V, Witt E, Goldman R, Scita G, Packer L. Ultraviolet light-induced generation of vitamin E radicals and their recycling. A possible photosensitizing effect of vitamin E in skin. Free Radic Res Commun 1992; 16(1): 51-64.
[http://dx.doi.org/10.3109/10715769209049159] [PMID: 1325398]
[100]
Podhaisky HP, Wohlrab W. Is the photoprotective effect of vitamin E based on its antioxidative capacity? J Dermatol Sci 2002; 28(1): 84-6.
[http://dx.doi.org/10.1016/S0923-1811(01)00140-2] [PMID: 11916134]
[101]
Wu D, Mura C, Beharka AA, et al. Age-associated increase in PGE2 synthesis and COX activity in murine macrophages is reversed by vitamin E. Am J Physiol 1998; 275(3): C661-8.
[http://dx.doi.org/10.1152/ajpcell.1998.275.3.C661] [PMID: 9730949]
[102]
Tahan G, Aytac E, Aytekin H, et al. Vitamin E has a dual effect of anti-inflammatory and antioxidant activities in acetic acid-induced ulcerative colitis in rats. Can J Surg 2011; 54(5): 333-8.
[http://dx.doi.org/10.1503/cjs.013610] [PMID: 21933527]
[103]
Jaffary F, Faghihi G, Mokhtarian A, Hosseini SM. Effects of oral vitamin E on treatment of atopic dermatitis: A randomized controlled trial. J Res Med Sci 2015; 20(11): 1053-7.
[http://dx.doi.org/10.4103/1735-1995.172815] [PMID: 26941808]
[104]
Tsoureli-Nikita E, Hercogova J, Lotti T, Menchini G. Evaluation of dietary intake of vitamin E in the treatment of atopic dermatitis: a study of the clinical course and evaluation of the immunoglobulin E serum levels. Int J Dermatol 2002; 41(3): 146-50.
[http://dx.doi.org/10.1046/j.1365-4362.2002.01423.x] [PMID: 12010339]
[105]
Panin G, Strumia R, Ursini F. Topical alpha-tocopherol acetate in the bulk phase: eight years of experience in skin treatment. Ann N Y Acad Sci 2004; 1031: 443-7.
[http://dx.doi.org/10.1196/annals.1331.069] [PMID: 15753192]
[106]
Gliszczyńska-Świgło A, Sikorska E, Khmelinskii I, Sikorski M. Tocopherol Content in Edible Plant Oils. Pol J Food Nutr Sci 2007; 57: 157-61.
[107]
Hussain N, Jabeen Z, Li Y-l, et al. Detection of Tocopherol in Oilseed Rape (Brassica napus L.) Using Gas Chromatography with Flame Ionization Detector. J Integr Agric 2013; 12(5): 803-14.
[http://dx.doi.org/10.1016/S2095-3119(13)60301-9]
[108]
Kriese U, Schumann E, Weber WE, Beyer M, Brühl L. Matthäus. Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 Cannabis sativa L. genotypes. Euphytica 2004; 137(3): 339-51.
[http://dx.doi.org/10.1023/B:EUPH.0000040473.23941.76]
[109]
Huang ZR, Lin YK, Fang JY. Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules 2009; 14(1): 540-54.
[http://dx.doi.org/10.3390/molecules14010540] [PMID: 19169201]
[110]
Kim SK, Karadeniz F. Biological importance and applications of squalene and squalane. Adv Food Nutr Res 2012; 65: 223-33.
[http://dx.doi.org/10.1016/B978-0-12-416003-3.00014-7] [PMID: 22361190]
[111]
Kohno Y, Egawa Y, Itoh S, Nagaoka S, Takahashi M, Mukai K. Kinetic study of quenching reaction of singlet oxygen and scavenging reaction of free radical by squalene in N-butanol. Biochim Biophys Acta 1995; 1256(1): 52-6.
[http://dx.doi.org/10.1016/0005-2760(95)00005-W] [PMID: 7742356]
[112]
Cardeno A, Aparicio-Soto M, Montserrat-de la Paz S, Bermúdez B. Squalene targets pro- and anti-inflammatory mediators and pathways to modulate over-activation of neutrophils, monocytes and macrophages2015. 779-90. In.
[113]
Kostyuk V, Potapovich A, Stancato A, et al. Photo-oxidation products of skin surface squalene mediate metabolic and inflammatory responses to solar UV in human keratinocytes. PLoS One 2012; 7(8)e44472
[http://dx.doi.org/10.1371/journal.pone.0044472] [PMID: 22952984]
[114]
Ottaviani M, Alestas T, Flori E, Mastrofrancesco A, Zouboulis CC, Picardo M. Peroxidated squalene induces the production of inflammatory mediators in HaCaT keratinocytes: a possible role in acne vulgaris. J Invest Dermatol 2006; 126(11): 2430-7.
[http://dx.doi.org/10.1038/sj.jid.5700434] [PMID: 16778793]
[115]
Vivancos M, Moreno JJ. beta-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic Biol Med 2005; 39(1): 91-7.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.02.025] [PMID: 15925281]
[116]
Mahajan SG, Mehta AA. Suppression of ovalbumin-induced Th2-driven airway inflammation by β-sitosterol in a guinea pig model of asthma. Eur J Pharmacol 2011; 650(1): 458-64.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.075] [PMID: 20946894]
[117]
Loizou S, Lekakis I, Chrousos GP, Moutsatsou P. Beta-sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Mol Nutr Food Res 2010; 54(4): 551-8.
[http://dx.doi.org/10.1002/mnfr.200900012] [PMID: 19937850]
[118]
Valerio M, Awad AB. β-Sitosterol down-regulates some pro-inflammatory signal transduction pathways by increasing the activity of tyrosine phosphatase SHP-1 in J774A.1 murine macrophages. Int Immunopharmacol 2011; 11(8): 1012-7.
[http://dx.doi.org/10.1016/j.intimp.2011.02.018] [PMID: 21356343]
[119]
Gabay O, Sanchez C, Salvat C, et al. Stigmasterol: a phytosterol with potential anti-osteoarthritic properties. Osteoarthritis Cartilage 2010; 18(1): 106-16.
[http://dx.doi.org/10.1016/j.joca.2009.08.019] [PMID: 19786147]
[120]
Biskup E, Golebiowski M, Borsuk K, Stepnowski P, Lojkowska E. Analysis of Rhaponticum carthamoides (Willd.) Iljin crude extracts composition and ability to simulate cell proliferation. Planta Med 2009; 75(9): 1019-20.
[http://dx.doi.org/10.1055/s-0029-1234767]
[121]
Moon EJ, Lee YM, Lee OH, et al. A novel angiogenic factor derived from Aloe vera gel: beta-sitosterol, a plant sterol. Angiogenesis 1999; 3(2): 117-23.
[http://dx.doi.org/10.1023/A:1009058232389] [PMID: 14517429]
[122]
Styrczewska M, Kostyn A, Kulma A, et al. Flax fiber hydrophobic extract inhibits human skin cells inflammation and causes remodeling of extracellular matrix and wound closure activation. BioMed Res Int 2015; 2015862391
[http://dx.doi.org/10.1155/2015/862391] [PMID: 26347154]
[123]
Han N-R, Kim H-M, Jeong H-J. The β-sitosterol attenuates atopic dermatitis-like skin lesions through down-regulation of TSLP. Exp Biol Med (Maywood) 2014; 239(4): 454-64.
[http://dx.doi.org/10.1177/1535370213520111] [PMID: 24510054]
[124]
Flakelar C, Prenzler P. A rapid method for the simultaneous quantification of the major tocopherols, carotenoids, free and esterified sterols in canola (Brassica napus) oil using normal phase liquid chromatography. Food Chem 2017; 214: 147-55.
[125]
Phillips KM, Ruggio DM, Toivo JI, Swank MA, Simpkins AH. Free and Esterified Sterol Composition of Edible Oils and Fats. J Food Compos Anal 2002; 15(2): 123-42.
[http://dx.doi.org/10.1006/jfca.2001.1044]
[126]
Verleyen T, Forcades M, Verhe R, Dewettinck K, Huyghebaert A, De Greyt W. Analysis of free and esterified sterols in vegetable oils. J Am Oil Chem Soc 2002; 79(2): 117-22.
[http://dx.doi.org/10.1007/s11746-002-0444-3]
[127]
Nergiz C, Celikkale D. The effect of consecutive steps of refining on squalene content of vegetable oils. J Food Sci Technol 2011; 48(3): 382-5.
[http://dx.doi.org/10.1007/s13197-010-0190-2] [PMID: 23572763]
[128]
Ryan E, Galvin K, O’Connor TP, Maguire AR, O’Brien NM. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum Nutr 2007; 62(3): 85-91.
[http://dx.doi.org/10.1007/s11130-007-0046-8] [PMID: 17594521]
[129]
Teneva OT. Lipid composition of flaxseeds. Bulg Chem Commun 2013; 46(3): 465-72.
[130]
Ciftci ON, Przybylski R, Rudzińska M. Lipid components of flax, perilla, and chia seeds. Eur J Lipid Sci Technol 2012; 114(7): 794-800.
[http://dx.doi.org/10.1002/ejlt.201100207]
[131]
Tańska M, Roszkowska B, Skrajda M, Dąbrowski G. Commercial cold pressed flaxseed oils quality and oxidative stability at the beginning and the end of their shelf life. J Oleo Sci 2016; 65(2): 111-21.
[http://dx.doi.org/10.5650/jos.ess15243] [PMID: 26782307]
[132]
Rezig L, Chouaibi M, Msaada K, Hamdi S. Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Ind Crops Prod 2012; 37(1): 82-7.
[http://dx.doi.org/10.1016/j.indcrop.2011.12.004]
[133]
Akin G, Arslan F. Cold-pressed pumpkin seed (Cucurbita pepo L.) oils from the central Anatolia region of Turkey: Characterization of phytosterols, squalene, tocols, phenolic acids, carotenoids and fatty acid bioactive compounds. Grasas y Aceites 2018; 69(1): 232.
[134]
Popa O, Băbeanu NE, Popa I, Nita S, Dinu-Pârvu CE. Methods for obtaining and determination of squalene from natural sources. BioMed Res Int 2015; 2015367202
[http://dx.doi.org/10.1155/2015/367202] [PMID: 25695064]
[135]
Yabuzaki J. Carotenoids Database: structures, chemical fingerprints and distribution among organisms. Database (Oxford) 2017; 2017bax004
[136]
Abdel-Aal ESM, Akhtar MH. Recent advances in the analyses of carotenoids and their role in human health. Curr Pharm Anal 2006; 2(2): 195-204.
[http://dx.doi.org/10.2174/157341206776819319]
[137]
Fiedor J, Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014; 6(2): 466-88.
[http://dx.doi.org/10.3390/nu6020466] [PMID: 24473231]
[138]
Bernstein PS, Li B, Vachali PP, et al. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog Retin Eye Res 2016; 50: 34-66.
[http://dx.doi.org/10.1016/j.preteyeres.2015.10.003] [PMID: 26541886]
[139]
Lakshminarayana R, Baskaran V. Influence of olive oil on the bioavailability of carotenoids. Eur J Lipid Sci Technol 2013; 115(10): 1085-93.
[http://dx.doi.org/10.1002/ejlt.201200254]
[140]
Zuma MK, Kolanisi U, Modi AT. The Potential of Integrating Provitamin A-Biofortified Maize in Smallholder Farming Systems to Reduce Malnourishment in South Africa. Int J Environ Res Public Health 2018; 15(4): 805.
[http://dx.doi.org/10.3390/ijerph15040805] [PMID: 29671831]
[141]
Gunstone F. Rapeseed and Canola Oil: Production, Processing, Properties and Uses: Wiley-Blackwell; Feb 2009.
[142]
Yang M, Zheng C, Zhou Q, Huang F, Liu C, Wang H. Minor components and oxidative stability of cold-pressed oil from rapeseed cultivars in China. J Food Compos Anal 2013; 29(1): 1-9.
[http://dx.doi.org/10.1016/j.jfca.2012.08.009]
[143]
Aruna G, Mamatha BS, Baskaran V. Lutein content of selected Indian vegetables and vegetable oils determined by HPLC. J Food Compos Anal 2009; 22(7): 632-6.
[http://dx.doi.org/10.1016/j.jfca.2009.03.006]
[144]
Koski A, Psomiadou E, Tsimidou M, et al. Oxidative stability and minor constituents of virgin olive oil and cold-pressed rapeseed oil. Eur Food Res Technol 2002; 214(4): 294-8.
[http://dx.doi.org/10.1007/s00217-001-0479-5]
[145]
Liang J, Appukuttan Aachary A, Thiyam-Holländer U. Hemp seed oil: Minor components and oil quality. Lipid Technol 2015; 27(10): 231-3.
[http://dx.doi.org/10.1002/lite.201500050]
[146]
Fujisawa M, Watanabe M, Choi S-K, Teramoto M, Ohyama K, Misawa N. Enrichment of carotenoids in flaxseed (Linum usitatissimum) by metabolic engineering with introduction of bacterial phytoene synthase gene crtB. J Biosci Bioeng 2008; 105(6): 636-41.
[http://dx.doi.org/10.1263/jbb.105.636] [PMID: 18640603]
[147]
Konuskan DB, Arslan M, Oksuz A. Physicochemical properties of cold pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the Eastern Mediterranean region. Saudi J Biol Sci 2019; 26(2): 340-4.
[148]
Bhatnagar-Panwar M, Bhatnagar-Mathur P, Bhaaskarla VV, Dumbala SR, Sharma KK. Rapid, accurate and routine HPLC method for large-scale screening of pro-vitamin A carotenoids in oilseeds. J Plant Biochem Biotechnol 2015; 24(1): 84-92.
[http://dx.doi.org/10.1007/s13562-013-0239-1]
[149]
Ben Moumen A, Mansouri F, Richard G, et al. Biochemical characterisation of the seed oils of four safflower (Carthamus tinctorius) varieties grown in north-eastern of Morocco. Int J Food Sci Technol 2015; 50(3): 804-10.
[http://dx.doi.org/10.1111/ijfs.12714]
[150]
Trenam CW, Dabbagh AJ, Morris CJ, Blake DR. Skin inflammation induced by reactive oxygen species (ROS): an in-vivo model. Br J Dermatol 1991; 125(4): 325-9.
[http://dx.doi.org/10.1111/j.1365-2133.1991.tb14165.x] [PMID: 1954120]
[151]
Wong AP, Kalinovsky T, Niedzwiecki A, Rath M. Efficacy of nutritional treatment in patients with psoriasis: A case report. Exp Ther Med 2015; 10(3): 1071-3.
[http://dx.doi.org/10.3892/etm.2015.2631] [PMID: 26622441]
[152]
Lucas R, Torocsik D, Lowe G, Ruhl R. Altered lycopene isomer ratio and reduced carotenoid and retinoid concentrations in plasma of atopic dermatitis patients. Exp Dermatol 2016; 25: 31.
[153]
Lima XT, Kimball AB. Skin carotenoid levels in adult patients with psoriasis. J Eur Acad Dermatol Venereol 2011; 25(8): 945-9.
[http://dx.doi.org/10.1111/j.1468-3083.2010.03888.x] [PMID: 21054574]
[154]
Lima XT, Lima HC, Kimball AB. A cross-sectional study of skin carotenoid levels in adult patients with psoriasis 2010.
[155]
Amengual J, Widjaja-Adhi MAK, Rodriguez-Santiago S, et al. Two carotenoid oxygenases contribute to mammalian provitamin A metabolism. J Biol Chem 2013; 288(47): 34081-96.
[http://dx.doi.org/10.1074/jbc.M113.501049] [PMID: 24106281]
[156]
Wittmann M, Purwar R, Hartmann C, Gutzmer R, Werfel T. Human keratinocytes respond to interleukin-18: implication for the course of chronic inflammatory skin diseases. J Invest Dermatol 2005; 124(6): 1225-33.
[http://dx.doi.org/10.1111/j.0022-202X.2005.23715.x] [PMID: 15955098]
[157]
Lee JH, Cho DH, Park HJ. IL-18 and Cutaneous Inflammatory Diseases. Int J Mol Sci 2015; 16(12): 29357-69.
[http://dx.doi.org/10.3390/ijms161226172] [PMID: 26690141]
[158]
Ohta Y, Hamada Y, Katsuoka K. Expression of IL-18 in psoriasis. Arch Dermatol Res 2001; 293(7): 334-42.
[http://dx.doi.org/10.1007/s004030100240] [PMID: 11550806]
[159]
Higashi N, Gesser B, Kawana S, Thestrup-Pedersen K. Expression of IL-18 mRNA and secretion of IL-18 are reduced in monocytes from patients with atopic dermatitis. J Allergy Clin Immunol 2001; 108(4): 607-14.
[http://dx.doi.org/10.1067/mai.2001.118601] [PMID: 11590389]
[160]
Huang Q, Zheng ZZ, Xiang LH, Zhu LC. Expression of IL-18-binding protein in monocyte and monocyte-drived Langerhans cell of psoriasis. J Invest Dermatol 2007; 127(7): 1802.
[161]
Lobo GP, Isken A, Hoff S, Babino D, von Lintig J. BCDO2 acts as a carotenoid scavenger and gatekeeper for the mitochondrial apoptotic pathway. Development 2012; 139(16): 2966-77.
[http://dx.doi.org/10.1242/dev.079632] [PMID: 22764054]
[162]
Kopec RE, Riedl KM, Harrison EH, et al. Identification and quantification of apo-lycopenals in fruits, vegetables, and human plasma. J Agric Food Chem 2010; 58(6): 3290-6.
[http://dx.doi.org/10.1021/jf100415z] [PMID: 20178389]
[163]
Tan HL, Moran NE, Cichon MJ, et al. β-Carotene-9′,10′-oxygenase status modulates the impact of dietary tomato and lycopene on hepatic nuclear receptor-, stress-, and metabolism-related gene expression in mice. J Nutr 2014; 144(4): 431-9.
[http://dx.doi.org/10.3945/jn.113.186676] [PMID: 24553694]
[164]
Cooper SJ, Bowden GT. Ultraviolet B regulation of transcription factor families: roles of nuclear factor-kappa B (NF-kappaB) and activator protein-1 (AP-1) in UVB-induced skin carcinogenesis. Curr Cancer Drug Targets 2007; 7(4): 325-34.
[http://dx.doi.org/10.2174/156800907780809714] [PMID: 17979627]
[165]
Gęgotek A, Skrzydlewska E. The role of transcription factor Nrf2 in skin cells metabolism. Arch Dermatol Res 2015; 307(5): 385-96.
[http://dx.doi.org/10.1007/s00403-015-1554-2] [PMID: 25708189]
[166]
Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis 2017; 1863(2): 585-97.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.005] [PMID: 27825853]
[167]
Bouvier F, Dogbo O, Camara B. Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Science 2003; 300(5628): 2089-91.
[http://dx.doi.org/10.1126/science.1085162] [PMID: 12829782]
[168]
Rojo de la Vega M, Krajisnik A, Zhang DD, Wondrak GT. Targeting NRF2 for Improved Skin Barrier Function and Photoprotection: Focus on the Achiote-Derived Apocarotenoid Bixin. Nutrients 2017; 9(12)E1371
[http://dx.doi.org/10.3390/nu9121371] [PMID: 29258247]
[169]
Lian F, Wang XD. Enzymatic metabolites of lycopene induce Nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells. Int J Cancer 2008; 123(6): 1262-8.
[http://dx.doi.org/10.1002/ijc.23696] [PMID: 18566994]
[170]
Chang J, Zhang Y, Li Y, et al. NrF2/ARE and NF-κB pathway regulation may be the mechanism for lutein inhibition of human breast cancer cell. Future Oncol 2018; 14(8): 719-26.
[http://dx.doi.org/10.2217/fon-2017-0584] [PMID: 29336610]
[171]
Yang Y, Yang I, Cao M, et al. Fucoxanthin elicits epigenetic modifications, nrf2 activation and blocking transformation in mouse skin JB6 P+ Cells. AAPS J 2018; 20(2): 32.
[http://dx.doi.org/10.1208/s12248-018-0197-6] [PMID: 29603113]
[172]
Schäfer M, Farwanah H, Willrodt AH, et al. Nrf2 links epidermal barrier function with antioxidant defense. EMBO Mol Med 2012; 4(5): 364-79.
[http://dx.doi.org/10.1002/emmm.201200219] [PMID: 22383093]
[173]
Ishitsuka Y, Roop D. The Nrf2/Keap1 pathway contributes to the pathogenesis of atopic dermatitis by directly regulating the IL33/ST2 pathway in the epidermis. J Dermatol Sci 2016; 84(1): e128-9.
[http://dx.doi.org/10.1016/j.jdermsci.2016.08.385]
[174]
Yang L, Fan X, Cui T, Dang E, Wang G. Nrf2 Promotes Keratinocyte Proliferation in Psoriasis through Up-Regulation of Keratin 6, Keratin 16, and Keratin 17. J Invest Dermatol 2017; 137(10): 2168-76.
[http://dx.doi.org/10.1016/j.jid.2017.05.015] [PMID: 28576737]
[175]
Lee YJ, Bae JH, Kang SG, et al. Pro-oxidant status and Nrf2 levels in psoriasis vulgaris skin tissues and dimethyl fumarate-treated HaCaT cells. Arch Pharm Res 2017; 40(9): 1105-16.
[http://dx.doi.org/10.1007/s12272-017-0955-5] [PMID: 28918452]
[176]
Amann PM, Eichmüller SB, Schmidt J, Bazhin AV. Regulation of gene expression by retinoids. Curr Med Chem 2011; 18(9): 1405-12.
[http://dx.doi.org/10.2174/092986711795029618] [PMID: 21366525]
[177]
Sun SY. How much do we know about retinoid-regulated genes? Cancer Biol Ther 2002; 1(1): 28-30.
[http://dx.doi.org/10.4161/cbt.1.1.36] [PMID: 12197481]
[178]
Yoshioka A, Miyachi Y, Imamura S, Niwa Y. Anti-oxidant effects of retinoids on inflammatory skin diseases. Arch Dermatol Res 1986; 278(3): 177-83.
[http://dx.doi.org/10.1007/BF00412920] [PMID: 3015048]
[179]
Dixon RA, Pasinetti GM. Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol 2010; 154(2): 453-7.
[http://dx.doi.org/10.1104/pp.110.161430] [PMID: 20921162]
[180]
García-Martínez O, De Luna-Bertos E, Ramos-Torrecillas J, et al. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation 2016; 11(3)e0150045
[http://dx.doi.org/10.1371/journal.pone.0150045]
[181]
Kraljić K, Škevin D, Barišić L, Kovačević M, Obranović M, Jurčević I. Changes in 4-vinylsyringol and other phenolics during rapeseed oil refining. Food Chem 2015; 187: 236-42.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.039] [PMID: 25977022]
[182]
Phenol-Explorer. http://phenol-explorer.eu/
[183]
Smeriglio A, Galati EM, Monforte MT, Lanuzza F, D’Angelo V, Circosta C. Polyphenolic Compounds and Antioxidant Activity of Cold-Pressed Seed Oil from Finola Cultivar of Cannabis sativa L. Phytother Res 2016; 30(8): 1298-307.
[http://dx.doi.org/10.1002/ptr.5623] [PMID: 27076277]
[184]
Ryu SN, Ho C-T, Osawa T. High performance liquid chromatographic determination of antioxidant lignan glycosides in some varieties of sesame. J Food Lipids 1998; 5(1): 17-28.
[http://dx.doi.org/10.1111/j.1745-4522.1998.tb00104.x]
[185]
Romani A, Pinelli P, Moschini V, Heimler D. Seeds and oil polyphenol content of sunflower (Helianthus annuus L.) grown with different agricultural management. Adv Hortic Sci 2017; 31(2): 85-8.
[186]
Matusiewicz M, Kosieradzka I, Zuk M, Szopa J. Effect of Dose and Administration Period of Seed Cake of Genetically Modified and Non-Modified Flax on Selected Antioxidative Activities in Rats. Int J Mol Sci 2015; 16(6): 14259-75.
[http://dx.doi.org/10.3390/ijms160614259] [PMID: 26110393]
[187]
Velayudhan DE, Schuh K, Woyengo TA, Sands JS, Nyachoti CM. Effect of expeller extracted canola meal on growth performance, organ weights, and blood parameters of growing pigs. J Anim Sci 2017; 95(1): 302-7.
[http://dx.doi.org/10.2527/jas.2016.1046] [PMID: 28177382]
[188]
González R, Ballester I, López-Posadas R, et al. Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr 2011; 51(4): 331-62.
[http://dx.doi.org/10.1080/10408390903584094] [PMID: 21432698]
[189]
Jin Son M. W Rico C, Hyun Nam S, Young Kang M. Influence of oryzanol and ferulic Acid on the lipid metabolism and antioxidative status in high fat-fed mice. J Clin Biochem Nutr 2010; 46(2): 150-6.
[http://dx.doi.org/10.3164/jcbn.09-98] [PMID: 20216948]
[190]
Matusiewicz M, Kosieradzka I, Zuk M, Szopa J. Genetically modified flax expressing NAP-SsGT1 transgene: examination of anti-inflammatory action. Int J Mol Sci 2014; 15(9): 16741-59.
[http://dx.doi.org/10.3390/ijms150916741] [PMID: 25247574]
[191]
Szydłowska-Czerniak A, Amarowicz R, Szłyk E. Antioxidant capacity of rapeseed meal and rapeseed oils enriched with meal extract. Eur J Lipid Sci Technol 2010; 112(7): 750-60.
[http://dx.doi.org/10.1002/ejlt.200900292]
[192]
Jun H-I, Wiesenborn DP, Kim Y-S. Antioxidant activity of phenolic compounds from canola (Brassica napus) seed. Food Sci Biotechnol 2014; 23(6): 1753-60.
[http://dx.doi.org/10.1007/s10068-014-0240-z]
[193]
Baranowski P, Pezinska-Kijak K, Felska-Blaszczyk L, et al. An Attempt to Determine the Size of Biometric Differences in the Skull of Two Colour Variants of American Mink (Neovison vison). Int J Morphol 2014; 32(3): 895-901.
[http://dx.doi.org/10.4067/S0717-95022014000300024]
[194]
Shyu YS, Hwang LS. Antioxidative activity of the crude extract of lignan glycosides from unroasted Burma black sesame meal. Food Res Int 2002; 35(4): 357-65.
[http://dx.doi.org/10.1016/S0963-9969(01)00130-2]
[195]
Weisz GM, Kammerer DR, Carle R. Identification and quantification of phenolic compounds from sunflower (Helianthus annuus L.) kernels and shells by HPLC-DAD/ESI-MSn. Food Chem 2009; 115(2): 758-65.
[http://dx.doi.org/10.1016/j.foodchem.2008.12.074]
[196]
Kim EH, Kim SH, Chung JI, Chi HY, Kim JA, Chung IM. Analysis of phenolic compounds and isoflavones in soybean seeds (Glycine max (L.) Merill) and sprouts grown under different conditions. Eur Food Res Technol 2005; 222(1): 201.
[197]
Schmidt S, Pokorny J. Potential application of oilseeds as sources of antioxidants for food lipids - a review. Czech J Food Sci 2005; 23(3): 93-102.
[http://dx.doi.org/10.17221/3377-CJFS]
[198]
Karamac M, Kosinska A, Estrella I, Hernandez T, Duenas M. Antioxidant activity of phenolic compounds identified in sunflower seeds. Eur Food Res Technol 2012; 235(2): 221-30.
[http://dx.doi.org/10.1007/s00217-012-1751-6]
[199]
Dudonné S, Poupard P, Coutière P, et al. Phenolic composition and antioxidant properties of poplar bud (Populus nigra) extract: individual antioxidant contribution of phenolics and transcriptional effect on skin aging. J Agric Food Chem 2011; 59(9): 4527-36.
[http://dx.doi.org/10.1021/jf104791t] [PMID: 21425781]
[200]
Pluemsamran T, Onkoksoong T, Panich U. Caffeic acid and ferulic acid inhibit UVA-induced matrix metalloproteinase-1 through regulation of antioxidant defense system in keratinocyte HaCaT cells. Photochem Photobiol 2012; 88(4): 961-8.
[http://dx.doi.org/10.1111/j.1751-1097.2012.01118.x] [PMID: 22360712]
[201]
Fu R, Zhang Y, Peng T, Guo Y, Chen F. Phenolic composition and effects on allergic contact dermatitis of phenolic extracts Sapium sebiferum (L.) Roxb. leaves. J Ethnopharmacol 2015; 162: 176-80.
[http://dx.doi.org/10.1016/j.jep.2014.12.072] [PMID: 25576898]
[202]
Czemplik M, Kulma A, Bazela K, Szopa J. The biomedical potential of genetically modified flax seeds overexpressing the glucosyltransferase gene. BMC Complement Altern Med 2012; 12: 251.
[http://dx.doi.org/10.1186/1472-6882-12-251] [PMID: 23228136]
[203]
Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin Pharmacol Physiol 2018; 31(6): 332-6.
[http://dx.doi.org/10.1159/000491755] [PMID: 30235459]
[204]
Chiocchio I, Mandrone M, Sanna C, Maxia A, Tacchini M, Poli F. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind Crops Prod 2018; 122: 498-505.
[http://dx.doi.org/10.1016/j.indcrop.2018.06.029]
[205]
Nile SH, Ko EY, Kim DH, Keum YS. Screening of ferulic acid related compounds as inhibitors of xanthine oxidase and cyclooxygenase-2 with anti-inflammatory activity. J Pharmacognosy 2016; 26(1): 50-5.
[http://dx.doi.org/10.1016/j.bjp.2015.08.013]
[206]
Liang J, Halipu Y, Hu F, et al. Naringenin protects keratinocytes from oxidative stress injury via inhibition of the NOD2-mediated NF-κB pathway in pemphigus vulgaris. Biomed Pharmacother 2017; 92: 796-801.
[http://dx.doi.org/10.1016/j.biopha.2017.05.112] [PMID: 28591691]
[207]
Santangelo C, Vari R, Scazzocchio B, et al. Anti-inflammatory Activity of Extra Virgin Olive Oil Polyphenols: Which Role in the Prevention and Treatment of Immune-Mediated Inflammatory Diseases? Endocr Metab Immune Disord Drug Targets 2018; 18(1): 36-50.
[PMID: 29141574]
[208]
Zuk M, Dorotkiewicz-Jach A, Drulis-Kawa Z, Arendt M, Kulma A, Szopa J. Bactericidal activities of GM flax seedcake extract on pathogenic bacteria clinical strains. BMC Biotechnol 2014; 14: 70.
[http://dx.doi.org/10.1186/1472-6750-14-70] [PMID: 25073883]
[209]
Huang WC, Tsai TH, Huang CJ, et al. Inhibitory effects of wild bitter melon leaf extract on Propionibacterium acnes-induced skin inflammation in mice and cytokine production in vitro. Food Funct 2015; 6(8): 2550-60.
[http://dx.doi.org/10.1039/C5FO00550G] [PMID: 26098998]
[210]
Rivera D, Rommi K, Fernandes MM, Lantto R, Tzanov T. Biocompounds from rapeseed oil industry co-stream as active ingredients for skin care applications. Int J Cosmet Sci 2015; 37(5): 496-505.
[http://dx.doi.org/10.1111/ics.12222] [PMID: 25824665]
[211]
Lin TK, Zhong L, Santiago JL. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int J Mol Sci 2017; 19(1)E70
[http://dx.doi.org/10.3390/ijms19010070] [PMID: 29280987]
[212]
Skórkowska-Telichowska K, Zuk M, Kulma A, et al. New dressing materials derived from transgenic flax products to treat long-standing venous ulcers--a pilot study. Wound Repair Regen 2010; 18(2): 168-79.
[http://dx.doi.org/10.1111/j.1524-475X.2010.00578.x] [PMID: 20419874]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy