Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

罗汉果糖苷V通过逆转EMT和破坏细胞骨架抑制高血糖诱导的肺癌细胞转移。

卷 19, 期 11, 2019

页: [885 - 895] 页: 11

弟呕挨: 10.2174/1568009619666190619154240

价格: $65

摘要

背景:糖尿病(DM)加速了肺癌的进展。高血糖是DM的关键特征,可促进肺癌转移。罗汉果甙V是罗汉果(Siraitia grosvenorii)的三萜糖苷。有趣的是,罗汉果苷V不仅具有抗糖尿病作用,而且还具有抗肿瘤作用。 目的:在这项研究中,我们研究了罗汉果苷V在高血糖培养的肺癌细胞中的转移效率。 方法:分别在正常血糖(5.5mM葡萄糖)和高血糖症(25mM葡萄糖)中培养两个肺癌细胞系A549和H1299。 MTT法检测细胞增殖,Transwell法检测侵袭,伤口愈合法检测迁移,Phalloidin-TRITC法检测细胞骨架,Western blot法检测EMT标志物和Rho-GTPase家族蛋白的表达。 结果:与正常血糖相比,高血糖促进了A549和H1299细胞的侵袭和迁移。罗汉果苷V抑制高血糖引起的侵袭和迁移。高血糖症可促进上皮-间质转化(EMT),而罗汉果苷V可通过上调E-钙黏着蛋白表达和下调N-钙黏着蛋白,波形蛋白,蜗牛的表达来逆转这一过程。此外,在高血糖条件下,罗汉果苷V使微丝断裂并降低了Rho A,Rac1,Cdc42和p-PAK1的表达。 结论:这些结果表明罗汉果苷V通过逆转EMT和破坏细胞骨架来抑制高血糖诱导的肺癌细胞迁移和侵袭。

关键词: 罗汉果甙V,高血糖,转移,EMT,细胞骨架,肺癌。

图形摘要

[1]
Iarrobino, N.A.; Gill, B.S.; Bernard, M.; Klement, R.J.; Werner-Wasik, M.; Champ, C.E. The impact of serum glucose, anti-diabetic agents, and statin usage in non-small cell lung cancer patients treated with definitive chemoradiation. Front. Oncol., 2018, 8, 281.
[http://dx.doi.org/10.3389/fonc.2018.00281] [PMID: 30101126]
[2]
Kurishima, K.; Watanabe, H.; Ishikawa, H.; Satoh, H.; Hizawa, N. Survival of patients with lung cancer and diabetes mellitus. Mol. Clin. Oncol., 2017, 6(6), 907-910.
[http://dx.doi.org/10.3892/mco.2017.1224] [PMID: 28588788]
[3]
Xu, T.; Li, D.; He, Y.; Zhang, F.; Qiao, M.; Chen, Y. Prognostic value of metformin for non-small cell lung cancer patients with diabetes. World J. Surg. Oncol., 2018, 16(1), 60.
[http://dx.doi.org/10.1186/s12957-018-1362-1] [PMID: 29558957]
[4]
Wu, K.; Yu, X.; Huang, Z.; Zhu, D.; Yi, X.; Wu, Y. L.; Hao, Q.; Kemp, K. T., 2nd; Elshimali, Y.; Iyer, R.; Nguyen, K. T.; Zheng, S.; Chen, G.; Chen, Q. H.; Wang, G.; Vadgama, J. V.; Wu, Y. Targeting of PP2Cdelta by a small molecule C23 inhibits high glucoseinduced breast cancer progression in vivo. Antioxidants & redox signaling, 2018.
[5]
Kellenberger, L.D.; Petrik, J. Hyperglycemia promotes insulin-independent ovarian tumor growth. Gynecol. Oncol., 2018, 149(2), 361-370.
[http://dx.doi.org/10.1016/j.ygyno.2018.02.003] [PMID: 29458977]
[6]
Li, X.; Li, J.; Cai, Y.; Peng, S.; Wang, J.; Xiao, Z.; Wang, Y.; Tao, Y.; Li, J.; Leng, Q.; Wu, D.; Yang, S.; Ji, Z.; Han, Y.; Li, L.; Gao, X.; Zeng, C.; Wen, X. Hyperglycaemia-induced miR-301a promotes cell proliferation by repressing p21 and Smad4 in prostate cancer. Cancer Lett., 2018, 418, 211-220.
[http://dx.doi.org/10.1016/j.canlet.2018.01.031] [PMID: 29331421]
[7]
Wu, H.; Zhang, T.; Pan, F.; Steer, C.J.; Li, Z.; Chen, X.; Song, G. MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis. J. Hepatol., 2017, 66(4), 816-824.
[http://dx.doi.org/10.1016/j.jhep.2016.12.016] [PMID: 28025059]
[8]
Kang, X.; Kong, F.; Wu, X.; Ren, Y.; Wu, S.; Wu, K.; Jiang, Z.; Zhang, W. High glucose promotes tumor invasion and increases metastasis-associated protein expression in human lung epithelial cells by upregulating heme oxygenase-1 via reactive oxygen species or the TGF-β1/PI3K/Akt signaling pathway. Cell. Physiol. Biochem., 2015, 35(3), 1008-1022.
[http://dx.doi.org/10.1159/000373928] [PMID: 25661467]
[9]
Rahn, S.; Zimmermann, V.; Viol, F.; Knaack, H.; Stemmer, K.; Peters, L.; Lenk, L.; Ungefroren, H.; Saur, D.; Schäfer, H.; Helm, O.; Sebens, S. Diabetes as risk factor for pancreatic cancer: Hyperglycemia promotes epithelial-mesenchymal-transition and stem cell properties in pancreatic ductal epithelial cells. Cancer Lett., 2018, 415, 129-150.
[http://dx.doi.org/10.1016/j.canlet.2017.12.004] [PMID: 29222037]
[10]
Xu, X.; Si, M.; Lou, H.; Yan, Y.; Liu, Y.; Zhu, H.; Lou, X.; Ma, J.; Zhu, D.; Wu, H.; Yang, B.; Wu, H.; Ding, L.; He, Q. Hyperglycemia decreases anti-cancer efficiency of Adriamycin via AMPK pathway. Endocr. Relat. Cancer, 2018, ERC-18-ERC-0036.
[http://dx.doi.org/10.1530/ERC-18-0036] [PMID: 29941677]
[11]
Talakatta, G.; Sarikhani, M.; Muhamed, J.; Dhanya, K.; Somashekar, B.S.; Mahesh, P.A.; Sundaresan, N.; Ravindra, P.V. Diabetes induces fibrotic changes in the lung through the activation of TGF-β signaling pathways. Sci. Rep., 2018, 8(1), 11920.
[http://dx.doi.org/10.1038/s41598-018-30449-y] [PMID: 30093732]
[12]
Pawar, R.S.; Krynitsky, A.J.; Rader, J.I. Sweeteners from plants with emphasis on Stevia rebaudiana (Bertoni) and Siraitia grosvenorii (Swingle). Anal. Bioanal. Chem., 2013, 405(13), 4397-4407.
[http://dx.doi.org/10.1007/s00216-012-6693-0] [PMID: 23341001]
[13]
Xiangyang, Q.; Weijun, C.; Liegang, L.; Ping, Y.; Bijun, X. Effect of a Siraitia grosvenori extract containing mogrosides on the cellular immune system of type 1 diabetes mellitus mice. Mol. Nutr. Food Res., 2006, 50(8), 732-738.
[http://dx.doi.org/10.1002/mnfr.200500252] [PMID: 16835866]
[14]
Itkin, M.; Davidovich-Rikanati, R.; Cohen, S.; Portnoy, V.; Doron-Faigenboim, A.; Oren, E.; Freilich, S.; Tzuri, G.; Baranes, N.; Shen, S.; Petreikov, M.; Sertchook, R.; Ben-Dor, S.; Gottlieb, H.; Hernandez, A.; Nelson, D.R.; Paris, H.S.; Tadmor, Y.; Burger, Y.; Lewinsohn, E.; Katzir, N.; Schaffer, A. The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii. Proc. Natl. Acad. Sci. USA, 2016, 113(47), E7619-E7628.
[http://dx.doi.org/10.1073/pnas.1604828113] [PMID: 27821754]
[15]
Takasaki, M.; Konoshima, T.; Murata, Y.; Sugiura, M.; Nishino, H.; Tokuda, H.; Matsumoto, K.; Kasai, R.; Yamasaki, K. Anticarcinogenic activity of natural sweeteners, cucurbitane glycosides, from Momordica grosvenori. Cancer Lett., 2003, 198(1), 37-42.
[http://dx.doi.org/10.1016/S0304-3835(03)00285-4] [PMID: 12893428]
[16]
Liu, C.; Dai, L.H.; Dou, D.Q.; Ma, L.Q.; Sun, Y.X. A natural food sweetener with anti-pancreatic cancer properties. Oncogenesis, 2016. 5e217
[http://dx.doi.org/10.1038/oncsis.2016.28] [PMID: 27065453]
[17]
Wu, D.; Hu, D.; Chen, H.; Shi, G.; Fetahu, I.S.; Wu, F.; Rabidou, K.; Fang, R.; Tan, L.; Xu, S.; Liu, H.; Argueta, C.; Zhang, L.; Mao, F.; Yan, G.; Chen, J.; Dong, Z.; Lv, R.; Xu, Y.; Wang, M.; Ye, Y.; Zhang, S.; Duquette, D.; Geng, S.; Yin, C.; Lian, C.G.; Murphy, G.F.; Adler, G.K.; Garg, R.; Lynch, L.; Yang, P.; Li, Y.; Lan, F.; Fan, J.; Shi, Y.; Shi, Y.G. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature, 2018, 559(7715), 637-641.
[http://dx.doi.org/10.1038/s41586-018-0350-5] [PMID: 30022161]
[18]
Srivastava, K.; Shao, B.; Bayraktutan, U. PKC-β exacerbates in vitro brain barrier damage in hyperglycemic settings via regulation of RhoA/Rho-kinase/MLC2 pathway. J. Cereb. Blood Flow Metab., 2013, 33(12), 1928-1936.
[http://dx.doi.org/10.1038/jcbfm.2013.151] [PMID: 23963366]
[19]
Gu, C.J.; Xie, F.; Zhang, B.; Yang, H.L.; Cheng, J.; He, Y.Y.; Zhu, X.Y.; Li, D.J.; Li, M.Q. High glucose promotes epithelial-mesenchymal transition of uterus endometrial cancer cells by increasing ER/GLUT4-mediated VEGF secretion. Cell. Physiol. Biochem., 2018, 50(2), 706-720.
[http://dx.doi.org/10.1159/000494237] [PMID: 30308493]
[20]
Ho, Y.; Chen, Y.F.; Wang, L.H.; Hsu, K.Y.; Chin, Y.T.; Yang, Y.S.H.; Wang, S.H.; Chen, Y.R.; Shih, Y.J.; Liu, L.F.; Wang, K.; Whang-Peng, J.; Tang, H.Y.; Lin, H.Y.; Liu, H.L.; Lin, S.J. Inhibitory effect of Anoectochilus formosanus extract on hyperglycemia-related PD-L1 expression and cancer proliferation. Front. Pharmacol., 2018, 9, 807.
[http://dx.doi.org/10.3389/fphar.2018.00807] [PMID: 30116189]
[21]
Chakroun, M.; Khemakhem, B.; Mabrouk, H.B.; El Abed, H.; Makni, M.; Bouaziz, M.; Drira, N.; Marrakchi, N.; Mejdoub, H. Evaluation of anti-diabetic and anti-tumoral activities of bioactive compounds from Phoenix dactylifera L’s leaf: In vitro and in vivo approach. Biomed. Pharmacother., 2016, 84, 415-422.
[http://dx.doi.org/10.1016/j.biopha.2016.09.062] [PMID: 27668542]
[22]
Liu, H.; Qi, X.; Yu, K.; Lu, A.; Lin, K.; Zhu, J.; Zhang, M.; Sun, Z. AMPK activation is involved in hypoglycemic and hypolipidemic activities of mogroside-rich extract from Siraitia grosvenorii (Swingle) fruits on high-fat diet/streptozotocin-induced diabetic mice. Food Funct., 2019, 10(1), 151-162.
[http://dx.doi.org/10.1039/C8FO01486H] [PMID: 30516208]
[23]
Zhang, X.; Song, Y.; Ding, Y.; Wang, W.; Liao, L.; Zhong, J.; Sun, P.; Lei, F.; Zhang, Y.; Xie, W. Effects of mogrosides on high-fat-diet-induced obesity and nonalcoholic fatty liver disease in mice. Molecules, 2018, 23(8), 1894.
[http://dx.doi.org/10.3390/molecules23081894] [PMID: 30060618]
[24]
Ding, C.Z.; Guo, X.F.; Wang, G.L.; Wang, H.T.; Xu, G.H.; Liu, Y.Y.; Wu, Z.J.; Chen, Y.H.; Wang, J.; Wang, W.G. High glucose contributes to the proliferation and migration of non-small cell lung cancer cells via GAS5-TRIB3 axis. Biosci. Rep., 2018.BSR20171014
[http://dx.doi.org/10.1042/BSR20171014] [PMID: 29367413]
[25]
Li, W.; Liu, H.; Qian, W.; Cheng, L.; Yan, B.; Han, L.; Xu, Q.; Ma, Q.; Ma, J. Hyperglycemia aggravates microenvironment hypoxia and promotes the metastatic ability of pancreatic cancer. Comput. Struct. Biotechnol. J., 2018, 16, 479-487.
[http://dx.doi.org/10.1016/j.csbj.2018.10.006] [PMID: 30455857]
[26]
Diepenbruck, M.; Christofori, G. Epithelial-mesenchymal transition (EMT) and metastasis: Yes, no, maybe? Curr. Opin. Cell Biol., 2016, 43, 7-13.
[http://dx.doi.org/10.1016/j.ceb.2016.06.002] [PMID: 27371787]
[27]
Chaffer, C.L.; San Juan, B.P.; Lim, E.; Weinberg, R.A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev., 2016, 35(4), 645-654.
[http://dx.doi.org/10.1007/s10555-016-9648-7] [PMID: 27878502]
[28]
Sousa-Squiavinato, A.C.M.; Rocha, M.R.; Barcellos-de-Souza, P.; de Souza, W.F.; Morgado-Diaz, J.A. Cofilin-1 signaling mediates epithelial-mesenchymal transition by promoting actin cytoskeleton reorganization and cell-cell adhesion regulation in colorectal cancer cells. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(3), 418-429.
[http://dx.doi.org/10.1016/j.bbamcr.2018.10.003] [PMID: 30296500]
[29]
Lv, Z.; Hu, M.; Zhen, J.; Lin, J.; Wang, Q.; Wang, R. Rac1/PAK1 signaling promotes epithelial-mesenchymal transition of podocytes in vitro via triggering β-catenin transcriptional activity under high glucose conditions. Int. J. Biochem. Cell Biol., 2013, 45(2), 255-264.
[http://dx.doi.org/10.1016/j.biocel.2012.11.003] [PMID: 23153508]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy