Research Article

Hotspot Mutations in DICER1 Causing GLOW Syndrome-Associated Macrocephaly via Modulation of Specific microRNA Populations Result in the Activation of PI3K/ATK/mTOR Signaling

Author(s): Steven D. Klein and Julian A. Martinez-Agosto*

Volume 9, Issue 1, 2020

Page: [70 - 80] Pages: 11

DOI: 10.2174/2211536608666190624114424

Abstract

Background: We have previously described mosaic mutations in the RNase IIIb domain of DICER1that display global developmental delays, lung cysts, somatic overgrowth, macrocephaly and Wilms tumor. This constellation of phenotypes was classified as GLOW syndrome. Due to the phenotypic overlap between GLOW and syndromes caused by mutations in the PI3K/AKT/mTOR pathway, we hypothesized that alterations in miRNA regulation of this pathway cause its specific constellation of phenotypes.

Objective: To test the hypothesis that DICER1 “hot spot” mutations associated with GLOW syndrome activate PI3K/AKT/mTOR signaling.

Methods: We developed HEK293T cells with loss of exon 25 in DICER1, a genetic modification that is synonymous with the “hot spot” RNAseIIIb mutations that cause GLOW syndrome. We assayed the cells for activation of the PI3K/AKT/mTOR signaling pathway.

Results: We observed activation of the PI3K/AKT/mTOR pathway as demonstrated by increased pS6Kinase, p4EBP1 and pTSC2 levels. Additionally, these cells demonstrate a striking cellular phenotype, with the ability to form spheres when the serum is removed from their growth medium. The cells in these spheres are Oct4 and Sox2 positive and exhibit the property of reversion with the addition of serum. We queried miRNA expression data and identified a population of miRNAs that increase due to these mutations and target negative regulators of the PI3K/AKT/mTOR pathway.

Conclusion: This work identifies the delicate and essential role for miRNA control of the PI3K/AKT/mTOR pathway. We conclude that the phenotypes observed in the GLOW syndrome are the result of PI3K/AKT/mTOR activation.

Keywords: Cancer, DICER1, micoRNA, overgrowth, PI3K/AKT/mTOR, hot spot.

« Previous
Graphical Abstract

[1]
Klein S, Lee H, Ghahremani S, et al. Expanding the phenotype of mutations in DICER1: Mosaic missense mutations in the RNase IIIb domain of DICER1 cause GLOW syndrome. J Med Genet 2014; 51(5): 294-302.
[http://dx.doi.org/10.1136/jmedgenet-2013-101943] [PMID: 24676357]
[2]
Foulkes WD, Priest JR, Duchaine TF. DICER1: Mutations, microRNAs and mechanisms. Nat Rev Cancer 2014; 14(10): 662-72.
[http://dx.doi.org/10.1038/nrc3802] [PMID: 25176334]
[3]
Desvignes T, Batzel P, Berezikov E, et al. miRNA nomenclature: A view incorporating genetic origins, biosynthetic pathways, and sequence variants. Trends Genet 2015; 31(11): 613-26.
[http://dx.doi.org/10.1016/j.tig.2015.09.002] [PMID: 26453491]
[4]
Yan S, Jiao K. Functions of miRNAs during mammalian heart development. Int J Mol Sci 2016; 17(5)E789
[http://dx.doi.org/10.3390/ijms17050789] [PMID: 27213371]
[5]
Schiffman JD, Geller JI, Mundt E, Means A, Means L, Means V. Update on pediatric cancer predisposition syndromes. Pediatr Blood Cancer 2013; 60(8): 1247-52.
[http://dx.doi.org/10.1002/pbc.24555] [PMID: 23625733]
[6]
Hill DA, Ivanovich J, Priest JR, et al. DICER1 mutations in familial pleuropulmonary blastoma. Science 2009; 325(5943): 965.
[http://dx.doi.org/10.1126/science.1174334] [PMID: 19556464]
[7]
Stewart CJ, Charles A, Foulkes WD. Gynecologic manifestations of the DICER1 syndrome. Surg Pathol Clin 2016; 9(2): 227-41.
[http://dx.doi.org/10.1016/j.path.2016.01.002] [PMID: 27241106]
[8]
Faure A, Atkinson J, Bouty A, et al. DICER1 pleuropulmonary blastoma familial tumour predisposition syndrome: What the paediatric urologist needs to know. J Pediatr Urol 2016; 12(1): 5-10.
[http://dx.doi.org/10.1016/j.jpurol.2015.08.012] [PMID: 26454454]
[9]
Slade I, Bacchelli C, Davies H, et al. DICER1 syndrome: Clarifying the diagnosis, clinical features and management implications of a pleiotropic tumour predisposition syndrome. J Med Genet 2011; 48(4): 273-8.
[http://dx.doi.org/10.1136/jmg.2010.083790] [PMID: 21266384]
[10]
Khan NE, Bauer AJ, Doros L, et al. Macrocephaly associated with the DICER1 syndrome. Genet Med 2017; 19(2): 244-8.
[http://dx.doi.org/10.1038/gim.2016.83] [PMID: 27441995]
[11]
Anglesio MS, Wang Y, Yang W, et al. Cancer-associated somatic DICER1 hotspot mutations cause defective miRNA processing and reverse-strand expression bias to predominantly mature 3p strands through loss of 5p strand cleavage. J Pathol 2013; 229(3): 400-9.
[http://dx.doi.org/10.1002/path.4135] [PMID: 23132766]
[12]
Wu MK, Sabbaghian N, Xu B, et al. Biallelic DICER1 mutations occur in Wilms tumours. J Pathol 2013; 230(2): 154-64.
[http://dx.doi.org/10.1002/path.4196] [PMID: 23620094]
[13]
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013; 8(11): 2281-308.
[http://dx.doi.org/10.1038/nprot.2013.143] [PMID: 24157548]
[14]
Doench JG, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 2016; 34(2): 184-91.
[http://dx.doi.org/10.1038/nbt.3437] [PMID: 26780180]
[15]
Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 2013; 31(9): 827-32.
[http://dx.doi.org/10.1038/nbt.2647] [PMID: 23873081]
[16]
Doros L, Schultz KA, Stewart DR, Bauer AJ, Williams G, Rossi CT, et al. DICER1-related disorders. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al., editors Gene Reviews(R) Seattle. Seattle, WA 1993.
[17]
Aberdam D, Candi E, Knight RA, Melino G. miRNAs, ‘stemness’ and skin. Trends Biochem Sci 2008; 33(12): 583-91.
[http://dx.doi.org/10.1016/j.tibs.2008.09.002] [PMID: 18848452]
[18]
Shukrun R, Pode-Shakked N, Pleniceanu O, et al. Wilms’ tumor blastemal stem cells dedifferentiate to propagate the tumor bulk. Stem Cell Reports 2014; 3(1): 24-33.
[http://dx.doi.org/10.1016/j.stemcr.2014.05.013] [PMID: 25068119]
[19]
Beckwith JB. Nephrogenic rests and the pathogenesis of Wilms tumor: Developmental and clinical considerations. Am J Med Genet 1998; 79(4): 268-73.
[http://dx.doi.org/10.1002/(SICI)10968628(19981002)79:4<268:AID-AJMG7>3.0.CO;2-I] [PMID: 9781906]
[20]
Hill DA, Jarzembowski JA, Priest JR, Williams G, Schoettler P, Dehner LP. Type I pleuropulmonary blastoma: Pathology and biology study of 51 cases from the international pleuropulmonary blastoma registry. Am J Surg Pathol 2008; 32(2): 282-95.
[http://dx.doi.org/10.1097/PAS.0b013e3181484165] [PMID: 18223332]
[21]
Rohner A, Langenkamp U, Siegler U, Kalberer CP, Wodnar-Filipowicz A. Differentiation-promoting drugs up-regulate NKG2D ligand expression and enhance the susceptibility of acute myeloid leukemia cells to natural killer cell-mediated lysis. Leuk Res 2007; 31(10): 1393-402.
[http://dx.doi.org/10.1016/j.leukres.2007.02.020] [PMID: 17391757]
[22]
Happle R. Lethal genes surviving by mosaicism: A possible explanation for sporadic birth defects involving the skin. J Am Acad Dermatol 1987; 16(4): 899-906.
[http://dx.doi.org/10.1016/S0190-9622(87)80249-9] [PMID: 3033033]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy