Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Ozonated Oils and Cutaneous Wound Healing

Author(s): Yunsook Lim, Heaji Lee, Brittany Woodby and Giuseppe Valacchi*

Volume 25, Issue 20, 2019

Page: [2264 - 2278] Pages: 15

DOI: 10.2174/1381612825666190702100504

Price: $65

Abstract

Wound tissue repair is a complex and dynamic process of restoring cellular structures and tissue layers. Improvement in this process is necessary to effectively treat several pathologies characterized by a chronic delayed wound closure, such as in diabetes, and the investigation of new approaches aimed to ameliorate the wound healing process is under continuous evolution. Recently, the usage of vegetable matrices in the form of ozonated oils has been proposed, and several researchers have shown positive effects on wound healing, due to the bactericidal, antiviral, and antifungal properties of these ozonated oils.

In the present review, we intend to summarize the actual state of the art of the topical usage of ozonated oil in cutaneous wounds with special emphasis to the importance of the ozonated degree of the oil.

Keywords: Cutaneous wound healing, ROS, peroxidation, topical application, ozonated oil, inflammation.

[1]
Han G, Ceilley R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv Ther 2017; 34(3): 599-610.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[2]
Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci 2016; 73(20): 3861-85.
[http://dx.doi.org/10.1007/s00018-016-2268-0] [PMID: 27180275]
[3]
Branski LK, Gauglitz GG, Herndon DN, Jeschke MG. A review of gene and stem cell therapy in cutaneous wound healing. Burns 2009; 35(2): 171-80.
[http://dx.doi.org/10.1016/j.burns.2008.03.009]
[4]
Frykberg RG, Banks J. Challenges in the Treatment of Chronic Wounds. Adv Wound Care (New Rochelle) 2015; 4(9): 560-82.
[http://dx.doi.org/10.1089/wound.2015.0635] [PMID: 26339534]
[5]
Sen CK, Gordillo GM, Roy S, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 2009; 17(6): 763-71.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00543.x]
[6]
Zeng J, Lu J. Mechanisms of action involved in ozone-therapy in skin diseases. Int Immunopharmacol 2018; 56: 235-41.
[http://dx.doi.org/10.1016/j.intimp.2018.01.040] [PMID: 29414657]
[7]
Valacchi G, Sticozzi C, Zanardi I, et al. Ozone mediators effect on “in vitro” scratch wound closure. Free Radic Res 2016; 50(9): 1022-31.
[http://dx.doi.org/10.1080/10715762.2016.1219731] [PMID: 27487012]
[8]
Valacchi G, Lim Y, Belmonte G, et al. Ozonated sesame oil enhances cutaneous wound healing in SKH1 mice. Wound Repair Regen 2011; 19(1): 107-15.
[http://dx.doi.org/10.1111/j.1524-475X.2010.00649.x]
[9]
Sinno H, Prakash S. Complements and the wound healing cascade: an updated review. Plast Surg Int 2013; 2013146764
[http://dx.doi.org/10.1155/2013/146764] [PMID: 23984063]
[10]
Nurden AT. The biology of the platelet with special reference to inflammation, wound healing and immunity. Front Biosci 2018; 23: 726-51.
[http://dx.doi.org/10.2741/4613] [PMID: 28930569]
[11]
Strbo N, Yin N, Stojadinovic O. Innate and Adaptive Immune Responses in Wound Epithelialization. Adv Wound Care (New Rochelle) 2014; 3(7): 492-501.
[12]
Gillitzer R, Goebeler M. Chemokines in cutaneous wound healing. J Leukoc Biol 2001; 69(4): 513-21.
[PMID: 11310836] [http://dx.doi.org/10.1089/wound.2012.0435] [PMID: 25032069]
[13]
Gray C, Loynes CA, Whyte MK, Crossman DC, Renshaw SA, Chico TJ. Simultaneous intravital imaging of macrophage and neutrophil behaviour during inflammation using a novel transgenic zebrafish. Thromb Haemost 2011; 105(5): 811-9.
[http://dx.doi.org/10.1160/TH10-08-0525] [PMID: 21225092]
[14]
Kim MH, Liu W, Borjesson DL, et al. Dynamics of neutrophil infiltration during cutaneous wound healing and infection using fluorescence imaging. J Invest Dermatol 2008; 128(7): 1812-20.
[http://dx.doi.org/10.1038/sj.jid.5701223] [PMID: 18185533]
[15]
Dovi JV, Szpaderska AM, DiPietro LA. Neutrophil function in the healing wound: adding insult to injury? Thromb Haemost 2004; 92(2): 275-80.
[http://dx.doi.org/10.1160/TH03-11-0720] [PMID: 15269822]
[16]
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8(12): 958-69.
[http://dx.doi.org/10.1038/nri2448] [PMID: 19029990]
[17]
Rodero MP, Khosrotehrani K. Skin wound healing modulation by macrophages. Int J Clin Exp Pathol 2010; 3(7): 643-53.
[PMID: 20830235]
[18]
Ruthenborg RJ, Ban JJ, Wazir A, Takeda N, Kim JW. Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1. Mol Cells 2014; 37(9): 637-43.
[http://dx.doi.org/10.14348/molcells.2014.0150] [PMID: 24957212]
[19]
Egners A, Erdem M, Cramer T. The Response of Macrophages and Neutrophils to Hypoxia in the Context of Cancer and Other Inflammatory Diseases. Mediators Inflamm 2016; 20162053646
[http://dx.doi.org/10.1155/2016/2053646] [PMID: 27034586]
[20]
Li J, Chen J, Kirsner R. Pathophysiology of acute wound healing. Clin Dermatol 2007; 25(1): 9-18.
[http://dx.doi.org/10.1016/j.clindermatol.2006.09.007] [PMID: 17276196]
[21]
Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen 2008; 16(5): 585-601.
[22]
Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 2009; 17(2): 153-62.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00466.x]
[23]
Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999; 341(10): 738-46.
[http://dx.doi.org/10.1056/NEJM199909023411006] [PMID: 10471461]
[24]
Greenhalgh DG. The role of apoptosis in wound healing. Int J Biochem Cell Biol 1998; 30(9): 1019-30.
[http://dx.doi.org/10.1016/S1357-2725(98)00058-2] [PMID: 9785465]
[25]
Brown BN, Sicari BM, Badylak SF. Rethinking regenerative medicine: a macrophage-centered approach. Front Immunol 2014; 5: 510.
[http://dx.doi.org/10.3389/fimmu.2014.00510] [PMID: 25408693]
[26]
Dovi JV, He LK, DiPietro LA. Accelerated wound closure in neutrophil-depleted mice. J Leukoc Biol 2003; 73(4): 448-55.
[http://dx.doi.org/10.1189/jlb.0802406] [PMID: 12660219]
[27]
Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J 2017; 14(1): 89-96.
[http://dx.doi.org/10.1111/iwj.12557] [PMID: 26688157]
[28]
Goren I, Müller E, Schiefelbein D, et al. Systemic anti-TNFalpha treatment restores diabetes-impaired skin repair in ob/ob mice by inactivation of macrophages. J Invest Dermatol 2007; 127(9): 2259-67.
[http://dx.doi.org/10.1038/sj.jid.5700842] [PMID: 17460730]
[29]
Wetzler C, Kämpfer H, Stallmeyer B, Pfeilschifter J, Frank S. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. J Invest Dermatol 2000; 115(2): 245-53.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00029.x] [PMID: 10951242]
[30]
Shin J, Yang SJ, Lim Y. Gamma-tocopherol supplementation ameliorated hyper-inflammatory response during the early cutaneous wound healing in alloxan-induced diabetic mice. Exp Biol Med (Maywood) 2017; 242(5): 505-15.
[http://dx.doi.org/10.1177/1535370216683836] [PMID: 28211759]
[31]
McCarty SM, Percival SL. Proteases and Delayed Wound Healing. Adv Wound Care (New Rochelle) 2013; 2(8): 438-47.
[http://dx.doi.org/10.1089/wound.2012.0370] [PMID: 24688830]
[32]
Jaminelli B. Challenges in the Treatment of Chronic Wounds. Adv Wound Care 2015; 4(9): 560-82.
[http://dx.doi.org/10.1089/wound.2015.0635]
[33]
Davidson JM. Animal models for wound repair. Arch Dermatol Res 1998; 290(Suppl.): S1-S11.
[http://dx.doi.org/10.1007/PL00007448] [PMID: 9710378]
[34]
Seaton M, Hocking A, Gibran NS. Porcine models of cutaneous wound healing. ILAR J 2015; 56(1): 127-38.
[http://dx.doi.org/10.1093/ilar/ilv016] [PMID: 25991704]
[35]
Holt DR, Kirk SJ, Regan MC, Hurson M, Lindblad WJ, Barbul A. Effect of age on wound healing in healthy human beings. Surgery 1992; 112(2): 293-7.
[PMID: 1641768]
[36]
Cohen IK, Crossland MC, Garrett A, Diegelmann RF. Topical application of epidermal growth factor onto partial-thickness wounds in human volunteers does not enhance reepithelialization. Plast Reconstr Surg 1995; 96(2): 251-4.
[http://dx.doi.org/10.1097/00006534-199508000-00001] [PMID: 7624397]
[37]
Khan AA, Banwell PE, Bakker MC, Gillespie PG, McGrouther DA, Roberts AH. Topical radiant heating in wound healing: an experimental study in a donor site wound model. Int Wound J 2004; 1(4): 233-40.
[http://dx.doi.org/10.1111/j.1742-4801.2004.00065.x] [PMID: 16722872]
[38]
Brown NJ, Smyth EA, Cross SS, Reed MW. Angiogenesis induction and regression in human surgical wounds. Wound Repair Regen 2002; 10(4): 245-51.
[http://dx.doi.org/10.1046/j.1524-475X.2002.10408.x]
[39]
Lockhart AC, Braun RD, Yu D, et al. A clinical model of dermal wound angiogenesis. Wound Repair Regen 2003; 11(4): 306-13.
[http://dx.doi.org/10.1046/j.1524-475X.2003.11411.x]
[40]
Ud-Din S, Sebastian A, Giddings P, et al. Angiogenesis is induced and wound size is reduced by electrical stimulation in an acute wound healing model in human skin. PLoS One 2015; 10(4)e0124502
[http://dx.doi.org/10.1371/journal.pone.0124502] [PMID: 25928356]
[41]
De Vries HJ, Zeegelaar JE, Middelkoop E, et al. Reduced wound contraction and scar formation in punch biopsy wounds. Native collagen dermal substitutes. A clinical study. Br J Dermatol 1995; 132(5): 690-7.
[http://dx.doi.org/10.1111/j.1365-2133.1995.tb00712.x] [PMID: 7772472]
[42]
Sørensen LT, Toft BG, Rygaard J, et al. Effect of smoking, smoking cessation, and nicotine patch on wound dimension, vitamin C, and systemic markers of collagen metabolism. Surgery 2010; 148(5): 982-90.
[http://dx.doi.org/10.1016/j.surg.2010.02.005] [PMID: 20347467]
[43]
Saba AA, Freedman BM, Gaffield JW, Mackay DR, Ehrlich HP. Topical platelet-derived growth factor enhances wound closure in the absence of wound contraction: an experimental and clinical study. Ann Plast Surg 2002; 49(1): 62-6.
[http://dx.doi.org/10.1097/00000637-200207000-00010] [PMID: 12142597]
[44]
Sheu SY, Wang WL, Fu YT, et al. The pig as an experimental model for mid-dermal burns research. Burns 2014; 40(8): 1679-88.
[http://dx.doi.org/10.1016/j.burns.2014.04.023]
[45]
Cuttle L, Kempf M, Phillips GE, et al. A porcine deep dermal partial thickness burn model with hypertrophic scarring. Burns 2006; 32(7): 806-20.
[http://dx.doi.org/10.1016/j.burns.2006.02.023]
[46]
Brans TA, Dutrieux RP, Hoekstra MJ, Kreis RW, du Pont JS. Histopathological evaluation of scalds and contact burns in the pig model. Burns 1994; 20(Suppl. 1): S48-51.
[http://dx.doi.org/10.1016/0305-4179(94)90090-6]
[47]
Alexander JW, Saito H, Trocki O, Ogle CK. The importance of lipid type in the diet after burn injury. Ann Surg 1986; 204(1): 1-8.
[http://dx.doi.org/10.1097/00000658-198607000-00001] [PMID: 3015058]
[48]
Wong VW, Sorkin M, Glotzbach JP, Longaker MT, Gurtner GC. Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol 2011; 2011969618
[http://dx.doi.org/10.1155/2011/969618] [PMID: 21151647]
[49]
Ambrozova N, Ulrichova J, Galandakova A. Models for the study of skin wound healing. The role of Nrf2 and NF-κB. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161(1): 1-13.
[http://dx.doi.org/10.5507/bp.2016.063] [PMID: 28115750]
[50]
van den Broek LJ, Limandjaja GC, Niessen FB, Gibbs S. Human hypertrophic and keloid scar models: principles, limitations and future challenges from a tissue engineering perspective. Exp Dermatol 2014; 23(6): 382-6.
[http://dx.doi.org/10.1111/exd.12419] [PMID: 24750541]
[51]
Monsuur HN, Boink MA, Weijers EM, et al. Methods to study differences in cell mobility during skin wound healing in vitro. J Biomech 2016; 49(8): 1381-7.
[http://dx.doi.org/10.1016/j.jbiomech.2016.01.040] [PMID: 26903411]
[52]
Gabbiani G, Gabbiani F, Heimark RL, Schwartz SM. Organization of actin cytoskeleton during early endothelial regeneration in vitro. J Cell Sci 1984; 66: 39-50.
[PMID: 6540272]
[53]
Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 1975; 6(3): 331-43.
[http://dx.doi.org/10.1016/S0092-8674(75)80001-8] [PMID: 1052771]
[54]
Wang Z, Wang Y, Farhangfar F, Zimmer M, Zhang Y. Enhanced keratinocyte proliferation and migration in co-culture with fibroblasts. PLoS One 2012; 7(7)e40951
[http://dx.doi.org/10.1371/journal.pone.0040951] [PMID: 22911722]
[55]
Seo GY, Lim Y, Koh D, et al. TMF and glycitin act synergistically on keratinocytes and fibroblasts to promote wound healing and anti-scarring activity. Exp Mol Med 2017; 49(3)e302
[http://dx.doi.org/10.1038/emm.2016.167] [PMID: 28303029]
[56]
Popov L, Kovalski J, Grandi G, Bagnoli F, Amieva MR. Three-Dimensional Human Skin Models to Understand Staphylococcus aureus Skin Colonization and Infection. Front Immunol 2014; 5: 41.
[http://dx.doi.org/10.3389/fimmu.2014.00041] [PMID: 24567733]
[57]
Horsfall L, Macdonald G, Scott I, et al. Use of standardised assessment forms in referrals to hepatology outpatient services: implications for accurate triaging of patients with chronic hepatitis C. Aust Health Rev 2013; 37(2): 218-22.
[58]
Karamichos D, Lakshman N, Petroll WM. An experimental model for assessing fibroblast migration in 3-D collagen matrices. Cell Motil Cytoskeleton 2009; 66(1): 1-9.
[http://dx.doi.org/10.1002/cm.20326] [PMID: 19061246]
[59]
Auxenfans C, Fradette J, Lequeux C, et al. Evolution of three dimensional skin equivalent models reconstructed in vitro by tissue engineering. Eur J Dermatol 2009; 19(2): 107-13.
[PMID: 19106039]
[60]
Ponec M, El Ghalbzouri A, Dijkman R, Kempenaar J, van der Pluijm G, Koolwijk P. Endothelial network formed with human dermal microvascular endothelial cells in autologous multicellular skin substitutes. Angiogenesis 2004; 7(4): 295-305.
[http://dx.doi.org/10.1007/s10456-004-6315-3] [PMID: 15886873]
[61]
Kosten IJ, Spiekstra SW, de Gruijl TD, Gibbs S. MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure. Toxicol Appl Pharmacol 2015; 287(1): 35-42.
[http://dx.doi.org/10.1016/j.taap.2015.05.017] [PMID: 26028481]
[62]
Ouwehand K, Spiekstra SW, Waaijman T, Scheper RJ, de Gruijl TD, Gibbs S. Technical advance: Langerhans cells derived from a human cell line in a full-thickness skin equivalent undergo allergen-induced maturation and migration. J Leukoc Biol 2011; 90(5): 1027-33.
[http://dx.doi.org/10.1189/jlb.0610374] [PMID: 21697260]
[63]
Breetveld M, Richters CD, Rustemeyer T, Scheper RJ, Gibbs S. Comparison of wound closure after burn and cold injury in human skin equivalents. J Invest Dermatol 2006; 126(8): 1918-21.
[http://dx.doi.org/10.1038/sj.jid.5700330] [PMID: 16645585]
[64]
Kroeze KL, Boink MA, Sampat-Sardjoepersad SC, Waaijman T, Scheper RJ, Gibbs S. Autocrine regulation of re-epithelialization after wounding by chemokine receptors CCR1, CCR10, CXCR1, CXCR2, and CXCR3. J Invest Dermatol 2012; 132(1): 216-25.
[http://dx.doi.org/10.1038/jid.2011.245] [PMID: 21850025]
[65]
van Daalen FV, Prins JM, Opmeer BC, et al. Effect of an antibiotic checklist on length of hospital stay and appropriate antibiotic use in adult patients treated with intravenous antibiotics: a stepped wedge cluster randomized trial Clin Microbiol Infect 2017; 23(7): 485.e1- .e8.
[http://dx.doi.org/10.1016/j.cmi.2017.01.019]]
[66]
Zhou X, Fragala MS, McElhaney JE, Kuchel GA. Conceptual and methodological issues relevant to cytokine and inflammatory marker measurements in clinical research. Curr Opin Clin Nutr Metab Care 2010; 13(5): 541-7.
[http://dx.doi.org/10.1097/MCO.0b013e32833cf3bc] [PMID: 20657280]
[67]
Sanz AB, Sanchez-Niño MD, Carrasco S, et al. Inflammatory cytokines and survival factors from serum modulate tweak-induced apoptosis in PC-3 prostate cancer cells. PLoS One 2012; 7(10)e47440
[http://dx.doi.org/10.1371/journal.pone.0047440] [PMID: 23077618]
[68]
Portugal-Cohen M, Soroka Y, Frušić-Zlotkin M, et al. Skin organ culture as a model to study oxidative stress, inflammation and structural alterations associated with UVB-induced photodamage. Exp Dermatol 2011; 20(9): 749-55.
[http://dx.doi.org/10.1111/j.1600-0625.2011.01317.x] [PMID: 21707755]
[69]
Doolin EJ, Strande LF, Chen MK, Kain MS, Hewitt CW. The effect of leukocyte infiltration on apoptosis in an in vitro thermal injury bioartificial living skin equivalent model. J Burn Care Rehabil 1999; 20(5): 374-6.
[http://dx.doi.org/10.1097/00004630-199909000-00008] [PMID: 10501324]
[70]
Liu SH, Xie WG, Kremer M, Machens HG, Lankenau EM, Huettmann G. Diagnosis of the deep partial-thickness burn wound of Skh-1 mouse with Optical Coherence Tomography. Zhonghua Shao Shang Za Zhi 2010; 26(4): 272-5.
[71]
Vukelic S, Stojadinovic O, Pastar I, et al. Farnesyl pyrophosphate inhibits epithelialization and wound healing through the glucocorticoid receptor. J Biol Chem 2010; 285(3): 1980-8.
[http://dx.doi.org/10.1074/jbc.M109.016741] [PMID: 19903814]
[72]
Fernandez TL, Van Lonkhuyzen DR, Dawson RA, Kimlin MG, Upton Z. Characterization of a human skin equivalent model to study the effects of ultraviolet B radiation on keratinocytes. Tissue Eng Part C Methods 2014; 20(7): 588-98.
[http://dx.doi.org/10.1089/ten.tec.2013.0293] [PMID: 24219750]
[73]
Ansell DM, Holden KA, Hardman MJ. Animal models of wound repair: Are they cutting it? Exp Dermatol 2012; 21(8): 581-5.
[http://dx.doi.org/10.1111/j.1600-0625.2012.01540.x] [PMID: 22775993]
[74]
Sebastian A, Iqbal SA, Colthurst J, Volk SW, Bayat A. Electrical stimulation enhances epidermal proliferation in human cutaneous wounds by modulating p53-SIVA1 interaction. J Invest Dermatol 2015; 135(4): 1166-74.
[http://dx.doi.org/10.1038/jid.2014.502] [PMID: 25431847]
[75]
Hodgkinson T, Bayat A. In vitro and ex vivo analysis of hyaluronan supplementation of Integra® dermal template on human dermal fibroblasts and keratinocytes. J Appl Biomater Funct Mater 2016; 14(1): e9-e18.
[http://dx.doi.org/10.5301/jabfm.5000259] [PMID: 26689817]
[76]
Brem H, Golinko MS, Stojadinovic O, et al. Primary cultured fibroblasts derived from patients with chronic wounds: a methodology to produce human cell lines and test putative growth factor therapy such as GMCSF. J Transl Med 2008; 6: 75.
[http://dx.doi.org/10.1186/1479-5876-6-75] [PMID: 19046453]
[77]
Brem H, Stojadinovic O, Diegelmann RF, et al. Molecular markers in patients with chronic wounds to guide surgical debridement. Mol Med 2007; 13(1-2): 30-9.
[http://dx.doi.org/10.2119/2006-00054.Brem] [PMID: 17515955]
[78]
Ataç B, Wagner I, Horland R, et al. Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion. Lab Chip 2013; 13(18): 3555-61.
[http://dx.doi.org/10.1039/c3lc50227a] [PMID: 23674126]
[79]
Sriram G, Bigliardi PL, Bigliardi-Qi M. Full-Thickness Human Skin Equivalent Models of Atopic Dermatitis. Methods Mol Biol 2018.
[http://dx.doi.org/10.1007/7651_2018_163]
[80]
Wufuer M, Lee G, Hur W, et al. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci Rep 2016; 6: 37471.
[http://dx.doi.org/10.1038/srep37471] [PMID: 27869150]
[81]
Grada A, Mervis J, Falanga V. Research Techniques Made Simple: Animal Models of Wound Healing. J Invest Dermatol 2018; 138(10): 2095-2105.e1.
[http://dx.doi.org/10.1016/j.jid.2018.08.005] [PMID: 30244718]
[82]
Viñals F, Pouysségur J. Transforming growth factor beta1 (TGF-beta1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-alpha signaling. Mol Cell Biol 2001; 21(21): 7218-30.
[http://dx.doi.org/10.1128/MCB.21.21.7218-7230.2001] [PMID: 11585905]
[83]
Wilhelm KP, Wilhelm D, Bielfeldt S. Models of wound healing: an emphasis on clinical studies. Int Soc Skin Imag 2017; 23(1): 3-12.
[84]
Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004; 10(8): 858-64.
[http://dx.doi.org/10.1038/nm1075] [PMID: 15235597]
[85]
Galiano RD. Michaels Jt, Dobryansky M, Levine JP, Gurtner GC. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen 2004; 12(4): 485-92.
[http://dx.doi.org/10.1111/j.1067-1927.2004.12404.x]
[86]
Dunn L, Prosser HC, Tan JT, Vanags LZ, Ng MK, Bursill CA. Murine model of wound healing. J Vis Exp 2013; (75): e50265
[PMID: 23748713]
[87]
Ansell DM, Kloepper JE, Thomason HA, Paus R, Hardman MJ. Exploring the “hair growth-wound healing connection”: anagen phase promotes wound re-epithelialization. J Invest Dermatol 2011; 131(2): 518-28.
[http://dx.doi.org/10.1038/jid.2010.291] [PMID: 20927125]
[88]
Baquerizo Nole KL, Kirsner RS. Hair follicles and their potential in wound healing. Exp Dermatol 2015; 24(2): 95-6.
[http://dx.doi.org/10.1111/exd.12607] [PMID: 25431243]
[89]
Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol 2004; 172(5): 2731-8.
[http://dx.doi.org/10.4049/jimmunol.172.5.2731]
[90]
Ahn ST, Mustoe TA. Effects of ischemia on ulcer wound healing: a new model in the rabbit ear. Ann Plast Surg 1990; 24(1): 17-23.
[http://dx.doi.org/10.1097/00000637-199001000-00004] [PMID: 2301878]
[91]
Xia YP, Zhao Y, Marcus J, et al. Effects of keratinocyte growth factor-2 (KGF-2) on wound healing in an ischaemia-impaired rabbit ear model and on scar formation. J Pathol 1999; 188(4): 431-8.
[http://dx.doi.org/10.1002/(SICI)1096-9896(199908)188:4<431:AID-PATH362>3.0.CO;2-B] [PMID: 10440755]
[92]
Montagna W, Yun JS. The skin of the domestic pig. J Invest Dermatol 1964; 42: 11-21.
[http://dx.doi.org/10.1038/jid.1964.110] [PMID: 14209446]
[93]
John P. Sundberg LBN, Philip Fleckman, Lloyd E King 23 - Skin and Adnexa. Academic Press 2012; pp. 433-55.
[94]
Zhu KQ, Engrav LH, Gibran NS, et al. The female, red Duroc pig as an animal model of hypertrophic scarring and the potential role of the cones of skin. Burns 2003; 29(7): 649-64.
[http://dx.doi.org/10.1016/S0305-4179(03)00205-5]
[95]
Lindblad WJ. Considerations for selecting the correct animal model for dermal wound-healing studies. J Biomater Sci Polym Ed 2008; 19(8): 1087-96.
[http://dx.doi.org/10.1163/156856208784909390] [PMID: 18644233]
[96]
Rittié L, Sachs DL, Orringer JS, Voorhees JJ, Fisher GJ. Eccrine sweat glands are major contributors to reepithelialization of human wounds. Am J Pathol 2013; 182(1): 163-71.
[http://dx.doi.org/10.1016/j.ajpath.2012.09.019] [PMID: 23159944]
[97]
Velander P, Theopold C, Bleiziffer O, et al. Cell suspensions of autologous keratinocytes or autologous fibroblasts accelerate the healing of full thickness skin wounds in a diabetic porcine wound healing model. J Surg Res 2009; 157(1): 14-20.
[http://dx.doi.org/10.1016/j.jss.2008.10.001] [PMID: 19589541]
[98]
Drouin G, Godin JR, Pagé B. The genetics of vitamin C loss in vertebrates. Curr Genomics 2011; 12(5): 371-8.
[http://dx.doi.org/10.2174/138920211796429736] [PMID: 22294879]
[99]
Bartlett MK, Jones CM, Ryan AE. Vitamin C and Wound Healing. N Engl J Med 1942; 226(12): 474-81.
[http://dx.doi.org/10.1056/NEJM194203192261202]
[100]
Abercrombie GF. Emergency admissions to hospital in winter. Lancet 1956; 271(6951): 1039-42.
[http://dx.doi.org/10.1016/S0140-6736(56)90286-0] [PMID: 13377668]
[101]
Mace KA, Pearson JC, McGinnis W. An epidermal barrier wound repair pathway in Drosophila is mediated by grainy head. Science 2005; 308(5720): 381-5.
[http://dx.doi.org/10.1126/science.1107573] [PMID: 15831751]
[102]
Ting SB, Caddy J, Hislop N, et al. A homolog of Drosophila grainy head is essential for epidermal integrity in mice. Science 2005; 308(5720): 411-3.
[http://dx.doi.org/10.1126/science.1107511] [PMID: 15831758]
[103]
Caddy J, Wilanowski T, Darido C, et al. Epidermal wound repair is regulated by the planar cell polarity signaling pathway. Dev Cell 2010; 19(1): 138-47.
[http://dx.doi.org/10.1016/j.devcel.2010.06.008] [PMID: 20643356]
[104]
Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol 2015; 173(2): 370-8.
[http://dx.doi.org/10.1111/bjd.13954] [PMID: 26175283]
[105]
Richardson R, Slanchev K, Kraus C, Knyphausen P, Eming S, Hammerschmidt M. Adult zebrafish as a model system for cutaneous wound-healing research. J Invest Dermatol 2013; 133(6): 1655-65.
[http://dx.doi.org/10.1038/jid.2013.16] [PMID: 23325040]
[106]
Richardson R, Metzger M, Knyphausen P, et al. Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals. Development 2016; 143(12): 2077-88.
[http://dx.doi.org/10.1242/dev.130492] [PMID: 27122176]
[107]
Niethammer P, Grabher C, Look AT, Mitchison TJ. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 2009; 459(7249): 996-9.
[http://dx.doi.org/10.1038/nature08119] [PMID: 19494811]
[108]
Hoodless LJ, Lucas CD, Duffin R, et al. Genetic and pharmacological inhibition of CDK9 drives neutrophil apoptosis to resolve inflammation in zebrafish in vivo. Sci Rep 2016; 5: 36980.
[http://dx.doi.org/10.1038/srep36980] [PMID: 27833165]
[109]
Goldsmith JR, Jobin C. Think small: zebrafish as a model system of human pathology. J Biomed Biotechnol 2012; 2012817341
[http://dx.doi.org/10.1155/2012/817341] [PMID: 22701308]
[110]
Gao Y, Wang X, Chen S, Li S, Liu X. Acute skin barrier disruption with repeated tape stripping: an in vivo model for damage skin barrier. Skin Res Technol 2013; 19(2): 162-8.
[111]
Lademann J, Jacobi U, Surber C, Weigmann HJ, Fluhr JW. The tape stripping procedure-evaluation of some critical parameters. Eur J Pharm Biopharm 2009; 72(2): 317-23.
[112]
Pereira GG, Guterres SS, Balducci AG, Colombo P, Sonvico F. Polymeric films loaded with vitamin E and aloe vera for topical application in the treatment of burn wounds. BioMed Res Int 2014; 2014641590
[http://dx.doi.org/10.1155/2014/641590] [PMID: 24524083]
[113]
Krawczyk WS, Wilgram GF. Hemidesmosome and desmosome morphogenesis during epidermal wound healing. J Ultrastruct Res 1973; 45(1): 93-101.
[http://dx.doi.org/10.1016/S0022-5320(73)90035-X] [PMID: 4750505]
[114]
Kottner J, Hillmann K, Fimmel S, Seité S, Blume-Peytavi U. Characterisation of epidermal regeneration in vivo: a 60-day follow-up study. J Wound Care 2013; 22(8): 395-400.
[http://dx.doi.org/10.12968/jowc.2013.22.8.395] [PMID: 23924838]
[115]
Myers SR, Leigh IM, Navsaria H. Epidermal repair results from activation of follicular and epidermal progenitor keratinocytes mediated by a growth factor cascade. Wound Repair Regen 2007; 15(5): 693-701.
[http://dx.doi.org/10.1111/j.1524-475X.2007.00297.x]
[116]
Daeschlein G, Alborova J, Patzelt A, Kramer A, Lademann J. Kinetics of physiological skin flora in a suction blister wound model on healthy subjects after treatment with water-filtered infrared-A radiation. Skin Pharmacol Physiol 2012; 25(2): 73-7.
[http://dx.doi.org/10.1159/000332753] [PMID: 22123525]
[117]
Wigger-Alberti W, Kuhlmann M, Ekanayake S, Wilhelm D. Using a novel wound model to investigate the healing properties of products for superficial wounds. J Wound Care 2009; 18(3): 123-8.
[http://dx.doi.org/10.12968/jowc.2009.18.3.39813]
[118]
Wigger-Alberti W, Stauss-Grabo M, Grigo K, Atiye S, Williams R, Korting HC. Efficacy of a tyrothricin-containing wound gel in an abrasive wound model for superficial wounds. Skin Pharmacol Physiol 2013; 26(1): 52-6.
[http://dx.doi.org/10.1159/000343907] [PMID: 23183356]
[119]
Ferraq Y, Black DR, Theunis J, Mordon S. Superficial wounding model for epidermal barrier repair studies: comparison of Erbium: YAG laser and the suction blister method. Lasers Surg Med 2012; 44(7): 525-32.
[http://dx.doi.org/10.1002/lsm.22054] [PMID: 22865469]
[120]
Schäfer M, Werner S. Oxidative stress in normal and impaired wound repair. Pharmacol Res 2008; 58(2): 165-71.
[http://dx.doi.org/10.1016/j.phrs.2008.06.004] [PMID: 18617006]
[121]
Bishop A. Role of oxygen in wound healing. J Wound Care 2008; 17(9): 399-402.
[http://dx.doi.org/10.12968/jowc.2008.17.9.30937] [PMID: 18833899]
[122]
Schäfer M, Werner S. Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 2008; 9(8): 628-38.
[http://dx.doi.org/10.1038/nrm2455] [PMID: 18628784]
[123]
McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969; 244(22): 6049-55.
[PMID: 5389100]
[124]
Fenton HJH. M.A. LXXIII.—Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 1925; 127: 1-36.
[125]
Loew O. A new enzyme of general occurrence in organismis. Science 1900; 11(279): 701-2.
[http://dx.doi.org/10.1126/science.11.279.701] [PMID: 17751716]
[126]
Mills GC. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem 1957; 229(1): 189-97.
[PMID: 13491573]
[127]
Kim K, Kim IH, Lee KY, Rhee SG, Stadtman ER. The isolation and purification of a specific “protector” protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J Biol Chem 1988; 263(10): 4704-11.
[PMID: 2895105]
[128]
Patlevič P, Vašková J, Švorc P Jr, Vaško L, Švorc P. Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr Med Res 2016; 5(4): 250-8.
[http://dx.doi.org/10.1016/j.imr.2016.07.004] [PMID: 28462126]
[129]
Nathan CF, Root RK. Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. J Exp Med 1977; 146(6): 1648-62.
[http://dx.doi.org/10.1084/jem.146.6.1648] [PMID: 925614]
[130]
Niethammer P, Grabher C, Look AT, Mitchison TJ. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 2009; 459(7249): 996-9.
[http://dx.doi.org/10.1038/nature08119] [PMID: 19494811]
[131]
Moseley R, Stewart JE, Stephens P, Waddington RJ, Thomas DW. Extracellular matrix metabolites as potential biomarkers of disease activity in wound fluid: lessons learned from other inflammatory diseases? Br J Dermatol 2004; 150(3): 401-13.
[http://dx.doi.org/10.1111/j.1365-2133.2004.05845.x] [PMID: 15030321]
[132]
Roy S, Khanna S, Nallu K, Hunt TK, Sen CK, Sen CK. Dermal wound healing is subject to redox control. Mol Ther 2006; 13(1): 211-20.
[http://dx.doi.org/10.1016/j.ymthe.2005.07.684]
[133]
Ojha N, Roy S, He G, et al. Assessment of wound-site redox environment and the significance of Rac2 in cutaneous healing. Free Radic Biol Med 2008; 44(4): 682-91.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.10.056] [PMID: 18068132]
[134]
Marrocco I, Altieri F. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxid Med Cell Longev 2017; 20176501046
[135]
Gupta A, Singh RL, Raghubir R. Antioxidant status during cutaneous wound healing in immunocompromised rats. Mol Cell Biochem 2002; 241(1-2): 1-7.
[http://dx.doi.org/10.1023/A:1020804916733] [PMID: 12482019]
[136]
Moseley R, Hilton JR, Waddington RJ, Harding KG, Stephens P, Thomas DW. Comparison of oxidative stress biomarker profiles between acute and chronic wound environments. Wound Repair Regen 2004; 12(4): 419-29.
[http://dx.doi.org/10.1111/j.1067-1927.2004.12406.x]
[137]
Chigurupati S, Mughal MR, Chan SL, et al. A synthetic uric acid analog accelerates cutaneous wound healing in mice. PLoS One 2010; 5(4)e10044
[http://dx.doi.org/10.1371/journal.pone.0010044] [PMID: 20386608]
[138]
Steiling H, Munz B, Werner S, Brauchle M. Different types of ROS-scavenging enzymes are expressed during cutaneous wound repair. Exp Cell Res 1999; 247(2): 484-94.
[http://dx.doi.org/10.1006/excr.1998.4366] [PMID: 10066376]
[139]
Kümin A, Schäfer M, Epp N, et al. Peroxiredoxin 6 is required for blood vessel integrity in wounded skin. J Cell Biol 2007; 179(4): 747-60.
[http://dx.doi.org/10.1083/jcb.200706090] [PMID: 18025307]
[140]
Shukla A, Rasik AM, Patnaik GK. Depletion of reduced glutathione, ascorbic acid, vitamin E and antioxidant defence enzymes in a healing cutaneous wound. Free Radic Res 1997; 26(2): 93-101.
[http://dx.doi.org/10.3109/10715769709097788] [PMID: 9257121]
[141]
Brauchle M, Funk JO, Kind P, Werner S. Ultraviolet B and H2O2 are potent inducers of vascular endothelial growth factor expression in cultured keratinocytes. J Biol Chem 1996; 271(36): 21793-7.
[http://dx.doi.org/10.1074/jbc.271.36.21793] [PMID: 8702976]
[142]
Sen CK, Khanna S, Babior BM, Hunt TK, Ellison EC, Roy S. Oxidant-induced vascular endothelial growth factor expression in human keratinocytes and cutaneous wound healing. J Biol Chem 2002; 277(36): 33284-90.
[http://dx.doi.org/10.1074/jbc.M203391200] [PMID: 12068011]
[143]
Yeoh-Ellerton S, Stacey MC. Iron and 8-isoprostane levels in acute and chronic wounds. J Invest Dermatol 2003; 121(4): 918-25.
[http://dx.doi.org/10.1046/j.1523-1747.2003.12471.x] [PMID: 14632213]
[144]
Chiumiento A, Lamponi S, Barbucci R, Domínguez A, Pérez Y, Villalonga R. Immobilizing Cu,Zn-superoxide dismutase in hydrogels of carboxymethylcellulose improves its stability and wound healing properties. Biochemistry (Mosc) 2006; 71(12): 1324-8.
[http://dx.doi.org/10.1134/S0006297906120066] [PMID: 17223784]
[145]
Luo JD, Wang YY, Fu WL, Wu J, Chen AF. Gene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic mice. Circulation 2004; 110(16): 2484-93.
[http://dx.doi.org/10.1161/01.CIR.0000137969.87365.05] [PMID: 15262829]
[146]
Ceradini DJ, Yao D, Grogan RH, et al. Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem 2008; 283(16): 10930-8.
[http://dx.doi.org/10.1074/jbc.M707451200] [PMID: 18227068]
[147]
Rasik AM, Shukla A. Antioxidant status in delayed healing type of wounds. Int J Exp Pathol 2000; 81(4): 257-63.
[http://dx.doi.org/10.1046/j.1365-2613.2000.00158.x] [PMID: 10971747]
[148]
Mudge BP, Harris C, Gilmont RR, Adamson BS, Rees RS. Role of glutathione redox dysfunction in diabetic wounds. Wound Repair Regen 2002; 10(1): 52-8.
[http://dx.doi.org/10.1046/j.1524-475X.2002.10803.x]
[149]
Musalmah M, Nizrana MY, Fairuz AH, et al. Comparative effects of palm vitamin E and alpha-tocopherol on healing and wound tissue antioxidant enzyme levels in diabetic rats. Lipids 2005; 40(6): 575-80.
[http://dx.doi.org/10.1007/s11745-005-1418-9] [PMID: 16149736]
[150]
Panchatcharam M, Miriyala S, Gayathri VS, Suguna L. Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Mol Cell Biochem 2006; 290(1-2): 87-96.
[http://dx.doi.org/10.1007/s11010-006-9170-2] [PMID: 16770527]
[151]
Senel O, Cetinkale O, Ozbay G, Ahçioğlu F, Bulan R. Oxygen free radicals impair wound healing in ischemic rat skin. Ann Plast Surg 1997; 39(5): 516-23.
[http://dx.doi.org/10.1097/00000637-199711000-00012] [PMID: 9374149]
[152]
Kümin A, Huber C, Rülicke T, Wolf E, Werner S. Peroxiredoxin 6 is a potent cytoprotective enzyme in the epidermis. Am J Pathol 2006; 169(4): 1194-205.
[http://dx.doi.org/10.2353/ajpath.2006.060119] [PMID: 17003478]
[153]
Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA 1968; 61(2): 748-55.
[http://dx.doi.org/10.1073/pnas.61.2.748] [PMID: 4386763]
[154]
Baranano DE, Rao M, Ferris CD, Snyder SH. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci USA 2002; 99(25): 16093-8.
[http://dx.doi.org/10.1073/pnas.252626999] [PMID: 12456881]
[155]
Hanselmann C, Mauch C, Werner S. Haem oxygenase-1: a novel player in cutaneous wound repair and psoriasis? Biochem J 2001; 353(Pt 3): 459-66.
[http://dx.doi.org/10.1042/bj3530459] [PMID: 11171041]
[156]
Deshane J, Chen S, Caballero S, et al. Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. J Exp Med 2007; 204(3): 605-18.
[http://dx.doi.org/10.1084/jem.20061609] [PMID: 17339405]
[157]
Sega A, Zanardi I, Chiasserini L, Gabbrielli A, Bocci V, Travagli V. Properties of sesame oil by detailed 1H and 13C NMR assignments before and after ozonation and their correlation with iodine value, peroxide value, and viscosity measurements. Chem Phys Lipids 2010; 163(2): 148-56.
[http://dx.doi.org/10.1016/j.chemphyslip.2009.10.010] [PMID: 19900426]
[158]
Criegee R. Mechanism of ozonolysis. Angew Chem Int Ed Engl 1975; 14: 745.
[http://dx.doi.org/10.1002/anie.197507451]
[159]
Valacchi G, De Luca C, Wertz PW. Lipid mediators in skin inflammation: updates and current views. Mediators Inflamm 2010; 2010398926
[http://dx.doi.org/10.1155/2010/398926] [PMID: 20981239]
[160]
Travagli V, Zanardi I, Valacchi G, Bocci V. Ozone and ozonated oils in skin diseases: a review. Mediators Inflamm 2010; 2010610418
[http://dx.doi.org/10.1155/2010/610418] [PMID: 20671923]
[161]
Valacchi G, Pagnin E, Corbacho AM, et al. In vivo ozone exposure induces antioxidant/stress-related responses in murine lung and skin. Free Radic Biol Med 2004; 36(5): 673-81.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.12.005] [PMID: 14980710]
[162]
Kim HS, Noh SU, Han YW, et al. Therapeutic effects of topical application of ozone on acute cutaneous wound healing. J Korean Med Sci 2009; 24(3): 368-74.
[http://dx.doi.org/10.3346/jkms.2009.24.3.368] [PMID: 19543419]
[163]
Valacchi G, van der Vliet A, Schock BC, et al. Ozone exposure activates oxidative stress responses in murine skin. Toxicology 2002; 179(1-2): 163-70.
[http://dx.doi.org/10.1016/S0300-483X(02)00240-8] [PMID: 12204552]
[164]
Martínez-Sánchez G, Al-Dalain SM, Menéndez S, et al. Therapeutic efficacy of ozone in patients with diabetic foot. Eur J Pharmacol 2005; 523(1-3): 151-61.
[http://dx.doi.org/10.1016/j.ejphar.2005.08.020] [PMID: 16198334]
[165]
de Monte A, van der Zee H, Bocci V. Major ozonated autohemotherapy in chronic limb ischemia with ulcerations. J Altern Complement Med 2005; 11(2): 363-7.
[http://dx.doi.org/10.1089/acm.2005.11.363] [PMID: 15865505]
[166]
Bao Y, An W, Turner CH, Krishnan KM. The critical role of surfactants in the growth of cobalt nanoparticles. Langmuir 2010; 26(1): 478-83.
[http://dx.doi.org/10.1021/la902120e] [PMID: 19743830]
[167]
Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A. Critical Role of Transforming Growth Factor Beta in Different Phases of Wound Healing. Adv Wound Care (New Rochelle) 2013; 2(5): 215-24.
[http://dx.doi.org/10.1089/wound.2012.0406] [PMID: 24527344]
[168]
Caley MP, Martins VL, O’Toole EA. Metalloproteinases and Wound Healing. Adv Wound Care (New Rochelle) 2015; 4(4): 225-34.
[http://dx.doi.org/10.1089/wound.2014.0581] [PMID: 25945285]
[169]
Currò D. The role of gut microbiota in the modulation of drug action: a focus on some clinically significant issues. Expert Rev Clin Pharmacol 2018; 11(2): 171-83.
[http://dx.doi.org/10.1080/17512433.2018.1414598] [PMID: 29210311]
[170]
Georg Cronheim. Organic ozonides as chemotherapeutic agents. II. Antiseptic properties. J Am Pharma Assoc Ban 1987; 36(9): 278-81.
[171]
Tara F, Zand-Kargar Z, Rajabi O, et al. The Effects of Ozonated Olive Oil and Clotrimazole Cream for Treatment of Vulvovaginal Candidiasis. Altern Ther Health Med 2016; 22(4): 44-9.
[PMID: 27548492]
[172]
Aerts O, Leysen J, Horst N, Lambert J, Goossens A. Contact dermatitis caused by pharmaceutical ointments containing ‘ozonated’ olive oil. Contact Dermat 2016; 75(2): 123-6.
[http://dx.doi.org/10.1111/cod.12585] [PMID: 27385524]
[173]
Malmkvist Padoan S, Pettersson A, Svensson A. Olive oil as a cause of contact allergy in patients with venous eczema, and occupationally. Contact Dermat 1990; 23(2): 73-6.
[http://dx.doi.org/10.1111/j.1600-0536.1990.tb03226.x] [PMID: 2145130]
[174]
Isaksson M, Bruze M. Occupational allergic contact dermatitis from olive oil in a masseur. J Am Acad Dermatol 1999; 41(2 Pt 2): 312-5.
[http://dx.doi.org/10.1016/S0190-9622(99)70372-5] [PMID: 10426917]
[175]
Williams JD, Tate BJ. Occupational allergic contact dermatitis from olive oil. Contact Dermat 2006; 55(4): 251-2.
[http://dx.doi.org/10.1111/j.1600-0536.2006.00916.x] [PMID: 16958929]
[176]
Wong GA, King CM. Occupational allergic contact dermatitis from olive oil in pizza making. Contact Dermat 2004; 50(2): 102-3.
[http://dx.doi.org/10.1111/j.0105-1873.2004.0295d.x] [PMID: 15128324]
[177]
Danby SG, AlEnezi T, Sultan A, et al. Effect of olive and sunflower seed oil on the adult skin barrier: implications for neonatal skin care. Pediatr Dermatol 2013; 30(1): 42-50.
[http://dx.doi.org/10.1111/j.1525-1470.2012.01865.x] [PMID: 22995032]
[178]
Byun MS, Jeon KI, Choi JW, Shim JY, Jue DM. Dual effect of oxidative stress on NF-kappakB activation in HeLa cells. Exp Mol Med 2002; 34(5): 332-9.
[http://dx.doi.org/10.1038/emm.2002.47] [PMID: 12526096]
[179]
Lim Y, Phung AD, Corbacho AM, et al. Modulation of cutaneous wound healing by ozone: differences between young and aged mice. Toxicol Lett 2006; 160(2): 127-34.
[http://dx.doi.org/10.1016/j.toxlet.2005.06.013] [PMID: 16129572]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy