Review Article

Plant-Derived Natural Alkaloids as New Antimicrobial and Adjuvant Agents in Existing Antimicrobial Therapy

Author(s): Rajinder Pal Mittal and Vikas Jaitak*

Volume 20, Issue 14, 2019

Page: [1409 - 1433] Pages: 25

DOI: 10.2174/1389450120666190618124224

Price: $65

Abstract

Infectious diseases, instigated by pathogenic microorganisms are the cause of numerous health problems in developing countries. Infectious diseases got a place in the list of top ten death causes worldwide. The reason behind that level of severity is antimicrobial resistance. Antimicrobial resistance makes the antimicrobial agents useless when used in the treatment of infectious diseases. Microbes have very smartly achieved resistance against synthetic and semi-synthetic antimicrobial agents for their survival. Therefore, the handling of these diseases has become challenging. The resistance developing power is the reason for their existence since a million years. Due to their highly dangerous nature, proper treatment of infectious diseases has become a topic of concern. This leads the scientists or researchers to focus their research towards natural agents. Plants synthesize secondary metabolites to cope up with biotic and abiotic changes in the environment. Alkaloids are one of the secondary metabolites, synthesized by plants. Alkaloids protect the plant from predators and help them to fight with pathogens. The protecting nature of alkaloids can be used as a strong weapon in battle with resistant microorganisms. The purpose of this review is to provide information about the antimicrobial activity of alkaloids obtained from different plants and their combination with synthetic antimicrobials. Their mechanism of action against microorganisms is also given in the review.

Keywords: Antimicrobials, alkaloids, inhibition, mechanisms, microbes, semi-synthetic.

Next »
Graphical Abstract

[1]
Sharma R, Gulab T, Sanodiya BS, Savita A. Therapeutic potential of Calotropis procera: A giant milkweed. IOSR J Pharm Biol Sci 2012; 4(2): 42-57.
[http://dx.doi.org/10.9790/3008-0424257]
[2]
Abdallah EM. Plants: An alternative source for antimicrobials. J Appl Pharm Sci 2011; 1(6): 16-20.
[3]
Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67(11): 2640-4.
[http://dx.doi.org/10.1093/jac/dks261] [PMID: 22782487]
[4]
Organization WH. Global tuberculosis report 2017 2017. Google Scholar 2018.
[5]
Ozçelik B, Kartal M, Orhan I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol 2011; 49(4): 396-402.
[http://dx.doi.org/10.3109/13880209.2010.519390] [PMID: 21391841]
[6]
Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 2012; 63: 431-50.
[http://dx.doi.org/10.1146/annurev-arplant-042110-103854] [PMID: 22404468]
[7]
Vlietinck AJ, Van Hoof L, Totté J, et al. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J Ethnopharmacol 1995; 46(1): 31-47.
[http://dx.doi.org/10.1016/0378-8741(95)01226-4] [PMID: 7475121]
[8]
Van Vuuren S, Holl D. Antimicrobial natural product research: A review from a South African perspective for the years 2009-2016. J Ethnopharmacol 2017; 208: 236-52.
[http://dx.doi.org/10.1016/j.jep.2017.07.011] [PMID: 28694104]
[9]
Bérdy J. Bioactive microbial metabolites. J Antibiot 2005; 58(1): 1-26.
[http://dx.doi.org/10.1038/ja.2005.1] [PMID: 15813176]
[10]
Jabbar A, Raza MA, Iqbal Z, Khan MN. An inventory of the ethnobotanicals used as anthelmintics in the southern Punjab (Pakistan). J Ethnopharmacol 2006; 108(1): 152-4.
[http://dx.doi.org/10.1016/j.jep.2006.04.015] [PMID: 16730420]
[11]
Iwu MW, Duncan AR, Okunji CO. New antimicrobials of plant origin Perspectives on new crops and new uses. ASHS Press: Alexandria, VA 1999; pp. 457-62.
[12]
Verpoorte R. Antimicrobially active alkaloidsAlkaloids. Springer 1998; pp. 397-433.
[http://dx.doi.org/10.1007/978-1-4757-2905-4_17]
[13]
Das K, Tiwari R, Shrivastava D. Techniques for evaluation of medicinal plant products as antimicrobial agents: current methods and future trends. J Med Plants Res 2010; 4(2): 104-11.
[14]
Macheboeuf P, Contreras-Martel C, Job V, Dideberg O, Dessen A. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol Rev 2006; 30(5): 673-91.
[http://dx.doi.org/10.1111/j.1574-6976.2006.00024.x] [PMID: 16911039]
[15]
Demain AL, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot (Tokyo) 2009; 62(1): 5-16.
[http://dx.doi.org/10.1038/ja.2008.16] [PMID: 19132062]
[16]
Chandra H, Bishnoi P, Yadav A, et al. Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials—a review. Plants (Basel) 2017; 6(2): 16.
[http://dx.doi.org/10.3390/plants6020016] [PMID: 28394295]
[17]
Lowy FD. Antimicrobial resistance: The example of Staphylococcus aureus. J Clin Invest 2003; 111(9): 1265-73.
[http://dx.doi.org/10.1172/JCI18535] [PMID: 12727914]
[18]
Organization WH. Global action plan on antimicrobial resistance. Geneva WHO 2015;. 2017.
[19]
Wi T, Lahra MM, Ndowa F, et al. Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action. PLoS Med 2017; 14(7)e1002344
[http://dx.doi.org/10.1371/journal.pmed.1002344] [PMID: 28686231]
[20]
Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74(3): 417-33.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[21]
Bassetti M, Poulakou G, Ruppe E, Bouza E, Van Hal SJ, Brink A. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: a visionary approach. Intensive Care Med 2017; 43(10): 1464-75.
[http://dx.doi.org/10.1007/s00134-017-4878-x] [PMID: 28733718]
[22]
Wright GD. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 2005; 57(10): 1451-70.
[http://dx.doi.org/10.1016/j.addr.2005.04.002] [PMID: 15950313]
[23]
Rupp ME, Fey PD. Extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae: considerations for diagnosis, prevention and drug treatment. Drugs 2003; 63(4): 353-65.
[http://dx.doi.org/10.2165/00003495-200363040-00002] [PMID: 12558458]
[24]
Murray BE, Mederski-Samaroj B. Transferable beta-lactamase. A new mechanism for in vitro penicillin resistance in Streptococcus faecalis. J Clin Invest 1983; 72(3): 1168-71.
[http://dx.doi.org/10.1172/JCI111042] [PMID: 6411768]
[25]
Kataja J, Seppälä H, Skurnik M, Sarkkinen H, Huovinen P. Different erythromycin resistance mechanisms in group C and group G streptococci. Antimicrob Agents Chemother 1998; 42(6): 1493-4.
[http://dx.doi.org/10.1128/AAC.42.6.1493] [PMID: 9624500]
[26]
Nikaido H. Antibiotic resistance caused by gram-negative multidrug efflux pumps. Clin Infect Dis 1998; 27(Supplement_1): S32-41.
[http://dx.doi.org/10.1086/514920]
[27]
Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 2002; 34(5): 634-40.
[http://dx.doi.org/10.1086/338782] [PMID: 11823954]
[28]
Džidić S, Šušković J, Kos B. Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technol Biotechnol 2008; 46(1): 11-21.
[29]
Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control 2006; 34(5)(Suppl. 1): S3-S10.
[http://dx.doi.org/10.1016/j.ajic.2006.05.219] [PMID: 16813980]
[30]
Mabhiza D, Chitemerere T, Mukanganyama S. Antibacterial Properties of Alkaloid Extracts from Callistemon citrinus and Vernonia adoensis against Staphylococcus aureus and Pseudomonas aeruginosa. Int J Med Chem 2016 2016.
[31]
MacVane SH. Antimicrobial resistance in the intensive care unit: a focus on gram-negative bacterial infections. J Intensive Care Med 2017; 32(1): 25-37.
[http://dx.doi.org/10.1177/0885066615619895] [PMID: 26772199]
[32]
Thomson CJ, Amyes SG. TRC-1: emergence of a clavulanic acid-resistant TEM β-lactamase in a clinical strain. FEMS Microbiol Lett 1992; 70(2): 113-7.
[PMID: 1316862]
[33]
Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 2010; 1: 134.
