Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Regulatory Roles of GADD45α in Skeletal Muscle and Adipocyte

Author(s): Wenjing You, Ziye Xu and Tizhong Shan*

Volume 20, Issue 9, 2019

Page: [918 - 925] Pages: 8

DOI: 10.2174/1389203720666190624143503

Price: $65

conference banner
Abstract

GADD45α, a member of the GADD45 family proteins, is involved in various cellular processes including the maintenance of genomic integrity, growth arrest, apoptosis, senescence, and signal transduction. In skeletal muscle, GADD45α plays an important role in regulating mitochondrial biogenesis and muscle atrophy. In adipocytes, GADD45α regulates preadipocyte differentiation, lipid accumulation, and thermogenesis metabolism. Moreover, it has been recently demonstrated that GADD45α promotes gene activation by inducing DNA demethylation. The epigenetic function of GADD45α is important for preadipocyte differentiation and transcriptional regulation during development. This article mainly reviews and discusses the regulatory roles of GADD45α in skeletal muscle development, adipocyte progenitor differentiation, and DNA demethylation.

Keywords: GADD45α, skeletal muscle development, adipogenesis, DNA demethylation, metabolic diseases, mammals.

Graphical Abstract

[1]
Rosemary Siafakas, A.; Richardson, D.R. Growth arrest and DNA damage-45 alpha (GADD45α). Int. J. Biochem. Cell Biol., 2009, 41(5), 986-989.
[2]
Jarome, T.J.; Butler, A.A.; Nichols, J.N.; Pacheco, N.L.; Lubin, F.D. NF-κB mediates Gadd45β expression and DNA demethylation in the hippocampus during fear memory formation. Front. Mol. Neurosci., 2015, 8, 54.
[3]
Lal, A.; Gorospe, M. Egad, more forms of gene regulation: the gadd45a story. Cell Cycle, 2006, 5(13), 1422-1425.
[4]
Carrier, F.; Georgel, P.T.; Pourquier, P.; Blake, M.; Kontny, H.U.; Antinore, M.J.; Gariboldi, M.; Myers, T.G.; Weinstein, J.N.; Pommier, Y.; Fornace, A.J., Jr Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol. Cell. Biol., 1999, 19(3), 1673-1685.
[5]
Jin, S.; Tong, T.; Fan, W.; Fan, F.; Antinore, M.J.; Zhu, X.; Mazzacurati, L.; Li, X.; Petrik, K.L.; Rajasekaran, B.; Wu, M.; Zhan, Q. GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene, 2002, 21(57), 8696-8704.
[6]
Tong, T.; Ji, J.; Jin, S.; Li, X.; Fan, W.; Song, Y.; Wang, M.; Liu, Z.; Wu, M.; Zhan, Q. Gadd45a expression induces Bim dissociation from the cytoskeleton and translocation to mitochondria. Mol. Cell. Biol., 2005, 25(11), 4488-4500.
[7]
Sheikh, M.S.; Hollander, M.C.; Fornance, A.J. Jr Role of Gadd45 in apoptosis. Biochem. Pharmacol., 2000, 59(1), 43-45.
[8]
Yang, F.; Zhang, W.; Li, D.; Zhan, Q. Gadd45a suppresses tumor angiogenesis via inhibition of the mTOR/STAT3 protein pathway. J. Biol. Chem., 2013, 288(9), 6552-6560.
[9]
Tront, J.S.; Hoffman, B.; Liebermann, D.A. Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. Cancer Res., 2006, 66(17), 8448-8454.
[10]
Engel, N.; Tront, J.S.; Erinle, T.; Nguyen, N.; Latham, K.E.; Sapienza, C.; Hoffman, B.; Liebermann, D.A. Conserved DNA methylation in Gadd45a(-/-) mice. Epigenetics, 2009, 4(2), 98-99.
[11]
Hollander, M.C.; Sheikh, M.S.; Bulavin, D.V.; Lundgren, K.; Augeri-Henmueller, L.; Shehee, R.; Molinaro, T.A.; Kim, K.E.; Tolosa, E.; Ashwell, J.D.; Rosenberg, M.P.; Zhan, Q.; Fernández-Salguero, P.M.; Morgan, W.F.; Deng, C.X.; Fornace, A.J. Jr Genomic instability in Gadd45a-deficient mice. Nat. Genet., 1999, 23(2), 176-184.
[12]
Tront, J.S.; Hoffman, B.; Liebermann, D.A. Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. Cancer Res., 2006, 66(17), 8448-8454.
[13]
Barreto, G.; Schäfer, A.; Marhold, J.; Stach, D.; Swaminathan, S.K.; Handa, V.; Döderlein, G.; Maltry, N.; Wu, W.; Lyko, F.; Niehrs, C. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature, 2007, 445(7128), 671-675.
[14]
Hollander, M.C.; Sheikh, M.S.; Bulavin, D.V.; Lundgren, K.; Augeri-Henmueller, L.; Shehee, R.; Molinaro, T.A.; Kim, K.E.; Tolosa, E.; Ashwell, J.D.; Rosenberg, M.P.; Zhan, Q.; Fernández-Salguero, P.M.; Morgan, W.F.; Deng, C.X.; Fornace, A.J. Jr Genomic instability in Gadd45a-deficient mice. Nat. Genet., 1999, 23(2), 176-184.
[15]
Zhu, Y.H.; Bulavin, D.V. Wip1-dependent signaling pathways in health and diseases. Prog. Mol. Biol. Transl. Sci., 2012, 106, 307-325.
[16]
Bongers, K.S.; Fox, D.K.; Ebert, S.M.; Kunkel, S.D.; Dyle, M.C.; Bullard, S.A.; Dierdorff, J.M.; Adams, C.M. Skeletal muscle denervation causes skeletal muscle atrophy through a pathway that involves both Gadd45a and HDAC4. Am. J. Physiol. Endocrinol. Metab., 2013, 305(7), E907-E915.
[17]
Bullard, S.A.; Seo, S.; Schilling, B.; Dyle, M.C.; Dierdorff, J.M.; Ebert, S.M.; DeLau, A.D.; Gibson, B.W.; Adams, C.M. Gadd45a Protein Promotes Skeletal Muscle Atrophy by Forming a Complex with the Protein Kinase MEKK4. J. Biol. Chem., 2016, 291(34), 17496-17509.
[18]
Ebert, S.M.; Dyle, M.C.; Kunkel, S.D.; Bullard, S.A.; Bongers, K.S.; Fox, D.K.; Dierdorff, J.M.; Foster, E.D.; Adams, C.M. Stress-induced skeletal muscle Gadd45a expression reprograms myonuclei and causes muscle atrophy. J. Biol. Chem., 2012, 287(33), 27290-27301.
[19]
Adams, C.M.; Ebert, S.M.; Dyle, M.C. Role of ATF4 in skeletal muscle atrophy. Curr. Opin. Clin. Nutr. Metab. Care, 2017, 20(3), 164-168.
[20]
Perdikari, A.; Leparc, G.G.; Balaz, M.; Pires, N.D.; Lidell, M.E.; Sun, W.; Fernandez-Albert, F.; Müller, S.; Akchiche, N.; Dong, H.; Balazova, L.; Opitz, L.; Röder, E.; Klein, H.; Stefanicka, P.; Varga, L.; Nuutila, P.; Virtanen, K.A.; Niemi, T.; Taittonen, M.; Rudofsky, G.; Ukropec, J.; Enerbäck, S.; Stupka, E.; Neubauer, H.; Wolfrum, C. BATLAS. Cell Reports, 2018, 25(3), 784-797.e4.
[21]
Wang, B.; Fu, X.; Zhu, M.J.; Du, M. Retinoic acid inhibits white adipogenesis by disrupting GADD45A-mediated Zfp423 DNA demethylation. J. Mol. Cell Biol., 2017, 9(4), 338-349.
[22]
Li, X.J.; Li, Z.F.; Wang, J.J.; Han, Z.; Liu, Z.; Liu, B.G. Effects of microRNA-374 on proliferation, migration, invasion, and apoptosis of human SCC cells by targeting Gadd45a through P53 signaling pathway. Biosci. Rep., 2017, 37(4), BSR20170710.
[23]
Fox, D.K.; Ebert, S.M.; Bongers, K.S.; Dyle, M.C.; Bullard, S.A.; Dierdorff, J.M.; Kunkel, S.D.; Adams, C.M. p53 and ATF4 mediate distinct and additive pathways to skeletal muscle atrophy during limb immobilization. Am. J. Physiol. Endocrinol. Metab., 2014, 307(3), E245-E261.
[24]
Demidov, O.N.; Timofeev, O.; Lwin, H.N.; Kek, C.; Appella, E.; Bulavin, D.V. Wip1 phosphatase regulates p53-dependent apoptosis of stem cells and tumorigenesis in the mouse intestine. Cell Stem Cell, 2007, 1(2), 180-190.
[25]
Gao, M.; Guo, N.; Huang, C.; Song, L. Diverse roles of GADD45alpha in stress signaling. Curr. Protein Pept. Sci., 2009, 10(4), 388-394.
[26]
Sánchez, R.; Pantoja-Uceda, D.; Prieto, J.; Diercks, T.; Marcaida, M.J.; Montoya, G.; Campos-Olivas, R.; Blanco, F.J. Solution structure of human growth arrest and DNA damage 45alpha (Gadd45alpha) and its interactions with proliferating cell nuclear antigen (PCNA) and Aurora A kinase. J. Biol. Chem., 2010, 285(29), 22196-22201.
[27]
Hollander, M.C.; Fornace, A.J. Jr Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a. Oncogene, 2002, 21(40), 6228-6233.
[28]
Zhao, H.; Jin, S.; Antinore, M.J.; Lung, F.D.T.; Fan, F.; Blanck, P.; Roller, P.; Fornace, A.J., Jr; Zhan, Q. The central region of Gadd45 is required for its interaction with p21/WAF1. Exp. Cell Res., 2000, 258(1), 92-100.
[29]
Vairapandi, M.; Balliet, A.G.; Hoffman, B.; Liebermann, D.A. GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J. Cell. Physiol., 2002, 192(3), 327-338.
[30]
Bullard, S.A.; Seo, S.; Schilling, B.; Dyle, M.C.; Dierdorff, J.M.; Ebert, S.M.; DeLau, A.D.; Gibson, B.W.; Adams, C.M. Gadd45a Protein Promotes Skeletal Muscle Atrophy by Forming a Complex with the Protein Kinase MEKK4. J. Biol. Chem., 2016, 291(34), 17496-17509.
[31]
Jin, S.; Antinore, M.J.; Lung, F.D.; Dong, X.; Zhao, H.; Fan, F.; Colchagie, A.B.; Blanck, P.; Roller, P.P.; Fornace, A.J., Jr; Zhan, Q. The GADD45 inhibition of Cdc2 kinase correlates with GADD45-mediated growth suppression. J. Biol. Chem., 2000, 275(22), 16602-16608.
[32]
Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006, 444(7121), 840-846.
[33]
Welle, S.; Brooks, A.I.; Delehanty, J.M.; Needler, N.; Bhatt, K.; Shah, B.; Thornton, C.A. Skeletal muscle gene expression profiles in 20-29 year old and 65-71 year old women. Exp. Gerontol., 2004, 39(3), 369-377.
[34]
Gonzalez de Aguilar, J.L.; Niederhauser-Wiederkehr, C.; Halter, B.; De Tapia, M.; Di Scala, F.; Demougin, P.; Dupuis, L.; Primig, M.; Meininger, V.; Loeffler, J.P. Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model. Physiol. Genomics, 2008, 32(2), 207-218.
[35]
Ebert, S.M.; Monteys, A.M.; Fox, D.K.; Bongers, K.S.; Shields, B.E.; Malmberg, S.E.; Davidson, B.L.; Suneja, M.; Adams, C.M. The transcription factor ATF4 promotes skeletal myofiber atrophy during fasting. Mol. Endocrinol., 2010, 24(4), 790-799.
[36]
Yamashita, A.; Hatazawa, Y.; Hirose, Y.; Ono, Y.; Kamei, Y. FOXO1 delays skeletal muscle regeneration and suppresses myoblast proliferation. Biosci. Biotechnol. Biochem., 2016, 80(8), 1531-1535.
[37]
Ferrara, N.; Rinaldi, B.; Corbi, G.; Conti, V.; Stiuso, P.; Boccuti, S.; Rengo, G.; Rossi, F.; Filippelli, A. Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res., 2008, 11(1), 139-150.
[38]
Su, J.; Ekman, C.; Oskolkov, N.; Lahti, L.; Ström, K.; Brazma, A.; Groop, L.; Rung, J.; Hansson, O. A novel atlas of gene expression in human skeletal muscle reveals molecular changes associated with aging. Skelet. Muscle, 2015, 5, 35.
[39]
Moro, T.; Ebert, S.M.; Adams, C.M.; Rasmussen, B.B. Amino Acid Sensing in Skeletal Muscle. Trends Endocrinol. Metab., 2016, 27(11), 796-806.
[40]
Marty, E.; Liu, Y.; Samuel, A.; Or, O.; Lane, J. A review of sarcopenia: Enhancing awareness of an increasingly prevalent disease. Bone, 2017, 105, 276-286.
[41]
Rabinovich, R.A.; Drost, E.; Manning, J.R.; Dunbar, D.R.; Diaz-Ramos, M.; Lakhdar, R.; Bastos, R.; MacNee, W. Genome-wide mRNA expression profiling in vastus lateralis of COPD patients with low and normal fat free mass index and healthy controls; Resp Res, 2015, p. 16.
[42]
Hoffman, B.; Liebermann, D.A. Gadd45 modulation of intrinsic and extrinsic stress responses in myeloid cells. J. Cell. Physiol., 2009, 218(1), 26-31.
[43]
Rosen, E.D.; Spiegelman, B.M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature, 2006, 444(7121), 847-853.
[44]
Pellegrinelli, V.; Carobbio, S.; Vidal-Puig, A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia, 2016, 59(6), 1075-1088.
[45]
Bi, P.; Shan, T.; Liu, W.; Yue, F.; Yang, X.; Liang, X.R.; Wang, J.; Li, J.; Carlesso, N.; Liu, X.; Kuang, S. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat. Med., 2014, 20(8), 911-918.
[46]
Wu, F.; Liu, J.; Qiu, Y.L.; Wang, W.; Zhu, S.M.; Sun, P.; Miao, W.B.; Li, Y.L.; Brandt-Rauf, P.W.; Xia, Z.L. Correlation of chromosome damage and promoter methylation status of the DNA repair genes MGMT and hMLH1 in Chinese vinyl chloride monomer (VCM)-exposed workers. Int. J. Occup. Med. Environ. Health, 2013, 26(1), 173-182.
[47]
Shan, T.; Xiong, Y.; Zhang, P.; Li, Z.; Jiang, Q.; Bi, P.; Yue, F.; Yang, G.; Wang, Y.; Liu, X.; Kuang, S. Lkb1 controls brown adipose tissue growth and thermogenesis by regulating the intracellular localization of CRTC3. Nat. Commun., 2016, 7, 12205.
[48]
Okla, M.; Kim, J.; Koehler, K.; Chung, S. Dietary factors promoting brown and beige fat development and thermogenesis. Adv. Nutr., 2017, 8(3), 473-483.
[49]
Chouchani, E.T.; Kazak, L.; Spiegelman, B.M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab., 2019, 29(1), 27-37.
[50]
Contreras, C.; Nogueiras, R.; Diéguez, C.; Medina-Gómez, G.; López, M. Hypothalamus and thermogenesis: Heating the BAT, browning the WAT. Mol. Cell. Endocrinol., 2016, 438(C), 107-115.
[51]
Lee, S.J.; Sanchez-Watts, G.; Krieger, J.P.; Pignalosa, A.; Norell, P.N.; Cortella, A.; Pettersen, K.G.; Vrdoljak, D.; Hayes, M.R.; Kanoski, S.E.; Langhans, W.; Watts, A.G. Loss of dorsomedial hypothalamic GLP-1 signaling reduces BAT thermogenesis and increases adiposity. Mol. Metab., 2018, 11, 33-46.
[52]
Cioffi, F.; Gentile, A.; Silvestri, E.; Goglia, F.; Lombardi, A. Effect of iodothyronines on thermogenesis: Focus on brown adipose tissue. Front. Endocrinol. (Lausanne), 2018, 9, 254.
[53]
Nakamura, Y.; Nakamura, K. Central regulation of brown adipose tissue thermogenesis and energy homeostasis dependent on food availability. Pflugers Arch., 2018, 470(5), 823-837.
[54]
Gantner, M.L.; Hazen, B.C.; Conkright, J.; Kralli, A. GADD45γ regulates the thermogenic capacity of brown adipose tissue. Proc. Natl. Acad. Sci. USA, 2014, 111(32), 11870-11875.
[55]
Marquez, M.P.; Alencastro, F.; Madrigal, A.; Jimenez, J.L.; Blanco, G.; Gureghian, A.; Keagy, L.; Lee, C.; Liu, R.; Tan, L.; Deignan, K.; Armstrong, B.; Zhao, Y. The role of cellular proliferation in adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells. Stem Cells Dev., 2017, 26(21), 1578-1595.
[56]
Constance, C.M.; Morgan, J.I., IV; Umek, R.M. C/EBPalpha regulation of the growth-arrest-associated gene GADD45. Mol. Cell. Biol., 1996, 16(7), 3878-3883.
[57]
Loftus, T.M.; Lane, M.D. Modulating the transcriptional control of adipogenesis. Curr. Opin. Genet. Dev., 1997, 7(5), 603-608.
[58]
Yang, Y.J.; Zhu, Z.; Wang, D.T.; Zhang, X.L.; Liu, Y.Y.; Lai, W.X.; Mo, Y.L.; Li, J.; Liang, Y.L.; Hu, Z.Q.; Yu, Y.J.; Cui, L. Tanshinol alleviates impaired bone formation by inhibiting adipogenesis via KLF15/PPARγ2 signaling in GIO rats. Acta Pharmacol. Sin., 2018, 39(4), 633-641.
[59]
Sadkowski, T.; Ciecierska, A.; Majewska, A.; Oprządek, J.; Dasiewicz, K.; Ollik, M.; Wicik, Z.; Motyl, T. Transcriptional background of beef marbling - novel genes implicated in intramuscular fat deposition. Meat Sci., 2014, 97(1), 32-41.
[60]
Cho, E.S.; Lee, K.T.; Choi, J.W.; Jeon, H.J.; Lee, S.W.; Cho, Y.M.; Kim, T.H. Novel SNPs in the growth arrest and DNA damage-inducible protein 45 alpha gene (GADD45A) associated with meat quality traits in Berkshire pigs. Genet. Mol. Res., 2015, 14(3), 8581-8588.
[61]
Wu, T.; Zhang, Z.; Yuan, Z.; Lo, L.J.; Chen, J.; Wang, Y.; Peng, J. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace pigs. PLoS One, 2013, 8(1), e53181.
[62]
Yu, K.; Shu, G.; Yuan, F.; Zhu, X.; Gao, P.; Wang, S.; Wang, L.; Xi, Q.; Zhang, S.; Zhang, Y.; Li, Y.; Wu, T.; Yuan, L.; Jiang, Q. Fatty acid and transcriptome profiling of longissimus dorsi muscles between pig breeds differing in meat quality. Int. J. Biol. Sci., 2013, 9(1), 108-118.
[63]
Martin, L.J.; Chang, Q. DNA Damage response and repair, DNA methylation, and cell death in human neurons and experimental animal neurons are different. J. Neuropathol. Exp. Neurol., 2018, 77(7), 636-655.
[64]
Mijnes, J.; Veeck, J.; Gaisa, N.T.; Burghardt, E.; de Ruijter, T.C.; Gostek, S.; Dahl, E.; Pfister, D.; Schmid, S.C.; Knüchel, R.; Rose, M. Promoter methylation of DNA damage repair (DDR) genes in human tumor entities: RBBP8/CtIP is almost exclusively methylated in bladder cancer. Clin. Epigenetics, 2018, 10, 15.
[65]
Lee, D.H.; Jin, S.G.; Cai, S.; Chen, Y.; Pfeifer, G.P.; O’Connor, T.R. Repair of methylation damage in DNA and RNA by mammalian AlkB homologues. J. Biol. Chem., 2005, 280(47), 39448-39459.
[66]
Russo, G.; Landi, R.; Pezone, A.; Morano, A.; Zuchegna, C.; Romano, A.; Muller, M.T.; Gottesman, M.E.; Porcellini, A.; Avvedimento, E.V. DNA damage and Repair Modify DNA methylation and Chromatin Domain of the Targeted Locus: Mechanism of allele methylation polymorphism; Sci Rep-Uk, 2016, p. 6.
[67]
Niehrs, C.; Schäfer, A. Active DNA demethylation by Gadd45 and DNA repair. Trends Cell Biol., 2012, 22(4), 220-227.
[68]
Schmitz, K.M.; Schmitt, N.; Hoffmann-Rohrer, U.; Schäfer, A.; Grummt, I.; Mayer, C. TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol. Cell, 2009, 33(3), 344-353.
[69]
Li, X.J.; Li, Z.F.; Wang, J.J.; Han, Z.; Liu, Z.; Liu, B.G. Effects of microRNA-374 on proliferation, migration, invasion, and apoptosis of human SCC cells by targeting Gadd45a through P53 signaling pathway. Biosci. Rep., 2017, 37(4), 37.
[70]
Zhang, R.P.; Shao, J.Z.; Xiang, L.X. GADD45A protein plays an essential role in active DNA demethylation during terminal osteogenic differentiation of adipose-derived mesenchymal stem cells. J. Biol. Chem., 2011, 286(47), 41083-41094.
[71]
Gupta, R.K.; Arany, Z.; Seale, P.; Mepani, R.J.; Ye, L.; Conroe, H.M.; Roby, Y.A.; Kulaga, H.; Reed, R.R.; Spiegelman, B.M. Transcriptional control of preadipocyte determination by Zfp423. Nature, 2010, 464(7288), 619-623.
[72]
Schäfer, A.; Karaulanov, E.; Stapf, U.; Döderlein, G.; Niehrs, C. Ing1 functions in DNA demethylation by directing Gadd45a to H3K4me3. Genes Dev., 2013, 27(3), 261-273.
[73]
Wang, B.; Fu, X.; Zhu, M.J.; Du, M. Retinoic acid inhibits white adipogenesis by disrupting GADD45A-mediated Zfp423 DNA demethylation. J. Mol. Cell Biol., 2017, 9(4), 338-349.
[74]
Schäfer, A.; Mekker, B.; Mallick, M.; Vastolo, V.; Karaulanov, E.; Sebastian, D.; von der Lippen, C.; Epe, B.; Downes, D.J.; Scholz, C.; Niehrs, C. Impaired DNA demethylation of C/EBP sites causes premature aging. Genes Dev., 2018, 32(11-12), 742-762.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy