Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Research Article

Positive Association Between Plasma Levels of Advanced Glycation and Precursor of Lipoxidation end Products with Gastrointestinal Problems in Children with Autism

Author(s): Ramin Ghodsi and Sorayya Kheirouri*

Volume 15, Issue 3, 2019

Page: [184 - 190] Pages: 7

DOI: 10.2174/1573396315666190628141333

Abstract

Background: Increased oxidative stress has been reported in autistic patients besides, evidence linking oxidative stress to enhancement of advanced glycation and lipoxidation end products (AGEs and ALEs) and their precursors.

Objective: This study aimed to compare the plasma levels of the AGEs and precursors of ALEs in autistic and healthy children and to evaluate their relationship with autism comorbidities.

Methods: In this descriptive study, 54 children, 36 autistic and 18 healthy participated. Plasma levels of AGEs and precursors of ALEs were measured by ELISA method. Severity of autism and Gastrointestinal (GI) disorders were measured by GARSII questionnaire and QPGS-ROME III questionnaire, respectively.

Results: Plasma levels of AGEs and precursors of ALEs in autistic children were comparable with healthy children. Plasma levels of AGEs and precursor of ALEs were correlated with physical activity and GI disorders in autistic children. A strong association was also found between AGEs and precursors of ALEs.

Conclusion: The results indicate that AGEs and ALEs have a strong correlation together but the AGEs and precursor of ALEs in autistic children are not different from healthy children.

Keywords: Autism spectrum disorders, advanced glycation end products, advanced lipoxidation end products, methylglyoxal, malondialdehyde, lipid peroxidation.

[1]
Lord C, Bishop SL. Recent advances in autism research as reflected in DSM-5 criteria for autism spectrum disorder. Annu Rev Clin Psychol 2015; 11: 53-70.
[http://dx.doi.org/10.1146/annurev-clinpsy-032814-112745] [PMID: 25581244]
[2]
McCarthy Autism diagnoses in the US rise by 30%, CDC reports. BMJ: British Medical Journal (Online) 3482014;
[3]
Mandy W, Chilvers R, Chowdhury U, Salter G, Seigal A, Skuse D. Sex differences in autism spectrum disorder: evidence from a large sample of children and adolescents. J Autism Dev Disord 2012; 42(7): 1304-13.
[http://dx.doi.org/10.1007/s10803-011-1356-0] [PMID: 21947663]
[4]
Samocha KE, Robinson EB, Sanders SJ, et al. A framework for the interpretation of de novo mutation in human disease. Nat Genet 2014; 46(9): 944-50.
[http://dx.doi.org/10.1038/ng.3050] [PMID: 25086666]
[5]
Warren Z, McPheeters ML, Sathe N, Foss-Feig JH, Glasser A, Veenstra-Vanderweele J. A systematic review of early intensive intervention for autism spectrum disorders. Pediatrics 2011; 127(5): e1303-11.
[http://dx.doi.org/10.1542/peds.2011-0426] [PMID: 21464190]
[6]
Sanders SJ, He X, Willsey AJ, et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 2015; 87(6): 1215-33.
[http://dx.doi.org/10.1016/j.neuron.2015.09.016] [PMID: 26402605]
[7]
Christensen J, Grønborg TK, Sørensen MJ, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 2013; 309(16): 1696-703.
[http://dx.doi.org/10.1001/jama.2013.2270] [PMID: 23613074]
[8]
Quaak I, Brouns MR, Van de Bor M. The dynamics of autism spectrum disorders: how neurotoxic compounds and neurotransmitters interact. Int J Environ Res Public Health 2013; 10(8): 3384-408.
[http://dx.doi.org/10.3390/ijerph10083384] [PMID: 23924882]
[9]
Sandin S, Schendel D, Magnusson P, et al. Autism risk associated with parental age and with increasing difference in age between the parents. Mol Psychiatry 2016; 21(5): 693-700.
[http://dx.doi.org/10.1038/mp.2015.70] [PMID: 26055426]
[10]
Ornoy A, Weinstein-Fudim L, Ergaz Z. Prenatal factors associated with autism spectrum disorder (ASD). Reprod Toxicol 2015; 56: 155-69.
[http://dx.doi.org/10.1016/j.reprotox.2015.05.007] [PMID: 26021712]
[11]
Chauhan A, Audhya T, Chauhan V. Brain region-specific glutathione redox imbalance in autism. Neurochem Res 2012; 37(8): 1681-9.
[http://dx.doi.org/10.1007/s11064-012-0775-4] [PMID: 22528835]
[12]
Tang G, Gutierrez Rios P, Kuo S-H, et al. Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiol Dis 2013; 54: 349-61.
[http://dx.doi.org/10.1016/j.nbd.2013.01.006] [PMID: 23333625]
[13]
Zhang L, Zhang H-Q, Liang X-Y, Zhang H-F, Zhang T, Liu F-E. Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: role of oxidative stress, BDNF and CaMKII. Behav Brain Res 2013; 256: 72-81.
[http://dx.doi.org/10.1016/j.bbr.2013.07.051] [PMID: 23933144]
[14]
Matsunaga N, Anan I, Forsgren S, et al. Advanced glycation end products (AGE) and the receptor for AGE are present in gastrointestinal tract of familial amyloidotic polyneuropathy patients but do not induce NF-kappaB activation. Acta Neuropathol 2002; 104(5): 441-7.
[PMID: 12410391]
[15]
Schmidt AM, Hori O, Brett J, Yan SD, Wautier J-L, Stern D. Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb 1994; 14(10): 1521-8.
[http://dx.doi.org/10.1161/01.ATV.14.10.1521] [PMID: 7918300]
[16]
Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia 2001; 44(2): 129-46.
[http://dx.doi.org/10.1007/s001250051591] [PMID: 11270668]
[17]
Yamagishi S, Maeda S, Matsui T, Ueda S, Fukami K, Okuda S. Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochim Biophys Acta 2012; 1820(5): 663-71.
[http://dx.doi.org/10.1016/j.bbagen.2011.03.014] [PMID: 21440603]
[18]
Del Turco S, Basta G. An update on advanced glycation endproducts and atherosclerosis. Biofactors 2012; 38(4): 266-74.
[http://dx.doi.org/10.1002/biof.1018] [PMID: 22488968]
[19]
Li J, Liu D, Sun L, Lu Y, Zhang Z. Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci 2012; 317(1-2): 1-5.
[http://dx.doi.org/10.1016/j.jns.2012.02.018] [PMID: 22410257]
[20]
Romero M, Aguilar JM, Del-Rey-Mejías Á, et al. Psychiatric comorbidities in autism spectrum disorder: A comparative study between DSM-IV-TR and DSM-5 diagnosis. Int J Clin Health Psychol 2016; 16(3): 266-75.
[http://dx.doi.org/10.1016/j.ijchp.2016.03.001] [PMID: 30487870]
[21]
Gilliam JE. Gilliam autism rating scale: summary response form. Pro-ed 1995.
[22]
Ahmadi S, Safari T, Hemmatian M, Khalili Z. The psychometric properties of Gilliam Autism Rating Scale (GARS). J Cogn Behav Sci 2011; 1(1): 87-104. persian
[23]
Toghiani A, Maleki I, Afshar H, Kazemian A. Translation and validation of the Farsi version of Rome III diagnostic questionnaire for the adult functional gastrointestinal disorders. J Res Med Sci 2016; 21: 103.
[http://dx.doi.org/10.4103/1735-1995.193175] [PMID: 28250780]
[24]
Drossman DA. The functional gastrointestinal disorders and the Rome III process. Gastroenterology 2006; 130(5): 1377-90.
[http://dx.doi.org/10.1053/j.gastro.2006.03.008] [PMID: 16678553]
[25]
Thornalley PJ. The glyoxalase system in health and disease. Mol Aspects Med 1993; 14(4): 287-371.
[http://dx.doi.org/10.1016/0098-2997(93)90002-U] [PMID: 8277832]
[26]
Junaid MA, Kowal D, Barua M, Pullarkat PS, Sklower Brooks S, Pullarkat RK. Proteomic studies identified a single nucleotide polymorphism in glyoxalase I as autism susceptibility factor. Am J Med Genet A 2004; 131(1): 11-7.
[http://dx.doi.org/10.1002/ajmg.a.30349] [PMID: 15386471]
[27]
Kovač J, Podkrajšek KT, Lukšič MM, Battelino T. Weak association of glyoxalase 1 (GLO1) variants with autism spectrum disorder. Eur Child Adolesc Psychiatry 2015; 24(1): 75-82.
[http://dx.doi.org/10.1007/s00787-014-0537-8] [PMID: 24671236]
[28]
Wu Y-Y, Chien W-H, Huang Y-S, Gau SS-F, Chen C-H. Lack of evidence to support the glyoxalase 1 gene (GLO1) as a risk gene of autism in Han Chinese patients from Taiwan. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(7): 1740-4.
[http://dx.doi.org/10.1016/j.pnpbp.2008.07.019] [PMID: 18721844]
[29]
Rehnström K, Ylisaukko-Oja T, Vanhala R, von Wendt L, Peltonen L, Hovatta I. No association between common variants in glyoxalase 1 and autism spectrum disorders. Am J Med Genet B Neuropsychiatr Genet 2008; 147B(1): 124-7.
[http://dx.doi.org/10.1002/ajmg.b.30582] [PMID: 17722011]
[30]
Sacco R, Papaleo V, Hager J, et al. Case-control and family-based association studies of candidate genes in autistic disorder and its endophenotypes: TPH2 and GLO1. BMC Med Genet 2007; 8(1): 11.
[http://dx.doi.org/10.1186/1471-2350-8-11] [PMID: 17346350]
[31]
Söğüt S, Zoroğlu SS, Özyurt H, et al. Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism. Clin Chim Acta 2003; 331(1-2): 111-7.
[http://dx.doi.org/10.1016/S0009-8981(03)00119-0] [PMID: 12691871]
[32]
Ranjbar A, Rashedi V, Rezaei M. Comparison of urinary oxidative biomarkers in Iranian children with autism. Res Dev Disabil 2014; 35(11): 2751-5.
[http://dx.doi.org/10.1016/j.ridd.2014.07.010] [PMID: 25086736]
[33]
Al-Rubaye FG, Morad TS. Purine metabolism and oxidative stress in children with autistic spectrum disorders. J Exp Integr Med 2013; 3(4)
[34]
Ming X, Stein TP, Brimacombe M, Johnson WG, Lambert GH, Wagner GC. Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukot Essent Fatty Acids 2005; 73(5): 379-84.
[http://dx.doi.org/10.1016/j.plefa.2005.06.002] [PMID: 16081262]
[35]
Chauhan A, Chauhan V, Brown WT, Cohen I. Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin--the antioxidant proteins. Life Sci 2004; 75(21): 2539-49.
[http://dx.doi.org/10.1016/j.lfs.2004.04.038] [PMID: 15363659]
[36]
González-Fraguela ME, Hung M-LD, Vera H, et al. Oxidative stress markers in children with autism spectrum disorders. Br J Med Med Res 2013; 3(2): 307.
[http://dx.doi.org/10.9734/BJMMR/2013/2335]
[37]
Farhadi A, Fields J, Banan A, Keshavarzian A. Reactive oxygen species: are they involved in the pathogenesis of GERD, Barrett’s esophagus, and the latter’s progression toward esophageal cancer? Am J Gastroenterol 2002; 97(1): 22-6.
[http://dx.doi.org/10.1111/j.1572-0241.2002.05444.x] [PMID: 11808965]
[38]
Damiani CR, Benetton CA, Stoffel C, et al. Oxidative stress and metabolism in animal model of colitis induced by dextran sulfate sodium. J Gastroenterol Hepatol 2007; 22(11): 1846-51.
[http://dx.doi.org/10.1111/j.1440-1746.2007.04890.x] [PMID: 17489966]
[39]
Chen P-M, Gregersen H, Zhao J-B. Advanced glycation end-product expression is upregulated in the gastrointestinal tract of type 2 diabetic rats. World J Diabetes 2015; 6(4): 662-72.
[http://dx.doi.org/10.4239/wjd.v6.i4.662] [PMID: 25987965]
[40]
Verit FF, Erel O, Sav M, Celik N, Cadirci D. Oxidative stress is associated with clinical severity of nausea and vomiting of pregnancy. Am J Perinatol 2007; 24(9): 545-8.
[http://dx.doi.org/10.1055/s-2007-986688] [PMID: 17893839]
[41]
Sekido H, Suzuki T, Jomori T, Takeuchi M, Yabe-Nishimura C, Yagihashi S. Reduced cell replication and induction of apoptosis by advanced glycation end products in rat Schwann cells. Biochem Biophys Res Commun 2004; 320(1): 241-8.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.159] [PMID: 15207727]
[42]
Wasilewska J, Klukowski M. Gastrointestinal symptoms and autism spectrum disorder: links and risks - a possible new overlap syndrome. Pediatric Health Med Ther 2015; 6: 153-66.
[http://dx.doi.org/10.2147/PHMT.S85717] [PMID: 29388597]
[43]
Lam KS, Aman MG, Arnold LE. Neurochemical correlates of autistic disorder: a review of the literature. Res Dev Disabil 2006; 27(3): 254-89.
[http://dx.doi.org/10.1016/j.ridd.2005.03.003]
[44]
Yochum CL, Wagner GC. Autism and Parkinson’s disease: animal models and a common etiological mechanism. Chin J Physiol 2009; 52(4): 236-49.
[http://dx.doi.org/10.4077/CJP.2009.AMH081]
[45]
Israelyan N, Margolis KG. Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders. Pharmacol Res 2018; 132: 1-6.
[http://dx.doi.org/10.1016/j.phrs.2018.03.020] [PMID: 29614380]
[46]
Ghodsi R, Kheirouri S, Nosrati R. Carnosine supplementation does not affect serum concentrations of advanced glycation and precursors of lipoxidation end products in autism: a randomized controlled clinical trial. Ann Clin Biochem 2019; 56(1): 148-54.
[http://dx.doi.org/10.1177/0004563218796860] [PMID: 30089410]
[47]
Santocchi E, Guiducci L, Fulceri F, et al. Gut to brain interaction in Autism Spectrum Disorders: a randomized controlled trial on the role of probiotics on clinical, biochemical and neurophysiological parameters. BMC Psychiatry 2016; 16(1): 183.
[http://dx.doi.org/10.1186/s12888-016-0887-5] [PMID: 27260271]
[48]
Glomb MA, Monnier VM. Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem 1995; 270(17): 10017-26.
[http://dx.doi.org/10.1074/jbc.270.17.10017] [PMID: 7730303]
[49]
Miyata T, van Ypersele de Strihou C, Kurokawa K, Baynes JW. Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications. Kidney Int 1999; 55(2): 389-99.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00302.x] [PMID: 9987064]
[50]
Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia 2009; 52(11): 2251-63.
[http://dx.doi.org/10.1007/s00125-009-1458-9] [PMID: 19636529]
[51]
Al Rifai M, Schneider AL, Alonso A, et al. sRAGE, inflammation, and risk of atrial fibrillation: results from the Atherosclerosis Risk in Communities (ARIC) Study. J Diabetes Complications 2015; 29(2): 180-5.
[http://dx.doi.org/10.1016/j.jdiacomp.2014.11.008] [PMID: 25499973]
[52]
Machado-Vieira R, Andreazza AC, Viale CI, et al. Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett 2007; 421(1): 33-6.
[http://dx.doi.org/10.1016/j.neulet.2007.05.016] [PMID: 17548157]
[53]
Stojković T, Radonjić NV, Velimirović M, et al. Risperidone reverses phencyclidine induced decrease in glutathione levels and alterations of antioxidant defense in rat brain. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39(1): 192-9.
[http://dx.doi.org/10.1016/j.pnpbp.2012.06.013] [PMID: 22735395]

© 2024 Bentham Science Publishers | Privacy Policy