[http://dx.doi.org/10.3389/fmicb.2010.00134] [PMID: 21687759]
[34]
Czaplewski L, Bax R, Clokie M, et al. Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect Dis 2016; 16(2): 239-51.
[http://dx.doi.org/10.1016/S1473-3099(15)00466-1] [PMID: 26795692]
[35]
Parisien A, Allain B, Zhang J, Mandeville R, Lan CQ. Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microbiol 2008; 104(1): 1-13.
[PMID: 18171378]
[36]
Clark JR, March JB. Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol 2006; 24(5): 212-8.
[http://dx.doi.org/10.1016/j.tibtech.2006.03.003] [PMID: 16567009]
[37]
Saga T, Yamaguchi K. History of antimicrobial agents and resistant bacteria. Japan Med Assoc J 2009; 52(2): 103-8.
[38]
Demain AL, Zhang L. Natural products and drug discoveryNat Prod. Springer 2005; pp. 3-29.
[http://dx.doi.org/10.1007/978-1-59259-976-9_1]
[39]
Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999; 12(4): 564-82.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[40]
Yang L, Stöckigt J. Trends for diverse production strategies of plant medicinal alkaloids. Nat Prod Rep 2010; 27(10): 1469-79.
[http://dx.doi.org/10.1039/c005378c] [PMID: 20730220]
[41]
Matsuura HN, Fett-Neto AG. Plant alkaloids: main features, toxicity, and mechanisms of actionPlant Toxins. Springer 2017; pp. 243-61.
[http://dx.doi.org/10.1007/978-94-007-6464-4_2]
[42]
Ncube N, Afolayan A, Okoh A. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. Afr J Biotechnol 2008; 7(12)
[http://dx.doi.org/10.5897/AJB07.613]
[43]
Cushnie TP, Cushnie B, Lamb AJ. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 2014; 44(5): 377-86.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.06.001] [PMID: 25130096]
[44]
Facchini PJ. Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 2001; 52(1): 29-66.
[http://dx.doi.org/10.1146/annurev.arplant.52.1.29] [PMID: 11337391]
[45]
Hesse M. Alkaloids: nature’s curse or blessing?. John Wiley & Sons 2002.
[46]
Wink M, Twardowski T. Allelochemical properties of alkaloids Effects on plants, bacteria and protein biosynthesisAllelopathy. Springer 1992; pp. 129-50.
[http://dx.doi.org/10.1007/978-94-011-2376-1_10]
[47]
Atta -ur-Rahman. Choudhary MI. Diterpenoid and steroidal alkaloids. Nat Prod Rep 1999; 16(5): 619-35.
[http://dx.doi.org/10.1039/a705715f] [PMID: 10584334]
[48]
Lusebrink I, Dettner K, Seifert K. Stenusine, an antimicrobial agent in the rove beetle genus Stenus (Coleoptera, Staphylinidae). Naturwissenschaften 2008; 95(8): 751-5.
[http://dx.doi.org/10.1007/s00114-008-0374-z] [PMID: 18392795]
[49]
Savitzky AH, Mori A, Hutchinson DA, et al. Sequestered defensive toxins in tetrapod vertebrates: principles, patterns, and prospects for future studies. Chemoecology 2012; 22(3): 141-58.
[http://dx.doi.org/10.1007/s00049-012-0112-z] [PMID: 22904605]
[50]
Faulkner DJ. Marine natural products. Nat Prod Rep 2001; 18(1): 1-49.
[http://dx.doi.org/10.1039/b006897g] [PMID: 11245399]
[51]
Wink M, Schmeller T, Latz-Brüning B. Modes of action of allelochemical alkaloids: interaction with neuroreceptors, DNA, and other molecular targets. J Chem Ecol 1998; 24(11): 1881-937.
[http://dx.doi.org/10.1023/A:1022315802264]
[52]
Aiyegoro O, Okoh A. Use of bioactive plant products in combination with standard antibiotics: implications in antimicrobial chemotherapy. J Med Plants Res 2009; 3(13): 1147-52.
[53]
Budzikiewicz H, Ludwig F, Ernst-Georg H, et al. Vinceten, ein Benzopyrroloisochinolin‐Alkaloid, aus Cynanchum vincetoxicum (L.) Pers.(Asclepiadaceae). Liebigs Ann 1979; 1979(8): 1212-31.
[http://dx.doi.org/10.1002/jlac.197919790815]
[54]
Ueda JY, Takagi M, Shin-ya K. Aminocaprophenone- and pyrrolidine-type alkaloids from the leaves of Ficus septica. J Nat Prod 2009; 72(12): 2181-3.
[http://dx.doi.org/10.1021/np900580f] [PMID: 19938815]
[55]
Amoa Onguéné P, Ntie-Kang F, Lifongo LL, et al. The potential of anti-malarial compounds derived from African medicinal plants, part I: a pharmacological evaluation of alkaloids and terpenoids. Malar J 2013; 12(1): 449.
[http://dx.doi.org/10.1186/1475-2875-12-449] [PMID: 24330395]
[56]
Tsuchiya H. Membrane interactions of phytochemicals as their molecular mechanism applicable to the discovery of drug leads from plants. Molecules 2015; 20(10): 18923-66.
[http://dx.doi.org/10.3390/molecules201018923] [PMID: 26501254]
[57]
Más D, Martinez Y, Galardis MB, Corrals CR, Betancur C. Secondary metabolites and in vitro antimicrobial activity of roots of Cuban Argemone mexicana Linn. WJPMR 2018; 4(6): 46-51.
[58]
Gurrapu S, Mamidala E. In vitro antibacterial activity of alkaloids isolated from leaves of Eclipta alba against human pathogenic bacteria. Pharmacogn J 2017; 9(4): 573-7.
[http://dx.doi.org/10.5530/pj.2017.4.91]
[59]
Alhanout K, Malesinki S, Vidal N, et al. New insights into the antibacterial mechanism of action of squalamine. J Antimicrob Chemother 2010; 65(8): 1688-93.
[http://dx.doi.org/10.1093/jac/dkq213] [PMID: 20551217]
[60]
Khan R, Baeshen MN, Saini KS, et al. Antibacterial activities of Rhazya stricta leaf extracts against multidrug-resistant human pathogens. Biotechnol Biotechnol Equip 2016; 30(5): 1016-25.
[http://dx.doi.org/10.1080/13102818.2016.1209087]
[61]
Beuria TK, Santra MK, Panda D. Sanguinarine blocks cytokinesis in bacteria by inhibiting FtsZ assembly and bundling. Biochemistry 2005; 44(50): 16584-93.
[http://dx.doi.org/10.1021/bi050767+] [PMID: 16342949]
[62]
Yang S-K, Xi-Yap PS, Mai C-W, et al. Plant-derived antimicrobials: insights into mitigation of antimicrobial resistance. Rec Nat Prod 2018; 12(4): 295-396.
[http://dx.doi.org/10.25135/rnp.41.17.09.058]
[63]
Domadia PN, Bhunia A, Sivaraman J, Swarup S, Dasgupta D. Berberine targets assembly of Escherichia coli cell division protein FtsZ. Biochemistry 2008; 47(10): 3225-34.
[http://dx.doi.org/10.1021/bi7018546] [PMID: 18275156]
[64]
Yu H-H, Kim KJ, Cha JD, et al. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J Med Food 2005; 8(4): 454-61.
[http://dx.doi.org/10.1089/jmf.2005.8.454] [PMID: 16379555]
[65]
Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA, Lewis K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci USA 2000; 97(4): 1433-7.
[http://dx.doi.org/10.1073/pnas.030540597] [PMID: 10677479]
[66]
Wink M, Ashour ML, El-Readi MZ. Secondary metabolites from plants inhibiting ABC transporters and reversing resistance of cancer cells and microbes to cytotoxic and antimicrobial agents. Front Microbiol 2012; 3: 130.
[http://dx.doi.org/10.3389/fmicb.2012.00130] [PMID: 22536197]
[67]
Ahmed M, Borsch CM, Neyfakh AA, Schuldiner S. Mutants of the Bacillus subtilis multidrug transporter Bmr with altered sensitivity to the antihypertensive alkaloid reserpine. J Biol Chem 1993; 268(15): 11086-9.
[PMID: 8098708]
[68]
Forte B, Malgesini B, Piutti C, et al. A submarine journey: the pyrrole-imidazole alkaloids. Mar Drugs 2009; 7(4): 705-53.
[http://dx.doi.org/10.3390/md7040705] [PMID: 20098608]
[69]
Sun J, Wu J, An B, Voogd NJ, Cheng W, Lin W. Bromopyrrole Alkaloids with the Inhibitory Effects against the Biofilm Formation of Gram Negative Bacteria. Mar Drugs 2018; 16(1): 9.
[http://dx.doi.org/10.3390/md16010009] [PMID: 29301295]
[70]
Skogman ME, Kujala J, Busygin I, Leinob R, Vuorela PM, Fallarero A. Evaluation of antibacterial and anti-biofilm activities of cinchona alkaloid derivatives against Staphylococcus aureus. Nat Prod Commun 2012; 7(9): 1173-6.
[http://dx.doi.org/10.1177/1934578X1200700917] [PMID: 23074900]
[71]
Dusane DH, Hosseinidoust Z, Asadishad B, Tufenkji N. Alkaloids modulate motility, biofilm formation and antibiotic susceptibility of uropathogenic Escherichia coli. PLoS One 2014; 9(11)e112093
[http://dx.doi.org/10.1371/journal.pone.0112093] [PMID: 25391152]
[72]
Hussain M, Gorsi M. Antimicrobial activity of Nerium oleander Linn. Asian J Plant Sci 2004; 3(2): 177-80.
[http://dx.doi.org/10.3923/ajps.2004.177.180]
[73]
Volleková A, Kostálová D, Sochorová R. Isoquinoline alkaloids from Mahonia aquifolium stem bark are active against Malassezia spp. Folia Microbiol (Praha) 2001; 46(2): 107-11.
[http://dx.doi.org/10.1007/BF02873586] [PMID: 11501395]
[74]
Slobodníková L, Kost’álová D, Labudová D, Kotulová D, Kettmann V. Antimicrobial activity of Mahonia aquifolium crude extract and its major isolated alkaloids. Phytother Res 2004; 18(8): 674-6.
[http://dx.doi.org/10.1002/ptr.1517] [PMID: 15476315]
[75]
Feng T, Xu Y, Cai XH, Du ZZ, Luo XD. Antimicrobially active isoquinoline alkaloids from Litsea cubeba. Planta Med 2009; 75(1): 76-9.
[http://dx.doi.org/10.1055/s-0028-1088344] [PMID: 18991207]
[76]
Hufford CD, Funderburk MJ, Morgan JM, Robertson LW. Two antimicrobial alkaloids from heartwood of Liriodendron tulipifera L. J Pharm Sci 1975; 64(5): 789-92.
[http://dx.doi.org/10.1002/jps.2600640512] [PMID: 807704]
[77]
An T, Huang RQ, Yang Z, et al. Alkaloids from Cynanchum komarovii with inhibitory activity against the tobacco mosaic virus. Phytochemistry 2001; 58(8): 1267-9.
[http://dx.doi.org/10.1016/S0031-9422(01)00382-X] [PMID: 11738420]
[78]
Pantazis P. Camptothecin: A promising antiretroviral drug. J Biomed Sci 1996; 3(1): 14-9.
[http://dx.doi.org/10.1007/BF02253574] [PMID: 11725078]
[79]
McMahon JB, Currens MJ, Gulakowski RJ, et al. Michellamine B, a novel plant alkaloid, inhibits human immunodeficiency virus-induced cell killing by at least two distinct mechanisms. Antimicrob Agents Chemother 1995; 39(2): 484-8.
[http://dx.doi.org/10.1128/AAC.39.2.484] [PMID: 7537029]
[80]
Ríos JL, Recio MC. Medicinal plants and antimicrobial activity. J Ethnopharmacol 2005; 100(1-2): 80-4.
[http://dx.doi.org/10.1016/j.jep.2005.04.025] [PMID: 15964727]
[81]
Boyd MR, Hallock YF, Cardellina JH II, et al. Anti-HIV michellamines from Ancistrocladus korupensis. J Med Chem 1994; 37(12): 1740-5.
[http://dx.doi.org/10.1021/jm00038a003] [PMID: 8021914]
[82]
Oliva A, Meepagala KM, Wedge DE, et al. Natural fungicides from Ruta graveolens L. leaves, including a new quinolone alkaloid. J Agric Food Chem 2003; 51(4): 890-6.
[http://dx.doi.org/10.1021/jf0259361] [PMID: 12568545]
[83]
Singh R, Hussain S, Verma R, Sharma P. Anti-mycobacterial screening of five Indian medicinal plants and partial purification of active extracts of Cassia sophera and Urtica dioica. Asian Pac J Trop Med 2013; 6(5): 366-71.
[http://dx.doi.org/10.1016/S1995-7645(13)60040-1] [PMID: 23608375]
[84]
Al-Shamma A, Drake SD, Guagliardi LE, Mitscher LA, Swayze JK. Antimicrobial alkaloids from Boehmeria cylindrica. Phytochemistry 1982; 21(2): 485-7.
[http://dx.doi.org/10.1016/S0031-9422(00)95304-4]
[85]
Okunade AL, Hufford CD, Richardson MD, Peterson JR, Clark AM. Antimicrobial properties of alkaloids from Xanthorhiza simplicissima. J Pharm Sci 1994; 83(3): 404-6.
[http://dx.doi.org/10.1002/jps.2600830327] [PMID: 8207690]
[86]
Tanaka JC, Silva CC, Oliveira AJ, Nakamura CV, Dias Filho BP. Antibacterial activity of indole alkaloids from Aspidosperma ramiflorum. Braz J Med Biol Res 2006; 39(3): 387-91.
[http://dx.doi.org/10.1590/S0100-879X2006000300009] [PMID: 16501818]
[87]
Van Beek TA, Kuijlaars FLC, Thomassen PHAM, Verpoorte R, Svendsen AB. Antimicrobially active alkaloids from Tabernaemontana pachysiphon. Phytochemistry 1984; 23(8): 1771-8.
[http://dx.doi.org/10.1016/S0031-9422(00)83488-3]
[88]
Baumgartner B, Erdelmeier CAJ, Wright AD, Rali T, Sticher O. An antimicrobial alkaloid fromFicus septica. Phytochemistry 1990; 29(10): 3327-30.
[http://dx.doi.org/10.1016/0031-9422(90)80209-Y]
[89]
Damu AG, Kuo PC, Shi LS, et al. Phenanthroindolizidine alkaloids from the stems of Ficus septica. J Nat Prod 2005; 68(7): 1071-5.
[http://dx.doi.org/10.1021/np050095o] [PMID: 16038551]
[90]
Kariba RM, Houghton PJ, Yenesew A. Antimicrobial activities of a new schizozygane indoline alkaloid from Schizozygia coffaeoides and the revised structure of isoschizogaline. J Nat Prod 2002; 65(4): 566-9.
[http://dx.doi.org/10.1021/np010298m] [PMID: 11975502]
[91]
Rahman MM, Gray AI. A benzoisofuranone derivative and carbazole alkaloids from Murraya koenigii and their antimicrobial activity. Phytochemistry 2005; 66(13): 1601-6.
[http://dx.doi.org/10.1016/j.phytochem.2005.05.001] [PMID: 15955541]
[92]
Chakraborty A, Saha C, Podder G, Chowdhury BK, Bhattacharyya P. Carbazole alkaloid with antimicrobial activity from Clausena heptaphylla. Phytochemistry 1995; 38(3): 787-9.
[http://dx.doi.org/10.1016/0031-9422(94)00666-H] [PMID: 7766168]
[93]
Ramsewak RS, Nair MG, Strasburg GM, DeWitt DL, Nitiss JL. Biologically active carbazole alkaloids from Murraya koenigii. J Agric Food Chem 1999; 47(2): 444-7.
[http://dx.doi.org/10.1021/jf9805808] [PMID: 10563914]
[94]
Cheesman L, Nair JJ, van Staden J. Antibacterial activity of crinane alkaloids from Boophone disticha (Amaryllidaceae). J Ethnopharmacol 2012; 140(2): 405-8.
[http://dx.doi.org/10.1016/j.jep.2012.01.037] [PMID: 22322252]
[95]
Orabi KY, Al-Qasoumi SI, El-Olemy MM, Mossa JS, Muhammad I. Dihydroagarofuran alkaloid and triterpenes from Maytenus heterophylla and Maytenus arbutifolia. Phytochemistry 2001; 58(3): 475-80.
[http://dx.doi.org/10.1016/S0031-9422(01)00277-1] [PMID: 11557080]
[96]
He Z-S, Wu H-M, Niwa M, Hirata Y. Wilforcidine, a new alkaloid from Tripterygium wilfordii. J Nat Prod 1994; 57(2): 305-7.
[http://dx.doi.org/10.1021/np50104a018]
[97]
El Sayed K, Al-Said MS, El-Feraly FS, Ross SA. New quinoline alkaloids from Ruta chalepensis. J Nat Prod 2000; 63(7): 995-7.
[http://dx.doi.org/10.1021/np000012y] [PMID: 10924184]
[98]
Nenaah G. Antibacterial and antifungal activities of (beta)-carboline alkaloids of Peganum harmala (L) seeds and their combination effects. Fitoterapia 2010; 81(7): 779-82.
[http://dx.doi.org/10.1016/j.fitote.2010.04.004] [PMID: 20398742]
[99]
Ang KK, Holmes MJ, Higa T, Hamann MT, Kara UA. In vivo antimalarial activity of the beta-carboline alkaloid manzamine A. Antimicrob Agents Chemother 2000; 44(6): 1645-9.
[http://dx.doi.org/10.1128/AAC.44.6.1645-1649.2000] [PMID: 10817722]
[100]
Wolters B, Eilert U. Antimicrobial substances in callus cultures of Ruta graveolens. Planta Med 1981; 43(2): 166-74.
[http://dx.doi.org/10.1055/s-2007-971494] [PMID: 7312985]
[101]
Tan GT, Pezzuto JM, Kinghorn AD, Hughes SH. Evaluation of natural products as inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. J Nat Prod 1991; 54(1): 143-54.
[http://dx.doi.org/10.1021/np50073a012] [PMID: 1710653]
[102]
Navarro V, Delgado G. Two antimicrobial alkaloids from Bocconia arborea. J Ethnopharmacol 1999; 66(2): 223-6.
[http://dx.doi.org/10.1016/S0378-8741(98)00182-2] [PMID: 10433482]
[103]
Nissanka AP, Karunaratne V, Bandara BM, et al. Antimicrobial alkaloids from Zanthoxylum tetraspermum and caudatum. Phytochemistry 2001; 56(8): 857-61.
[http://dx.doi.org/10.1016/S0031-9422(00)00402-7] [PMID: 11324918]
[104]
Zuo GY, Meng FY, Hao XY, Zhang YL, Wang GC, Xu GL. Antibacterial alkaloids from chelidonium majus linn (papaveraceae) against clinical isolates of methicillin-resistant Staphylococcus aureus. J Pharm Pharm Sci 2008; 11(4): 90-4.
[http://dx.doi.org/10.18433/J3D30Q] [PMID: 19183517]
[105]
BURGOS. Antibacterial activity of the alkaloid extract and isolated compounds from Croton bonplandianum Baill. (Euphorbiaceae). Rev Bras Plantas Med 2015; 17(4): 922-7.
[106]
Faizi S, Khan RA, Azher S, Khan SA, Tauseef S, Ahmad A. New antimicrobial alkaloids from the roots of Polyalthia longifolia var. pendula. Planta Med 2003; 69(4): 350-5.
[http://dx.doi.org/10.1055/s-2003-38883] [PMID: 12709903]
[107]
Subramaniam G, Ang KKH, Ng S, Buss AD, Butler MS. A benzopyrroloisoquinoline alkaloid from Ficus fistulosa. Phytochem Lett 2009; 2(2): 88-90.
[http://dx.doi.org/10.1016/j.phytol.2008.12.006]
[108]
Gribble GW. Naturally occurring organohalogen compounds--a survey. J Nat Prod 1992; 55(10): 1353-95.
[http://dx.doi.org/10.1021/np50088a001]
[109]
Van Beek TA, Verpoorte R, Svendsen AB, Fokkens R. Antimicrobially active alkaloids from Tabernaemontana chippii. J Nat Prod 1985; 48(3): 400-23.
[http://dx.doi.org/10.1021/np50039a008] [PMID: 4031898]
[110]
Jindal A, Kumar P, Gautam K. Evaluation of antibiotic potential of alkaloids of Tribulus terrestris L. against some pathogenic microorganisms. Int J Green Pharm 2013; 7(2)
[111]
Garba S, Okeniyi S. Antimicrobial activities of total alkaloids extracted from some Nigerian medicinal plants. J Microbiol Antimicrob 2011; 4(3): 60-3.
[112]
Sureram S, Senadeera SP, Hongmanee P, Mahidol C, Ruchirawat S, Kittakoop P. Antimycobacterial activity of bisbenzylisoquinoline alkaloids from Tiliacora triandra against multidrug-resistant isolates of Mycobacterium tuberculosis. Bioorg Med Chem Lett 2012; 22(8): 2902-5.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.053] [PMID: 22418278]
[113]
Zhou X-Y, Ye XG, He LT, et al. In vitro characterization and inhibition of the interaction between ciprofloxacin and berberine against multidrug-resistant Klebsiella pneumoniae. J Antibiot (Tokyo) 2016; 69(10): 741-6.
[http://dx.doi.org/10.1038/ja.2016.15] [PMID: 26932407]
[114]
Maurya A, Dwivedi GR, Darokar MP, Srivastava SK. Antibacterial and synergy of clavine alkaloid lysergol and its derivatives against nalidixic acid-resistant Escherichia coli. Chem Biol Drug Des 2013; 81(4): 484-90.
[http://dx.doi.org/10.1111/cbdd.12103] [PMID: 23290001]
[115]
Zuo G-Y, Li Y, Wang T, et al. Synergistic antibacterial and antibiotic effects of bisbenzylisoquinoline alkaloids on clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Molecules 2011; 16(12): 9819-26.
[http://dx.doi.org/10.3390/molecules16129819] [PMID: 22117171]
[116]
Hamoud R, Reichling J, Wink M. Synergistic antibacterial activity of the combination of the alkaloid sanguinarine with EDTA and the antibiotic streptomycin against multidrug resistant bacteria. J Pharm Pharmacol 2015; 67(2): 264-73.
[http://dx.doi.org/10.1111/jphp.12326] [PMID: 25495516]
[117]
Yu H, Zhang L, Li L, et al. Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 2010; 165(6): 437-49.
[http://dx.doi.org/10.1016/j.micres.2009.11.009] [PMID: 20116229]
[118]
Rukachaisirikul V, Sommart U, Phongpaichit S, Sakayaroj J, Kirtikara K. Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry 2008; 69(3): 783-7.
[http://dx.doi.org/10.1016/j.phytochem.2007.09.006] [PMID: 17950385]
[119]
Wicklow DT, Roth S, Deyrup ST, Gloer JB. A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol Res 2005; 109(Pt 5): 610-8.
[http://dx.doi.org/10.1017/S0953756205002820] [PMID: 16018316]
[120]
Osterhage C, Kaminsky R, König GM, Wright AD. Ascosalipyrrolidinone A, an antimicrobial alkaloid, from the obligate marine fungus Ascochyta salicorniae. J Org Chem 2000; 65(20): 6412-7.
[http://dx.doi.org/10.1021/jo000307g] [PMID: 11052082]
[121]
Barku V, Opoku-Boahen Y, Dzotsi E. Isolation and pharmacological activities of alkaloids from Cryptolepis sanguinolenta (Lindl) schlt. Int Res J Biochem Bioinform 2012; 2: 58-61.
[122]
Cao M, Muganga R, Tits M, Angenot L, Frédérich M. 17-O-acetyl,10-hydroxycorynantheol, a selective antiplasmodial alkaloid isolated from Strychnos usambarensis leaves. Planta Med 2011; 77(18): 2050-3.
[http://dx.doi.org/10.1055/s-0031-1280124] [PMID: 21870325]
[123]
Mgbeahuruike EE, Fyhrquist P, Vuorela H, Julkunen-Tiitto R, Holm Y. Alkaloid-Rich Crude Extracts, Fractions and Piperamide Alkaloids of Piper guineense Possess Promising Antibacterial Effects. Antibiotics (Basel) 2018; 7(4): 98.
[http://dx.doi.org/10.3390/antibiotics7040098] [PMID: 30423994]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy