[1]
Masilamani AP, Ferrarese R, Kling E, et al. KLF6 depletion promotes NF-κB signaling in glioblastoma. Oncogene 2017; 36(25): 3562-75.
[2]
He AD, Xie W, Song W, et al. Platelet releasates promote the proliferation of hepatocellular carcinoma cells by suppressing the expression of KLF6. Sci Rep 2017; 7(1): 3989.
[3]
Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in the control of cell identity and disease. Cell 2013; 155(4): 934-47.
[4]
Hnisz D, Schuijers J, Lin CY, et al. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. Mol Cell 2015; 58(2): 362-70.
[5]
Lovén J, Hoke HA, Lin CY, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013; 153(2): 320-34.
[6]
Zhang X, Choi PS, Francis JM, et al. Somatic super enhancer duplications and hotspot mutations lead to oncogenic activation of the KLF5 transcription factor. Cancer Discov 2018; 8: 108-25.
[7]
Dhar SS, Zhao D, Lin T, et al. MLL4 is required to maintain broad H3K4me3 peaks and super-enhancers at tumor suppressor genes. Mol Cell 2018; 7: 825-41.
[8]
Yang R, Wu Y, Ming Y, et al. A super-enhancer maintains homeostatic expression of Regnase-1. Cell 2018; 30(669): 35-41.
[9]
DiFeo A, Martignetti JA, Narla G. The role of KLF6 and its splice variants in cancer therapy. Drug Resist Updat 2009; 12(1-2): 1-7.
[10]
D’Astolfo DS, Gehrau RC, Bocco JL, Koritschoner NP. Silencing of the transcription factor KLF6 by siRNA leads to cell cycle arrest and sensitizes cells to apoptosis induced by DNA damage. Cell Death Differ 2008; 15(3): 613.
[11]
Ri KC, Kim JS, Kim C. Identification of KLF6-related super enhancer in human hepatoma (HepG2) cells by CRISPR technique. Genet Mol Res 2017; 16(4)gmr16039841
[12]
Ri KC, Kim KC, Kong SH, Ri JH. The disruption of KLF6-related super- enhancer induces growth inhibition and apoptosis in human HepG2 cells. Genet Mol Res 2018; 17(1)gmr16039888
[13]
Suzuki HI, Young RA, Sharp PA, et al. Super-enhancer-mediated RNA processing revealed by integrative MicroRNA network analysis. Cell 2017; 9: 1000-14.
[14]
Stratton MS, Lin CY, Anand P, et al. Signal-dependent recruitment of BRD4 to cardiomyocyte super-enhancers is suppressed by a microRNA. Cell Rep 2016; 16(5): 1366-78.
[15]
Zou Q, Liang Y, Luo H, Yu W. miRNA-mediated RNA by targeting enhancers. Adv Exp Med Biol 2017; 983: 113-25.
[16]
Stovicek V, Holkenbrink C, Borodina I. CRISPR/Cas system for yeast genome engineering: advances and applications. FEMS Yeast Res 2017; 17(5): 1-16.
[17]
Fujii W, Ikeda A, Sugiura K, Naito K. Efficient generation of genome-modified mice using campylobacter jejuni-derived CRISPR/Cas. Int J Mol Sci 2017; 18(11)E2286
[18]
Hung SS, Li F, Wang JH, et al. Methods for in vivo CRISPR/Cas editing of the adult murine retina. Methods Mol Biol 2018; 1715: 113-33.
[19]
Albitar A, Rohani B, Will B, Yan A, Gallicano GI. The application of CRISPR/Cas technology to efficiently model complex cancer genomes in stem cells. J Cell Biochem 2018; 119(1): 134-40.
[20]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339: 819-23.
[21]
Min Xiao, Jin Li, Wei Li, et al. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol 2017; 14(10): 1326-34.
[22]
Fang L, Yang N, Ma J, Fu Y, Yang GS. MicroRNA-1301-mediated inhibition of tumorigenesis. Oncol Rep 2012; 27(4): 929-34.
[23]
Wang B, Wu H, Chai C, Lewis J. MicroRNA-1301 suppresses tumor cell migration and invasion by targeting the p53/UBE4B pathway in multiple human cancer cells. Cancer Lett 2017; 401: 1-13.
[24]
Liang WC, Wang Y, Xiao LJ, et al. Identification of miRNAs that specifically target tumor suppressive KLF6-FL rather than oncogenic KLF6-SV1 isoform. RNA Biol 2014; 11: 845-54.
[25]
Narla G, Difeo A, Reeves HL, et al. A germline DNA polymorphism associated with increased prostate cancer risk enhances alternative splicing of the KLF6 tumor suppressor gene. Cancer Res 2005; 65: 1213-22.
[26]
Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296: 550-3.
[27]
Lei Z, Ma X, Li H, et al. Up-regulation of miR-181a in clear cell renal cell carcinoma is associated with lower KLF6 expression, enhanced cell proliferation, accelerated cell cycle transition, and diminished apoptosis. Urol Oncol 2018; 36(3): 93.e23-37.
[28]
Yu F, Jiang Z, Chen B, Dong P, Zheng J. NEAT1 accelerates the progression of liver fibrosis via regulation of microRNA-122 and Kruppel-like factor 6. J Mol Med (Berl) 2017; 95(11): 1191-202.
[29]
Gao Y, Li H, Ma X, et al. KLF6 suppresses metastasis of clear cell renal cell carcinoma via transcriptional repression of E2F1. Cancer Res 2017 15; 77(2): 330-42.
[30]
Hsu LS, Huang RH, Lai HW, et al. KLF6 inhibited oral cancer migration and invasion via downregulation of mesenchymal markers and inhibition of MMP-9 activities. Int J Med Sci 2017; 14(6): 530-5.
[31]
Zhang S, Zhang JY, Lu LJ, Wang CH, Wang LH. MiR-630 promotes epithelial ovarian cancer proliferation and invasion via targeting KLF6. Eur Rev Med Pharmacol Sci 2017; 21(20): 4542-7.
[32]
Zhang B1,Guo DD, Zheng JY, Wu YA. Expression of KLF6-SV2 in colorectal cancer and its impact on proliferation and apoptosis. Eur J Cancer Prev 2018; 27(1): 20-6.
[33]
Narla G, Kremer-Tal S, Matsumoto N, et al. In vivo regulation of p21 by the Kruppel-like factor 6 tumor-suppressor gene in mouse liver and human hepatocellular carcinoma. Oncogene 2007; 26: 4428-34.
[34]
Chunxia Qi, Dan Li, Jiang X, et al. Inducing CCR5D32/D32 Homozygotes in the human jurkat CD4+ cell line and primary CD4+ cells by CRISPR-Cas9 genome-editing technology. Nucleic Acids 2018; 12: 267-74.