Research Article

阿米洛利缓解短暂性全脑缺血并参与中枢IL-6和TNF-α信号后的神经功能缺损

卷 19, 期 8, 2019

页: [597 - 604] 页: 8

弟呕挨: 10.2174/1566524019666190704100444

价格: $65

摘要

背景:中枢促炎细胞因子(PIC)信号参与了由心脏骤停(CA)引起的短暂性整体缺血后的神经功能缺损。 本研究旨在检查在中枢神经系统中使用阿米洛利阻断酸敏感离子通道(ASICs)是否可以缓解诱发CA后的神经功能缺损,并进一步检查PIC信号参与海马对阿米洛利的影响。 方法:窒息诱导CA,然后进行大鼠心肺复苏。 Western blot分析和ELISA用于确定海马中ASIC亚基ASIC1的蛋白表达以及PICs的水平。 如上所述,尽管在本研究中将阿米洛利和其他药理药物注入大脑,但临床上不太可能使用此程序。 结果:与对照动物相比,CA增加了大鼠海马中的ASIC1。 这与IL-1β,IL-6和TNF-α以及Caspase-3和Caspase-9的增加有关。 阿米洛利向侧脑室的给药减弱了Caspase-3 / Caspase-9的上调,进一步减轻了神经系统的严重程度评分和脑水肿。 抑制中枢IL-6和TNF-α也降低了CA大鼠海马中的ASIC1。 结论:CA引起的短暂性全脑缺血可能通过PIC信号放大海马中的ASIC1a。 施用至中枢神经系统的阿米洛利在整体缺血的过程中起神经保护作用。 因此,建议针对ASIC(即ASIC1a)治疗和改善CA诱发的全脑缺血。

关键词: ASIC,阿米洛利,心脏骤停,心肺复苏,海马,整体缺血。

[1]
Nolan JP, Neumar RW, Adrie C, et al. Post-cardiac arrest syndrome: Epidemiology, pathophysiology, treatment, and prognostication. A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation 2008; 79(3): 350-79.
[http://dx.doi.org/10.1016/j.resuscitation.2008.09.017] [PMID: 18963350]
[2]
Wang GN, Chen XF, Qiao L, et al. Comparison of extracorporeal and conventional cardiopulmonary resuscitation: A meta-analysis of 2260 patients with cardiac arrest. World J Emerg Med 2017; 8(1): 5-11.
[http://dx.doi.org/10.5847/wjem.j.1920-8642.2017.01.001] [PMID: 28123613]
[3]
Peng Z-R, Yang AL, Yang Q-D. The effect of hyperbaric oxygen on intracephalic angiogenesis in rats with intracerebral hemorrhage. J Neurol Sci 2014; 342(1-2): 114-23.
[http://dx.doi.org/10.1016/j.jns.2014.04.037] [PMID: 24836574]
[4]
Ojaghihaghighi S, Vahdati SS, Mikaeilpour A, Ramouz A. Comparison of neurological clinical manifestation in patients with hemorrhagic and ischemic stroke. World J Emerg Med 2017; 8(1): 34-8.
[http://dx.doi.org/10.5847/wjem.j.1920-8642.2017.01.006] [PMID: 28123618]
[5]
Nedergaard M, Kraig RP, Tanabe J, Pulsinelli WA. Dynamics of interstitial and intracellular pH in evolving brain infarct. Am J Physiol 1991; 260(3 Pt 2): R581-8.
[PMID: 2001008]
[6]
Siesjö BK, Katsura K, Kristián T. Acidosis-related damage. Adv Neurol 1996; 71: 209-33.
[PMID: 8790801]
[7]
Chu XP, Xiong ZG. Physiological and pathological functions of acid-sensing ion channels in the central nervous system. Curr Drug Targets 2012; 13(2): 263-71.
[http://dx.doi.org/10.2174/138945012799201685] [PMID: 22204324]
[8]
Xiong ZG, Xu TL. The role of ASICS in cerebral ischemia. Wiley Interdiscip Rev Membr Transp Signal 2012; 1(5): 655-62.
[http://dx.doi.org/10.1002/wmts.57] [PMID: 23181201]
[9]
Wang CX, Shuaib A. Involvement of inflammatory cytokines in central nervous system injury. Prog Neurobiol 2002; 67(2): 161-72.
[http://dx.doi.org/10.1016/S0301-0082(02)00010-2] [PMID: 12126659]
[10]
Fu CY, He XY, Li XF, et al. Nefiracetam attenuates pro-inflammatory cytokines and GABA transporter in specific brain regions of rats with post-ischemic seizures. Cell Physiol Biochem 2015; 37(5): 2023-31.
[http://dx.doi.org/10.1159/000438562] [PMID: 26584300]
[11]
Saito K, Suyama K, Nishida K, Sei Y, Basile AS. Early increases in TNF-alpha, IL-6 and IL-1 beta levels following transient cerebral ischemia in gerbil brain. Neurosci Lett 1996; 206(2-3): 149-52.
[http://dx.doi.org/10.1016/S0304-3940(96)12460-5] [PMID: 8710173]
[12]
Oppenheim JJ. Cytokines: past, present, and future. Int J Hematol 2001; 74(1): 3-8.
[http://dx.doi.org/10.1007/BF02982543] [PMID: 11530802]
[13]
Xing J, Lu J. HIF-1alpha activation attenuates IL-6 and TNF-alpha pathways in hippocampus of rats following transient global ischemia. Cell Physiol Biochem 2016; 39(2): 511-20.
[http://dx.doi.org/10.1159/000445643] [PMID: 27383646]
[14]
Liu XL, Lu J, Xing J. Stabilization of HIF-1α modulates VEGF and Caspase-3 in the hippocampus of rats following transient global ischemia induced by asphyxial cardiac arrest. Life Sci 2016; 151: 243-9.
[http://dx.doi.org/10.1016/j.lfs.2016.03.005] [PMID: 26987747]
[15]
Yang X, Hei C, Liu P, et al. Inhibition of mTOR Pathway by Rapamycin Reduces Brain Damage in Rats Subjected to Transient Forebrain Ischemia. Int J Biol Sci 2015; 11(12): 1424-35.
[http://dx.doi.org/10.7150/ijbs.12930] [PMID: 26681922]
[16]
Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001; 32(4): 1005-11.
[http://dx.doi.org/10.1161/01.STR.32.4.1005] [PMID: 11283404]
[17]
Xu S, Wu Q, Guo G, Ding X. The protective effects of urocortin1 against intracerebral hemorrhage by activating JNK1/2 and p38 phosphorylation and further increasing VEGF via corticotropin-releasing factor receptor 2. Neurosci Lett 2015; 589: 31-6.
[http://dx.doi.org/10.1016/j.neulet.2015.01.015] [PMID: 25576701]
[18]
Zhang Y, Yi B, Ma J, et al. Quercetin promotes neuronal and behavioral recovery by suppressing inflammatory response and apoptosis in a rat model of intracerebral hemorrhage. Neurochem Res 2015; 40(1): 195-203.
[http://dx.doi.org/10.1007/s11064-014-1457-1] [PMID: 25543848]
[19]
Holzer P. Acid-sensitive ion channels and receptors. Handb Exp Pharmacol 2009; (194): 283-332.
[http://dx.doi.org/10.1007/978-3-540-79090-7_9] [PMID: 19655111]
[20]
Lingueglia E. Acid-sensing ion channels in sensory perception. J Biol Chem 2007; 282(24): 17325-9.
[http://dx.doi.org/10.1074/jbc.R700011200] [PMID: 17430882]
[21]
Gao CJ, Niu L, Ren PC, et al. Hypoxic preconditioning attenuates global cerebral ischemic injury following asphyxial cardiac arrest through regulation of delta opioid receptor system. Neuroscience 2012; 202: 352-62.
[http://dx.doi.org/10.1016/j.neuroscience.2011.11.060] [PMID: 22200548]
[22]
Salvesen GS. Caspases: opening the boxes and interpreting the arrows. Cell Death Differ 2002; 9(1): 3-5.
[http://dx.doi.org/10.1038/sj.cdd.4400963] [PMID: 11803369]
[23]
Ghavami S, Hashemi M, Ande SR, et al. Apoptosis and cancer: mutations within caspase genes. J Med Genet 2009; 46(8): 497-510.
[http://dx.doi.org/10.1136/jmg.2009.066944] [PMID: 19505876]
[24]
Bosoi CR, Yang X, Huynh J, et al. Systemic oxidative stress is implicated in the pathogenesis of brain edema in rats with chronic liver failure. Free Radic Biol Med 2012; 52(7): 1228-35.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.01.006] [PMID: 22300646]
[25]
Simard JM, Geng Z, Woo SK, et al. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2009; 29(2): 317-30.
[http://dx.doi.org/10.1038/jcbfm.2008.120] [PMID: 18854840]
[26]
Dong YS, Wang JL, Feng DY, et al. Protective effect of quercetin against oxidative stress and brain edema in an experimental rat model of subarachnoid hemorrhage. Int J Med Sci 2014; 11(3): 282-90.
[http://dx.doi.org/10.7150/ijms.7634] [PMID: 24516353]
[27]
Rose-John S, Heinrich PC. Soluble receptors for cytokines and growth factors: generation and biological function. Biochem J 1994; 300(Pt 2): 281-90.
[http://dx.doi.org/10.1042/bj3000281] [PMID: 8002928]
[28]
Taga T, Hibi M, Hirata Y, et al. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell 1989; 58(3): 573-81.
[http://dx.doi.org/10.1016/0092-8674(89)90438-8] [PMID: 2788034]
[29]
MacEwan DJ. TNF receptor subtype signalling: differences and cellular consequences. Cell Signal 2002; 14(6): 477-92.
[http://dx.doi.org/10.1016/S0898-6568(01)00262-5] [PMID: 11897488]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy