[1]
Cheseto, X.; Kachigamba, D.L.; Ekesi, S.; Ndung’u, M.; Teal, P.E.A.; Beck, J.J.; Torto, B. Identification of the ubiquitous antioxidant tripeptide glutathione as a fruit fly semiochemical. J. Agric. Food Chem., 2017, 65(39), 8560-8568.
[2]
Meredith, M.J.; Reed, D.J. Status of the mitochondrial pool of glutathione in the isolated hepatocyte. J. Biol. Chem., 1982, 257(7), 3747-3753.
[3]
Hwang, C.; Sinskey, A.J.; Lodish, H.F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science, 1992, 257(5076), 1496-1502.
[4]
Sheehan, D.; Meade, G.; Foley, V.M.; Dowd, C.A. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J., 2001, 360(Pt 1), 1-16.
[5]
Bae, Y.A.; Cai, G.B.; Kim, S.H.; Zo, Y.G.; Kong, Y. Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals. BMC Evol. Biol., 2009, 9, 72.
[6]
Balendiran, G.K.; Dabur, R.; Fraser, D. The role of glutathione in cancer. Cell Biochem. Funct., 2004, 22(6), 343-352.
[7]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[8]
Tang, L.; Wang, W.; Zhou, W.; Cheng, K.; Yang, Y.; Liu, M.; Cheng, K.; Wang, W. Three-pathway combination for glutathione biosynthesis in Saccharomyces cerevisiae. Microb. Cell Fact., 2015, 14(1), 139.
[9]
Morales, Pantoja I.E.; Hu, C.L.; Perrone-Bizzozero, N.I.; Zheng, J.; Bizzozero, O.A. Nrf2-dysregulation correlates with reduced synthesis and low glutathione levels in experimental autoimmune encephalomyelitis. J. Neurochem., 2016, 139(4), 640-650.
[10]
Liang, M.; Wang, Z.; Li, H.; Cai, L.; Pan, J.; He, H.; Wu, Q.; Tang, Y.; Ma, J.; Yang, L. l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway. Food Chem. Toxicol., 2018, 115, 315-328.
[11]
Espinosa-Diez, C.; Miguel, V.; Mennerich, D.; Kietzmann, T.; Sánchez-Pérez, P.; Cadenas, S.; Lamas, S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol., 2015, 6, 183-197.
[12]
Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol., 2013, 53, 401-426.
[13]
Rojo, A.I.; Pajares, M.; Rada, P.; Nuñez, A.; Nevado-Holgado, A.J.; Killik, R.; Van Leuven, F.; Ribe, E.; Lovestone, S.; Yamamoto, M.; Cuadrado, A. NRF2 deficiency replicates transcriptomic changes in Alzheimer’s patients and worsens APP and TAU pathology. Redox Biol., 2017, 13, 444-451.
[14]
Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta, 2013, 1830(5), 3217-3266.
[15]
Zhao, Y.; Seefeldt, T.; Chen, W.; Wang, X.; Matthees, D.; Hu, Y.; Guan, X. Effects of glutathione reductase inhibition on cellular thiol redox state and related systems. Arch. Biochem. Biophys., 2009, 485(1), 56-62.
[16]
Erden Inal, M.; Akgün, A.; Kahraman, A. The effects of exogenous glutathione on reduced glutathione level, glutathione peroxidase and glutathione reductase activities of rats with different ages and gender after whole-body Γ-irradiation. J. Am. Aging Assoc., 2003, 26(3-4), 55-58.
[17]
Zuzak, E.; Horecka, A.; Kiełczykowska, M.; Dudek, A.; Musik, I.; Kurzepa, J.; Kurzepa, J. Glutathione level and glutathione reductase activity in serum of coronary heart disease patients. J. Pre Clin. Clin. Res, 2017, 11(2), 103-105.
[18]
Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med., 2018, 54(4), 287-293.
[19]
Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev., 2016, 2016, 1245049.
[20]
Fu, Y.; Chung, F.L. Oxidative stress and hepatocarcinogenesis. Hepatoma Res., 2018, 4(8), 39.
[21]
Carini, F.; Mazzola, M.; Rappa, F.; Jurjus, A.; Geagea, A.G.; Al Kattar, S.; Bou-Assi, T.; Jurjus, R.; Damiani, P.; Leone, A.; Tomasello, G. Colorectal carcinogenesis: Role of oxidative stress and antioxidants. Anticancer Res., 2017, 37(9), 4759-4766.
[22]
Jezierska-Drutel, A.; Rosenzweig, S.A.; Neumann, C.A. Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv. Cancer Res., 2013, 119, 107-125.
[23]
Wang, Z.; Li, Z.; Ye, Y.; Xie, L.; Li, W. Oxidative stress and liver cancer: Etiology and therapeutic targets. Oxid. Med. Cell. Longev., 2016, 2016, 10.
[24]
Yu, J.; Liu, F.; Yin, P.; Zhao, H.; Luan, W.; Hou, X.; Zhong, Y.; Jia, D.; Zan, J.; Ma, W.; Shu, B.; Xu, J. Involvement of oxidative stress and mitogen-activated protein kinase signaling pathways in heat stress-induced injury in the rat small intestine. Stress, 2013, 16(1), 99-113.
[25]
Illam, S.P.; Narayanankutty, A.; Mathew, S.E.; Valsalakumari, R.; Jacob, R.M.; Raghavamenon, A.C. Epithelial mesenchymal transition in cancer progression: Prev entive phytochemicals. Recent Pat Anticancer Drug Discov., 2017, 12(3), 234-246.
[26]
Roy, N.; Davis, S.; Narayanankutty, A.; Nazeem, P.; Babu, T.; Abida, P.; Valsala, P.; Raghavamenon, A.C. Garlic phytocompounds possess anticancer activity by specifically targeting breast cancer biomarkers - An in silico study. Asian Pac. J. Cancer Prev., 2016, 17(6), 2883-2888.
[27]
Roy, N.; Narayanankutty, A.; Nazeem, P.A.; Valsalan, R.; Babu, T.D.; Mathew, D. Plant phenolics ferulic acid and P-coumaric acid inhibit colorectal cancer cell proliferation through EGFR down-regulation. Asian Pac. J. Cancer Prev., 2016, 17(8), 4019-4023.
[28]
Roy, N.; Nazeem, P.A.; Babu, T.D.; Abida, P.S.; Narayanankutty, A.; Valsalan, R.; Valsala, P.A.; Raghavamenon, A.C. EGFR gene regulation in colorectal cancer cells by garlic phytocompounds with special emphasis on S-Allyl-L-Cysteine Sulfoxide. Interdiscip. Sci., 2018, 10(4), 686-693.
[29]
Shweta, M.; Arunaksharan, N. Traditional fruits of Kerala: Bioactive compounds and their curative potential in chronic diseases. Curr. Nutr. Food Sci., 2017, 13(4), 279-289.
[30]
Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients, 2016, 8(9), E552.
[31]
Batra, P.; Sharma, A.K. Anti-cancer potential of flavonoids: Recent
trends and future perspectives. 3 Biotech, 2013, 3(6), 439-459.
[32]
Kumar, H.; Kim, I.S.; More, S.V.; Kim, B.W.; Choi, D.K. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat. Prod. Rep., 2014, 31(1), 109-139.
[33]
Ngo, Q.M.; Tran, P.T.; Tran, M.H.; Kim, J.A.; Rho, S.S.; Lim, C.H.; Kim, J.C.; Woo, M.H.; Choi, J.S.; Lee, J.H.; Min, B.S. Alkaloids from Piper nigrum exhibit antiinflammatory activity via activating the Nrf2/HO-1 pathway. Phytother. Res., 2017, 31(4), 663-670.
[34]
Isah, T. Anticancer alkaloids from trees: Development into drugs. Pharmacogn. Rev., 2016, 10(20), 90-99.
[35]
Huang, M.; Lu, J.J.; Huang, M.Q.; Bao, J.L.; Chen, X.P.; Wang, Y.T. Terpenoids: Natural products for cancer therapy. Expert Opin. Investig. Drugs, 2012, 21(12), 1801-1818.
[36]
Lewandowska, H.; Kalinowska, M.; Lewandowski, W.; Stępkowski, T.M.; Brzóska, K. The role of natural polyphenols in cell signaling and cytoprotection against cancer development. J. Nutr. Biochem., 2016, 32, 1-19.
[37]
Hussain, T.; Tan, B.; Liu, G.; Murtaza, G.; Rahu, N.; Saleem, M.; Yin, Y. Modulatory mechanism of polyphenols and Nrf2 signaling pathway in LPS challenged pregnancy disorders. Oxid. Med. Cell. Longev., 2017, 2017, 8254289.
[38]
Pallauf, K.; Duckstein, N.; Hasler, M.; Klotz, L.O.; Rimbach, G. Flavonoids as putative inducers of the transcription factors Nrf2, FoxO, and PPARγ. Oxid. Med. Cell. Longev., 2017, 2017, 4397340.
[39]
Droge, W.; Breitkreutz, R. Glutathione and immune function. Proc. Nutr. Soc., 2000, 59(4), 595-600.
[40]
Harbrecht, B.G.; Di Silvio, M.; Chough, V.; Kim, Y.M.; Simmons, R.L.; Billiar, T.R. Glutathione regulates nitric oxide synthase in cultured hepatocytes. Annals. Surg., 1997, 225(1), 76-87.
[41]
Vahora, H.; Khan, M.A.; Alalami, U.; Hussain, A. The potential role of nitric oxide in halting cancer progression through chemoprevention. J. Cancer Prev., 2016, 21(1), 1-12.
[42]
Buchmuller-Rouiller, Y.; Corrandin, S.B.; Smith, J.; Schneider, P.; Ransijn, A.; Jongeneel, C.V.; Mauël, J. Role of glutathione in macrophage activation: Effect of cellular glutathione depletion on nitrite production and leishmanicidal activity. Cell. Immunol., 1995, 164(1), 73-80.
[43]
Mak, T.W.; Grusdat, M.; Duncan, G.S.; Dostert, C.; Nonnenmacher, Y.; Cox, M.; Binsfeld, C.; Hao, Z.; Brüstle, A.; Itsumi, M.; Jäger, C.; Chen, Y.; Pinkenburg, O.; Camara, B.; Ollert, M.; Bindslev-Jensen, C.; Vasiliou, V.; Gorrini, C.; Lang, P.A.; Lohoff, M.; Harris, I.S.; Hiller, K.; Brenner, D. Glutathione primes T cell metabolism for inflammation. Immunity, 2017, 46(4), 675-689.
[44]
Biswas, S.K.; McClure, D.; Jimenez, L.A.; Megson, I.L.; Rahman, I. Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: Mechanism of free radical scavenging activity. Antioxid. Redox Signal., 2005, 7(1-2), 32-41.
[45]
Mariyappan, P.; Kalaiyarasu, T.; Manju, V. Effect of eriodictyol on preneoplastic lesions, oxidative stress and bacterial enzymes in 1,2-dimethyl hydrazine-induced colon carcinogenesis. Toxicol. Res., 2017, 6(5), 678-692.
[46]
Sharma, S.H.; Chellappan, D.R.; Chinnaswamy, P.; Nagarajan, S. Protective effect of p-coumaric acid against 1,2 dimethylhydrazine induced colonic preneoplastic lesions in experimental rats. Biomed. Pharmacother., 2017, 94, 577-588.
[47]
Siddique, A.I.; Mani, V.; Arivalagan, S.; Thomas, N.S.; Namasivayam, N. Asiatic acid attenuates pre-neoplastic lesions, oxidative stress, biotransforming enzymes and histopathological alterations in 1,2-dimethylhydrazine-induced experimental rat colon carcinogenesis. Toxicol. Mech. Methods, 2017, 27(2), 136-150.
[48]
Siddique, A.I.; Mani, V.; Renganathan, S.; Ayyanar, R.; Nagappan, A.; Namasivayam, N. Asiatic acid abridges pre-neoplastic lesions, inflammation, cell proliferation and induces apoptosis in a rat model of colon carcinogenesis. Chem. Biol. Interact., 2017, 278, 197-211.
[49]
Vinothkumar, R.; Vinoth Kumar, R.; Sudha, M.; Viswanathan, P.; Balasubramanian, T.; Nalini, N. Modulatory effect of troxerutin on biotransforming enzymes and preneoplasic lesions induced by 1,2-dimethylhydrazine in rat colon carcinogenesis. Exp. Mol. Pathol., 2014, 96(1), 15-26.
[50]
Das, L.; Vinayak, M. Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signalling and modulation of inflammation in prevention of cancer. PLoS One, 2015, 10(4), e0124000.
[51]
Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. J. Tradit. Complement. Med., 2017, 7(2), 205-233.
[52]
Sharma, R.A.; Ireson, C.R.; Verschoyle, R.D.; Hill, K.A.; Williams, M.L.; Leuratti, C.; Manson, M.M.; Marnett, L.J.; Steward, W.P.; Gescher, A. Effects of dietary curcumin on glutathione- S-transferase and malondialdehyde-DNA adducts in rat liver and colon mucosa. Clin. Cancer Res., 2001, 7(5), 1452-1458.
[53]
Hussein, R.H.; Khalifa, F.K. The protective role of ellagitannins flavonoids pretreatment against N-nitrosodiethylamine induced-hepatocellular carcinoma. Saudi J. Biol. Sci., 2014, 21(6), 589-596.
[54]
Siddique, Y.H.; Ali, F. Protective effect of epigallocatechin gallate against N-nitrosodiethylamine (NDEA) induced toxicity in rats. Cogent Biol., 2016, 2(1), 1141451.
[55]
Ramakrishnan, G.; Raghavendran, H.R.; Vinodhkumar, R.; Devaki, T. Suppression of N-nitrosodiethylamine induced hepatocarcinogenesis by silymarin in rats. Chem. Biol. Interact., 2006, 161(2), 104-114.
[56]
Hawk, M.A.; McCallister, C.; Schafer, Z.T. Antioxidant activity during tumor progression: A necessity for the survival of cancer cells? Cancers, 2016, 8(10), 92.
[57]
Davison, C.A.; Durbin, S.M.; Thau, M.R.; Zellmer, V.R.; Chapman, S.E.; Diener, J.; Wathen, C.; Leevy, W.M.; Schafer, Z.T. Antioxidant enzymes mediate survival of breast cancer cells deprived of extracellular matrix. Cancer Res., 2013, 73(12), 3704-3715.
[58]
Kamarajugadda, S.; Cai, Q.; Chen, H.; Nayak, S.; Zhu, J.; He, M.; Jin, Y.; Zhang, Y.; Ai, L.; Martin, S.S.; Tan, M.; Lu, J. Manganese superoxide dismutase promotes anoikis resistance and tumor metastasis. Cell Death Dis., 2013, 21(4), 20.
[59]
Li, S.; Mao, Y.; Zhou, T.; Luo, C.; Xie, J.; Qi, W.; Yang, Z.; Ma, J.; Gao, G.; Yang, X. Manganese superoxide dismutase mediates anoikis resistance and tumor metastasis in nasopharyngeal carcinoma. Oncotarget, 2016, 7(22), 32408-32420.
[60]
Zhang, H.J.; Zhao, W.; Venkataraman, S.; Robbins, M.E.; Buettner, G.R.; Kregel, K.C.; Oberley, L.W. Activation of matrix metalloproteinase-2 by overexpression of manganese superoxide dismutase in human breast cancer MCF-7 cells involves reactive oxygen species. J. Biol. Chem., 2002, 277(23), 20919-20926.
[61]
Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol., 2018, 217(7), 2291-2298.
[62]
Rocha, C.R.R.; Garcia, C.C.M.; Vieira, D.B.; Quinet, A.; de Andrade-Lima, L.C.; Munford, V.; Belizário, J.E.; Menck, C.F. Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo. Cell Death Dis., 2014, 5, e1505.
[63]
Liebmann, J.E.; Hahn, S.M.; Cook, J.A.; Lipschultz, C.; Mitchell, J.B.; Kaufman, D.C. Glutathione depletion by L-buthionine sulfoximine antagonizes taxol cytotoxicity. Cancer Res., 1993, 53(9), 2066-2070.
[64]
Li, S.; Li, C.; Jin, S.; Liu, J.; Xue, X.; Eltahan, A.S.; Sun, J.; Tan, J.; Dong, J.; Liang, X.J. Overcoming resistance to cisplatin by inhibition of glutathione S-transferases (GSTs) with ethacraplatin micelles in vitro and in vivo. Biomaterials, 2017, 144, 119-129.
[65]
Saga, Y.; Ohwada, M.; Suzuki, M.; Konno, R.; Kigawa, J.; Ueno, S.; Mano, H. Glutathione peroxidase 3 is a candidate mechanism of anticancer drug resistance of ovarian clear cell adenocarcinoma. Oncol. Rep., 2008, 20(6), 1299-1303.
[66]
Ramachandran, C.; Yuan, Z.K.; Huang, X.L.; Krishan, A. Doxorubicin resistance in human melanoma cells: MDR-1 and glutathione S-transferase pi gene expression. Biochem. Pharmacol., 1993, 45(3), 743-751.
[67]
Wang, K.; Ramji, S.; Bhathena, A.; Lee, C.; Riddick, D.S. Glutathione S-transferases in wild-type and doxorubicin-resistant MCF-7 human breast cancer cell lines. Xenobiotica, 1999, 29(2), 155-170.
[68]
Zhu, Z.; Du, S.; Du, Y.; Ren, J.; Ying, G.; Yan, Z. Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis. J. Neurochem., 2018, 144(1), 93-104.
[69]
Lo, H.W.; Ali-Osman, F. Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr. Opin. Pharmacol., 2007, 7(4), 367-374.
[70]
Wu, S.; Wang, Y.J.; Tang, X.; Wang, Y.; Wu, J.; Ji, G.; Zhang, M.; Chen, G.; Liu, Q.; Sandford, A.J.; He, J.Q. Genetic Polymorphisms of Glutathione S-Transferase P1 (GSTP1) and the incidence of anti-tuberculosis drug-induced hepatotoxicity. PLoS One, 2016, 11(6), e0157478.
[71]
Townsend, D.M.; Tew, K.D. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene, 2002, 22, 7369.
[72]
Wongtrakul, J.; Sukittikul, S.; Saisawang, C.; Ketterman, A.J. Mitogen-activated protein kinase p38b interaction with delta class glutathione transferases from the fruit fly, Drosophila melanogaster. J. Insect Sci., 2012, 12, 107-107.
[73]
Kang, K.W.; Ryu, J.H.; Kim, S.G. The essential role of phosphatidylinositol 3-kinase and of p38 mitogen-activated protein kinase activation in the antioxidant response element-mediated rGSTA2 induction by decreased glutathione in H4IIE hepatoma cells. Mol. Pharmacol., 2000, 58(5), 1017-1025.
[74]
Samuels, B.L.; Murray, J.L.; Cohen, M.B.; Safa, A.R.; Sinha, B.K.; Townsend, A.J.; Beckett, M.A.; Weichselbaum, R.R. Increased glutathione peroxidase activity in a human sarcoma cell line with inherent doxorubicin resistance. Cancer Res., 1991, 51(2), 521-527.
[75]
Peters, W.H.; Roelofs, H.M. Biochemical characterization of resistance to mitoxantrone and adriamycin in Caco-2 human colon adenocarcinoma cells: A possible role for glutathione S-transferases. Cancer Res., 1992, 52(7), 1886-1890.
[76]
Beaumont, P.O.; Moore, M.J.; Ahmad, K.; Payne, M.M.; Lee, C.; Riddick, D.S. Role of glutathione S-transferases in the resistance of human colon cancer cell lines to doxorubicin. Cancer Res., 1998, 58(5), 947-955.
[77]
Mulder, T.P.; Manni, J.J.; Roelofs, H.M.; Peters, W.H.; Wiersma, A. Glutathione S-transferases and glutathione in human head and neck cancer. Carcinogenesis, 1995, 16(3), 619-624.
[78]
Marklund, S.L.; Westman, N.G.; Roos, G.; Carlsson, J. Radiation resistance and the CuZn superoxide dismutase, Mn superoxide dismutase, catalase, and glutathione peroxidase activities of seven human cell lines. Radiat. Res., 1984, 100(1), 115-123.
[79]
Hall, M.D.; Marshall, T.S.; Kwit, A.D.T.; Miller Jenkins, L.M.; Dulcey, A.E.; Madigan, J.P.; Pluchino, K.M.; Goldsborough, A.S.; Brimacombe, K.R.; Griffiths, G.L.; Gottesman, M.M. Inhibition of glutathione peroxidase mediates the collateral sensitivity of multidrug-resistant cells to tiopronin. J. Biol. Chem., 2014, 289(31), 21473-21489.
[80]
Bernig, T.; Ritz, S.; Brodt, G.; Volkmer, I.; Staege, M.S. Glutathione-S-transferases and chemotherapy resistance of Hodgkin’s lymphoma cell lines. Anticancer Res., 2016, 36(8), 3905-3915.
[81]
Chen, H.H.W.; Kuo, M.T. Role of glutathione in the regulation of Cisplatin resistance in cancer chemotherapy. Met. Based Drugs, 2010, 2010, 430939.
[82]
Meijer, C.; Mulder, N.H.; Hospers, G.A.; Uges, D.R. de Vries, E.G. The role of glutathione in resistance to cisplatin in a human small cell lung cancer cell line. Br. J. Cancer, 1990, 62(1), 72-77.
[83]
Azmi, A.S.; Sarkar, F.H.; Hadi, S.M. Pro-oxidant activity of dietary chemopreventive agents: an under-appreciated anti-cancer property. F1000 Res., 2013, 2, 135.
[84]
Yu, M.; Liu, Y.; Duan, Y.; Chen, Y.; Han, J.; Sun, L. Yang. X. Inhibition of glutathione production by L-S,R-buthionine sulfoximine activates hepatic ascorbate synthesis - A unique anti-oxidative stress mechanism in mice. Biochem. Biophys. Res. Commun., 2017, 484(1), 56-63.
[85]
Du, M.; Zhang, L.; Scorsone, K.A.; Woodfield, S.E.; Zage, P.E. Nifurtimox is effective against neural tumor cells and is synergistic with buthionine sulfoximine. Sci. Rep., 2016, 6, 27458.
[86]
Schnelldorfer, T.; Gansauge, S.; Gansauge, F.; Schlosser, S.; Beger, H.G.; Nussler, A.K. Glutathione depletion causes cell growth inhibition and enhanced apoptosis in pancreatic cancer cells. Cancer, 2000, 89(7), 1440-1447.
[87]
Lewis-Wambi, J.S.; Kim, H.R.; Wambi, C.; Patel, R.; Pyle, J.R.; Klein-Szanto, A.J.; Jordan, V.C. Buthionine sulfoximine sensitizes antihormone-resistant human breast cancer cells to estrogen-induced apoptosis. Breast Cancer Res., 2008, 10(6), R104.
[88]
Lee, M.; Jo, A.; Lee, S.; Kim, J.B.; Chang, Y.; Nam, J.Y.; Cho, H.; Cho, Y.Y.; Cho, E.J.; Lee, J.H.; Yu, S.J.; Yoon, J.H.; Kim, Y.J. 3-bromopyruvate and buthionine sulfoximine effectively kill anoikis-resistant hepatocellular carcinoma cells. PLoS One, 2017, 12(3), e0174271.
[89]
Anderson, C.P.; Keshelava, N.; Satake, N.; Meek, W.H.; Reynolds, C.P. Synergism of buthionine sulfoximine and melphalan against neuroblastoma cell lines derived after disease progression. Med. Pediatr. Oncol., 2000, 35(6), 659-662.
[90]
Faundez, M.; Pino, L.; Letelier, P.; Ortiz, C.; López, R.; Seguel, C.; Ferreira, J.; Pavani, M.; Morello, A.; Maya, J.D. Buthionine sulfoximine increases the toxicity of nifurtimox and benznidazole to Trypanosoma cruzi. Antimicrob. Agents Chemother., 2005, 49(1), 126-130.
[91]
Tagde, A.; Singh, H.; Kang, M.H.; Reynolds, C.P. The glutathione synthesis inhibitor buthionine sulfoximine synergistically enhanced melphalan activity against preclinical models of multiple myeloma. Blood Cancer J., 2014, 4, e229.
[92]
Anderson, C.P.; Reynolds, C.P. Synergistic cytotoxicity of buthionine sulfoximine (BSO) and intensive melphalan (L-PAM) for neuroblastoma cell lines established at relapse after myeloablative therapy. Bone Marrow Transplant., 2002, 30(3), 135-140.
[93]
Garbutcheon-Singh, K.B.; Harper, B.W.; Myers, S.; Aldrich-Wright, J.R. Combination studies of platinum(II)-based metallointercalators with buthionine-S,R-sulfoximine, 3-bromopyruvate, cisplatin or carboplatin. Metallomics, 2014, 6(1), 126-131.
[94]
Port, J.L.; Hochwald, S.N.; Wang, H.Y.; Burt, M.E. Buthionine sulfoximine pretreatment potentiates the effect of isolated lung perfusion with doxorubicin. Ann. Thorac. Surg., 1995, 60(2), 239-243.
[95]
Imamura, M.; Seki, T.; Kunieda, K.; Wakabayashi, M.; Inoue, K.; Obiya, Y.; Harada, K. Antitumor effects of Doxorubicin hydrochloride (dox) and buthionine sulfoximine (bso)-hydroxyapatite (hap) complex on transplanted tumors in-vivo. Oncol. Rep., 1995, 2(4), 509-511.
[96]
Mustafa, E.H.; Mahmoud, H.T.; Al-Hudhud, M.Y.; Abdalla, M.Y.; Ahmad, I.M.; Yasin, S.R.; Elkarmi, A.Z.; Tahtamouni, L.H. 2-deoxy-D-glucose synergizes with doxorubicin or L-buthionine sulfoximine to reduce adhesion and migration of breast cancer cells. Asian Pac. J. Cancer Prev., 2015, 16(8), 3213-3222.
[97]
Liu, B.; Huang, X.; Hu, Y.; Chen, T.; Peng, B.; Gao, N.; Jin, Z.; Jia, T.; Zhang, N.; Wang, Z.; Jin, G. Ethacrynic acid improves the antitumor effects of irreversible epidermal growth factor receptor tyrosine kinase inhibitors in breast cancer. Oncotarget, 2016, 7(36), 58038-58050.
[98]
Lu, D.; Liu, J.X.; Endo, T.; Zhou, H.; Yao, S.; Willert, K.; Schmidt-Wolf, I.G.; Kipps, T.J.; Carson, D.A. Ethacrynic acid exhibits selective toxicity to chronic lymphocytic leukemia cells by inhibition of the wnt/β-catenin pathway. PLoS One, 2009, 4(12), e8294.
[99]
Lee, E.; Reed, G.; Dandawate, P.; Kaushik, G.; Subramaniam, D.; Holzbeierlein, J.M.; Anant, S.; Weir, S.J. Repurposing ethacrynic acid for the treatment of bladder cancer. J. Clin. Oncol., 2018, 36(6)(Suppl.), 521.
[100]
Rhodes, T.; Twentyman, P.R. A study of ethacrynic acid as a potential modifier of melphalan and cisplatin sensitivity in human lung cancer parental and drug-resistant cell lines. Br. J. Cancer, 1992, 65(5), 684-690.
[101]
Wang, J.; Seebacher, N.; Shi, H.; Kan, Q.; Duan, Z. Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. Oncotarget, 2017, 8(48), 84559-84571.
[102]
Radenkovic, F.; Holland, O.; Vanderlelie, J.J.; Perkins, A.V. Selective inhibition of endogenous antioxidants with Auranofin causes mitochondrial oxidative stress which can be countered by selenium supplementation. Biochem. Pharmacol., 2017, 146, 42-52.
[103]
Roder, C.; Thomson, M.J. Auranofin: Repurposing an old drug for a golden new age. Drugs, 2015, 15(1), 13-20.
[104]
You, B.R.; Park, W.H. Auranofin induces mesothelioma cell death through oxidative stress and GSH depletion. Oncol. Rep., 2016, 35(1), 546-551.
[105]
Li, H.; Hu, J.; Wu, S.; Wang, L.; Cao, X.; Zhang, X.; Dai, B.; Cao, M.; Shao, R.; Zhang, R.; Majidi, M.; Ji, L.; Heymach, J.V.; Wang, M.; Pan, S.; Minna, J.; Mehran, R.J.; Swisher, S.G.; Roth, J.A.; Fang, B. Auranofin-mediated inhibition of PI3K/AKT/mTOR axis and anticancer activity in non-small cell lung cancer cells. Oncotarget, 2015, 7(3), 3548-3558.
[106]
Hu, J.; Zhang, H.; Cao, M.; Wang, L.; Wu, S.; Fang, B. Auranofin enhances Ibrutinib’s anticancer activity in EGFR-mutant lung adenocarcinoma. Mol. Cancer Ther., 2018, 17(10), 2156-2163.
[107]
Park, S.H.; Lee, J.H.; Berek, J.S.; Hu, M.C. Auranofin displays anticancer activity against ovarian cancer cells through FOXO3 activation independent of p53. Int. J. Oncol., 2014, 45(4), 1691-1698.
[108]
Vahrmeijer, A.L.; van Dierendonck, J.H.; Schutrups, J.; van de Velde, C.J.; Mulder, G.J. Effect of glutathione depletion on inhibition of cell cycle progression and induction of apoptosis by melphalan (L-phenylalanine mustard) in human colorectal cancer cells. Biochem. Pharmacol., 1999, 58(4), 655-664.
[109]
Li, Q.; Yin, X.; Wang, W.; Zhan, M.; Zhao, B.; Hou, Z.; Wang, J. The effects of buthionine sulfoximine on the proliferation and apoptosis of biliary tract cancer cells induced by cisplatin and gemcitabine. Oncol. Lett., 2016, 11(1), 474-480.
[110]
Lewis-Wambi, J.; Kim, H.; Wambi, C.; Jordan, V.C. Glutathione depletion sensitizes hormone-independent human breast cancer cells to estrogen-induced apoptosis. Cancer Res., 2008, 68((9 Supplement)), 2687.
[111]
You, B.R.; Shin, H.R.; Han, B.R.; Kim, S.H.; Park, W.H. Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion. Mol. Med. Rep., 2015, 11(2), 1428-1434.
[112]
Park, W.H. Gallic acid induces HeLa cell death via increasing GSH depletion rather than ROS levels. Oncol. Rep., 2017, 37(2), 1277-1283.
[113]
You, B.R.; Park, W.H. Trichostatin A induces apoptotic cell death of HeLa cells in a Bcl-2 and oxidative stress-dependent manner. Int. J. Oncol., 2013, 42(1), 359-366.
[114]
Jaudan, A.; Sharma, S.; Malek, S.N.A.; Dixit, A. Induction of apoptosis by pinostrobin in human cervical cancer cells: Possible mechanism of action. PLoS One, 2018, 13(2), e0191523.
[115]
Kim, E.H.; Baek, S.; Shin, D.; Lee, J.; Roh, J.L. Hederagenin induces apoptosis in cisplatin-resistant head and neck cancer cells by inhibiting the Nrf2-ARE antioxidant pathway. Oxid. Med. Cell. Longev., 2017, 2017, 12.
[116]
Sivakumaran, N.; Samarakoon, S.R.; Adhikari, A.; Ediriweera, M.K.; Tennekoon, K.H.; Malavige, N.; Thabrew, I.; Shrestha, R.L.S. Cytotoxic and apoptotic effects of govaniadine isolated from corydalis govaniana wall. Roots on human breast cancer (MCF-7) cells. BioMed Res. Int., 2018, 2018, 3171348.
[117]
Deeb, D.; Gao, X.; Liu, Y.B.; Gautam, S.C. Inhibition of cell proliferation and induction of apoptosis by CDDO-Me in pancreatic cancer cells is ROS-dependent. J. Exp. Therap. Oncol., 2012, 10(1), 51-64.
[118]
Brautigam, M.; Teusch, N.; Schenk, T.; Sheikh, M.; Aricioglu, R.Z.; Borowski, S.H.; Neudörfl, J.M.; Baumann, U.; Griesbeck, A.G.; Pietsch, M. Selective inhibitors of glutathione transferase P1 with trioxane structure as anticancer agents. ChemMedChem, 2015, 10(4), 629-639.
[119]
Chen, C.; Wu, C.; Lu, X.; Yan, Z.; Gao, J.; Zhao, H.; Li, S. Coniferyl ferulate, a strong inhibitor of glutathione s-transferase isolated from radix angelicae sinensis, reverses multidrug resistance and downregulates P-glycoprotein. Evid. Based Complement. Alternat. Med., 2013, 2013, 639083.
[120]
Ruzza, P.; Calderan, A. Glutathione Transferase (GST)-activated prodrugs. Pharmaceutics, 2013, 5(2), 220-231.
[121]
Ramsay, E.E.; Dilda, P.J. Glutathione S-conjugates as prodrugs to target drug-resistant tumors. Front. Pharmacol., 2014, 5, 181.
[122]
Dourado, D.F.; Fernandes, P.A.; Ramos, M.J.; Mannervik, B. Mechanism of glutathione transferase P1-1-catalyzed activation of the prodrug canfosfamide (TLK286, TELCYTA). Biochemistry, 2013, 52(45), 8069-8078.
[123]
Tew, K.D. TLK-286: A novel glutathione S-transferase-activated prodrug. Expert Opin. Investig. Drugs, 2005, 14(8), 1047-1054.
[124]
Rosen, L.S.; Brown, J.; Laxa, B.; Boulos, L.; Reiswig, L.; Henner, W.D.; Lum, R.T.; Schow, S.R.; Maack, C.A.; Keck, J.G.; Mascavage, J.C.; Dombroski, J.A.; Gomez, R.F.; Brown, G.L. Phase I study of TLK286 (glutathione S-transferase P1-1 activated glutathione analogue) in advanced refractory solid malignancies. Clin. Cancer Res., 2003, 9(5), 1628-1638.
[125]
Rosen, L.S.; Laxa, B.; Boulos, L.; Wiggins, L.; Keck, J.G.; Jameson, A.J.; Parra, R.; Patel, K.; Brown, G.L. Phase 1 study of TLK286 (Telcyta) administered weekly in advanced malignancies. Clin. Cancer Res., 2004, 10(11), 3689-3698.
[126]
Sequist, L.V.; Fidias, P.M.; Temel, J.S.; Kolevska, T.; Rabin, M.S.; Boccia, R.V.; Burris, H.A.; Belt, R.J.; Huberman, M.S.; Melnyk, O.; Mills, G.M.; Englund, C.W.; Caldwell, D.C.; Keck, J.G.; Meng, L.; Jones, M.; Brown, G.L.; Edelman, M.J.; Lynch, T.J. Phase 1-2a multicenter dose-ranging study of canfosfamide in combination with carboplatin and paclitaxel as first-line therapy for patients with advanced non-small cell lung cancer. J. Thorac. Oncol., 2009, 4(11), 1389-1396.
[127]
Vergote, I.; Finkler, N.; del Campo, J.; Lohr, A.; Hunter, J.; Matei, D.; Kavanagh, J.; Vermorken, J.B.; Meng, L.; Jones, M.; Brown, G.; Kaye, S. ASSIST-1 Study Group. Phase 3 randomised study of canfosfamide (Telcyta, TLK286) versus pegylated liposomal doxorubicin or topotecan as third-line therapy in patients with platinum-refractory or -resistant ovarian cancer. Eur. J. Cancer, 2009, 45(13), 2324-2332.
[128]
Kavanagh, J.J.; Gershenson, D.M.; Choi, H.; Lewis, L.; Patel, K.; Brown, G.L.; Garcia, A.; Spriggs, D.R. Multi-institutional phase 2 study of TLK286 (TELCYTA, a glutathione S-transferase P1-1 activated glutathione analog prodrug) in patients with platinum and paclitaxel refractory or resistant ovarian cancer. Int. J. Gynecol. Cancer, 2005, 15(4), 593-600.
[129]
Vergote, I.; Finkler, N.J.; Hall, J.B.; Melnyk, O.; Edwards, R.P.; Jones, M.; Keck, J.G.; Meng, L.; Brown, G.L.; Rankin, E.M.; Burke, J.J.; Boccia, R.V.; Runowicz, C.D.; Rose, P.G. Randomized phase III study of canfosfamide in combination with pegylated liposomal doxorubicin compared with pegylated liposomal doxorubicin alone in platinum-resistant ovarian cancer. Int. J. Gynecol. Cancer, 2010, 20(5), 772-780.
[130]
Kavanagh, J.J.; Levenback, C.F.; Ramirez, P.T.; Wolf, J.L.; Moore, C.L.; Jones, M.R.; Meng, L.; Brown, G.L.; Bast, R.C. Jr. Phase 2 study of canfosfamide in combination with pegylated liposomal doxorubicin in platinum and paclitaxel refractory or resistant epithelial ovarian cancer. J. Hematol. Oncol., 2010, 3(9), 1756-8722.
[131]
Rojas, L.B.; Gomes, M.B. Metformin: An old but still the best treatment for type 2 diabetes. Diabetol. Metab. Syndr., 2013, 5(1), 1758-5996.
[132]
Rautio, J.; Vernerova, M.; Aufderhaar, I.; Huttunen, K.M. Glutathione-S-transferase selective release of metformin from its sulfonamide prodrug. Bioorg. Med. Chem. Lett., 2014, 24(21), 5034-5036.
[133]
Huerta, S. Nitric oxide for cancer therapy. Future Sci., 2015, 1(1), FSO44.
[134]
Luanpitpong, S.; Chanvorachote, P. Nitric oxide and aggressive behavior of lung cancer cells. Anticancer Res., 2015, 35(9), 4585-4592.
[135]
Xu, W.; Liu, L.Z.; Loizidou, M.; Ahmed, M.; Charles, I.G. The role of nitric oxide in cancer. Cell Res., 2002, 12(5-6), 311-320.
[136]
Chakrapani, H.; Kalathur, R.C.; Maciag, A.E.; Citro, M.L.; Ji, X.; Keefer, L.K.; Saavedra, J.E. Synthesis, mechanistic studies, and anti-proliferative activity of glutathione/glutathione S-transferase-activated nitric oxide prodrugs. Bioorg. Med. Chem., 2008, 16(22), 9764-9771.
[137]
Xue, R.; Wu, J.; Luo, X.; Gong, Y.; Huang, Y.; Shen, X.; Zhang, H.; Zhang, Y.; Huang, Z. Design, synthesis, and evaluation of diazeniumdiolate-based dna cross-linking agents activatable by glutathione S-transferase. Org. Lett., 2016. [Epub ahead of print].
[138]
Liu, J.; Li, C.; Qu, W.; Leslie, E.; Bonifant, C.L.; Buzard, G.S.; Saavedra, J.E.; Keefer, L.K.; Waalkes, M.P. Nitric oxide prodrugs and metallochemotherapeutics: JS-K and CB-3-100 enhance arsenic and cisplatin cytolethality by increasing cellular accumulation. Mol. Cancer Ther., 2004, 3(6), 709-714.
[139]
Maciag, A.E.; Holland, R.J.; Robert Cheng, Y.S.; Rodriguez, L.G.; Saavedra, J.E.; Anderson, L.M.; Keefer, L.K. Nitric oxide-releasing prodrug triggers cancer cell death through deregulation of cellular redox balance. Redox Biol., 2013, 1(1), 115-124.
[140]
Maciag, A.E.; Chakrapani, H.; Saavedra, J.E.; Morris, N.L.; Holland, R.J.; Kosak, K.M.; Shami, P.J.; Anderson, L.M.; Keefer, L.K. The nitric oxide prodrug JS-K is effective against non-small-cell lung cancer cells in vitro and in vivo: Involvement of reactive oxygen species. J. Pharmacol. Exp. Ther., 2011, 336(2), 313-320.
[141]
Tan, G.; Qiu, M.; Chen, L.; Zhang, S.; Ke, L.; Liu, J.J.S-K. a nitric oxide pro-drug, regulates growth and apoptosis through the ubiquitin-proteasome pathway in prostate cancer cells. BMC Cancer, 2017, 17(1), 376.
[142]
Edes, K.; Cassidy, P.; Shami, P.J.; Moos, P.J.J.S-K. a nitric oxide prodrug, has enhanced cytotoxicity in colon cancer cells with knockdown of thioredoxin reductase 1. PLoS One, 2010, 5(1), e8786.
[143]
Dong, R.; Wang, X.; Wang, H.; Liu, Z.; Liu, J.; Saavedra, J.E. Effects of JS-K, a novel anti-cancer nitric oxide prodrug, on gene expression in human hepatoma Hep3B cells. Biomed. Pharmacother., 2017, 88, 367-373.
[144]
Simeone, A.M.; McMurtry, V.; Nieves-Alicea, R.; Saavedra, J.E.; Keefer, L.K.; Johnson, M.M.; Tari, A.M. TIMP-2 mediates the anti-invasive effects of the nitric oxide-releasing prodrug JS-K in breast cancer cells. Breast Cancer Res., 2008, 10(3), R44.
[145]
Shafei, A.; El-Bakly, W.; Sobhy, A.; Wagdy, O.; Reda, A.; Aboelenin, O.; Marzouk, A.; El Habak, K.; Mostafa, R.; Ali, M.A.; Ellithy, M. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed. Pharmacother., 2017, 95, 1209-1218.
[146]
Kepinska, M.; Kizek, R.; Milnerowicz, H. Fullerene as a doxorubicin nanotransporter for targeted breast cancer therapy: Capillary electrophoresis analysis. Electrophoresis, 2018, 39(18), 2370-2379.
[147]
Cox, J.; Weinman, S. Mechanisms of doxorubicin resistance in hepatocellular carcinoma. Hepatic. Oncol., 2016, 3(1), 57-59.
[148]
Lovitt, C.J.; Shelper, T.B.; Avery, V.M. Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer, 2018, 18(1), 41.
[149]
Johansson, K.; Ito, M.; Schophuizen, C.M.; Mathew Thengumtharayil, S.; Heuser, V.D.; Zhang, J.; Shimoji, M.; Vahter, M.; Ang, W.H.; Dyson, P.J.; Shibata, A.; Shuto, S.; Ito, Y.; Abe, H.; Morgenstern, R. Characterization of new potential anticancer drugs designed to overcome glutathione transferase mediated resistance. Mol. Pharm., 2011, 8(5), 1698-1708.
[150]
van Gisbergen, M.W.; Cebula, M.; Zhang, J.; Ottosson-Wadlund, A.; Dubois, L.; Lambin, P.; Tew, K.D.; Townsend, D.M.; Haenen, G.R.; Drittij-Reijnders, M.J.; Saneyoshi, H.; Araki, M.; Shishido, Y.; Ito, Y.; Arnér, E.S.; Abe, H.; Morgenstern, R.; Johansson, K. Chemical reactivity window determines prodrug efficiency toward glutathione transferase overexpressing cancer cells. Mol. Pharm., 2016, 13(6), 2010-2025.
[151]
Carroll, R.E.; Benya, R.V.; Turgeon, D.K.; Vareed, S.; Neuman, M.; Rodriguez, L.; Kakarala, M.; Carpenter, P.M.; McLaren, C.; Meyskens, F.L. Jr, Brenner, D.E. Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev. Res. (Phila.), 2011, 4(3), 354-364.
[152]
Alumkal, J.J.; Slottke, R.; Schwartzman, J.; Cherala, G.; Munar, M.; Graff, J.N.; Beer, T.M.; Ryan, C.W.; Koop, D.R.; Gibbs, A.; Gao, L.; Flamiatos, J.F.; Tucker, E.; Kleinschmidt, R.; Mori, M. A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Invest. New Drugs, 2015, 33(2), 480-489.
[153]
Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol., 2017, 1, 35.
[154]
Wang, J.; Xiong, T.; Zhou, J.; He, H.; Wu, D.; Du, X.; Li, X.; Xu, B. Enzymatic formation of curcumin in vitro and in vivo. Nano Res., 2018, 11(6), 3453-3461.
[155]
Baell, J.B.; Holloway, G.A. New substructure filters for removal of Pan Assay Interference Compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740.
[156]
Baell, J.B. Feeling nature’s PAINS: Natural products, natural product drugs, and Pan Assay Interference Compounds (PAINS). J. Nat. Prod., 2016, 79(3), 616-628.
[157]
Bhatia, M.; McGrath, K.L.; Di Trapani, G.; Charoentong, P.; Shah, F.; King, M.M.; Clarke, F.M.; Tonissen, K.F. The thioredoxin system in breast cancer cell invasion and migration. Redox Biol., 2015, 8, 68-78.
[158]
Tsuji, P.A.; Carlson, B.A.; Yoo, M.H.; Naranjo-Suarez, S.; Xu, X.M.; He, Y.; Asaki, E.; Seifried, H.E.; Reinhold, W.C.; Davis, C.D.; Gladyshev, V.N.; Hatfield, D.L. The 15kDa selenoprotein and thioredoxin reductase 1 promote colon cancer by different pathways. PLoS One, 2015, 10(4), e0124487.
[159]
Harris, I.S.; Treloar, A.E.; Inoue, S.; Sasaki, M.; Gorrini, C.; Lee, K.C.; Yung, K.Y.; Brenner, D.; Knobbe-Thomsen, C.B.; Cox, M.A.; Elia, A.; Berger, T.; Cescon, D.W.; Adeoye, A.; Brüstle, A.; Molyneux, S.D.; Mason, J.M.; Li, W.Y.; Yamamoto, K.; Wakeham, A.; Berman, H.K.; Khokha, R.; Done, S.J.; Kavanagh, T.J.; Lam, C.W.; Mak, T.W. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell, 2015, 27(2), 211-222.
[160]
Benhar, M.; Shytaj, I.L.; Stamler, J.S.; Savarino, A. Dual targeting of the thioredoxin and glutathione systems in cancer and HIV. J. Clin. Investig., 2016, 126(5), 1630-1639.
[161]
Zhang, J.; Li, X.; Han, X.; Liu, R.; Fang, J. Targeting the thioredoxin system for cancer therapy. Trends Pharmacol. Sci., 2017, 38(9), 794-808.