Review Article

作为抗癌药物的小分子CSF1R抑制剂

卷 27, 期 23, 2020

页: [3944 - 3966] 页: 23

弟呕挨: 10.2174/1573394715666190618121649

价格: $65

摘要

有说服力的证据表明肿瘤相关巨噬细胞(TAMs)的浸润与肿瘤发生的驱动力以及抗肿瘤免疫的抑制有关。在这种情况下,CSF1R作为集落刺激因子-1 (CSF1)和白介素34 (IL-34)的细胞受体,在控制TAMs的行为中起着核心作用,CSF1R信号的失调与许多特定癌症的癌症进展和免疫抑制有关。因此,CSF1R激酶已经成为癌症治疗中一个很有兴趣的目标,大量的研究都集中在开发小分子CSF1R抑制剂上。在这篇综述中,我们重点介绍了这些小分子CSF1R抑制剂作为抗癌药物的研究进展。特别注意可用于先进临床试验的化合物。

关键词: 肿瘤相关巨噬细胞(TAMs)

[1]
Wynn, T.A.; Chawla, A.; Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature, 2013, 496(7446), 445-455.
[http://dx.doi.org/10.1038/nature12034] [PMID: 23619691]
[2]
Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol., 2002, 23(11), 549-555.
[http://dx.doi.org/10.1016/S1471-4906(02)02302-5] [PMID: 12401408]
[3]
Noy, R.; Pollard, J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity, 2014, 41(1), 49-61.
[http://dx.doi.org/10.1016/j.immuni.2014.06.010] [PMID: 25035953]
[4]
Ostuni, R.; Kratochvill, F.; Murray, P.J.; Natoli, G. Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol., 2015, 36(4), 229-239.
[http://dx.doi.org/10.1016/j.it.2015.02.004] [PMID: 25770924]
[5]
Pedersen, M.B.; Danielsen, A.V.; Hamilton-Dutoit, S.J.; Bendix, K.; Nørgaard, P.; Møller, M.B.; Steiniche, T.; d’Amore, F. High intratumoral macrophage content is an adverse prognostic feature in anaplastic large cell lymphoma. Histopathology, 2014, 65(4), 490-500.
[http://dx.doi.org/10.1111/his.12407] [PMID: 24592992]
[6]
Ryder, M.; Gild, M.; Hohl, T.M.; Pamer, E.; Knauf, J.; Ghossein, R.; Joyce, J.A.; Fagin, J.A. Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated macrophages and impairs BRAF-induced thyroid cancer progression. PLoS One, 2013, 8(1)e54302
[http://dx.doi.org/10.1371/journal.pone.0054302] [PMID: 23372702]
[7]
Ries, C.H.; Cannarile, M.A.; Hoves, S.; Benz, J.; Wartha, K.; Runza, V.; Rey-Giraud, F.; Pradel, L.P.; Feuerhake, F.; Klaman, I.; Jones, T.; Jucknischke, U.; Scheiblich, S.; Kaluza, K.; Gorr, I.H.; Walz, A.; Abiraj, K.; Cassier, P.A.; Sica, A.; Gomez-Roca, C.; de Visser, K.E.; Italiano, A.; Le Tourneau, C.; Delord, J.P.; Levitsky, H.; Blay, J.Y.; Rüttinger, D. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell, 2014, 25(6), 846-859.
[http://dx.doi.org/10.1016/j.ccr.2014.05.016] [PMID: 24898549]
[8]
Jinushi, M.; Komohara, Y. Tumor-associated macrophages as an emerging target against tumors: Creating a new path from bench to bedside. Biochim. Biophys. Acta, 2015, 1855(2), 123-130.
[http://dx.doi.org/10.1016/j.bbcan.2015.01.002] [PMID: 25595840]
[9]
Guo, Q.; Jin, Z.; Yuan, Y.; Liu, R.; Xu, T.; Wei, H.; Xu, X.; He, S.; Chen, S.; Shi, Z.; Hou, W.; Hua, B. New mechanisms of tumor-associated macrophages on promoting tumor progression: recent research advances and potential targets for tumor immunotherapy. J. Immunol. Res., 2016, 2016, 9720912
[http://dx.doi.org/10.1155/2016/9720912] [PMID: 27975071]
[10]
Ngambenjawong, C.; Gustafson, H.H.; Pun, S.H. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv. Drug Deliv. Rev., 2017, 114, 206-221.
[http://dx.doi.org/10.1016/j.addr.2017.04.010] [PMID: 28449873]
[11]
Stanley, E.R.; Berg, K.L.; Einstein, D.B.; Lee, P.S.W.; Pixley, F.J.; Wang, Y.; Yeung, Y.G. Biology and action of colony--stimulating factor-1. Mol. Reprod. Dev., 1997, 46(1), 4-10.
[http://dx.doi.org/10.1002/(SICI)1098-2795(199701)46:1<4:AID-MRD2>3.0.CO;2-V] [PMID: 8981357]
[12]
Yu, W.; Chen, J.; Xiong, Y.; Pixley, F.J.; Yeung, Y.G.; Stanley, E.R. Macrophage proliferation is regulated through CSF-1 receptor tyrosines 544, 559, and 807. J. Biol. Chem., 2012, 287(17), 13694-13704.
[http://dx.doi.org/10.1074/jbc.M112.355610] [PMID: 22375015]
[13]
Hubbard, S.R.; Till, J.H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem., 2000, 69, 373-398.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.373] [PMID: 10966463]
[14]
Lenda, D.M.; Stanley, E.R.; Kelley, V.R. Negative role of colony-stimulating factor-1 in macrophage, T cell, and B cell mediated autoimmune disease in MRL-Fas(lpr) mice. J. Immunol., 2004, 173(7), 4744-4754.
[http://dx.doi.org/10.4049/jimmunol.173.7.4744] [PMID: 15383612]
[15]
Nakano, K.; Okada, Y.; Saito, K.; Tanikawa, R.; Sawamukai, N.; Sasaguri, Y.; Kohro, T.; Wada, Y.; Kodama, T.; Tanaka, Y. Rheumatoid synovial endothelial cells produce macrophage colony-stimulating factor leading to osteoclastogenesis in rheumatoid arthritis. Rheumatology (Oxford), 2007, 46(4), 597-603.
[http://dx.doi.org/10.1093/rheumatology/kel356] [PMID: 17062647]
[16]
Neale, S.D.; Schulze, E.; Smith, R.; Athanasou, N.A. The influence of serum cytokines and growth factors on osteoclast formation in Paget’s disease. QJM, 2002, 95(4), 233-240.
[http://dx.doi.org/10.1093/qjmed/95.4.233] [PMID: 11937650]
[17]
Ohno, H.; Kubo, K.; Murooka, H.; Kobayashi, Y.; Nishitoba, T.; Shibuya, M.; Yoneda, T.; Isoe, T. A c-fms tyrosine kinase inhibitor, Ki20227, suppresses osteoclast differentiation and osteolytic bone destruction in a bone metastasis model. Mol. Cancer Ther., 2006, 5(11), 2634-2643.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0313] [PMID: 17121910]
[18]
Lenda, D.M.; Kikawada, E.; Stanley, E.R.; Kelley, V.R. Reduced macrophage recruitment, proliferation, and activation in colony-stimulating factor-1-deficient mice results in decreased tubular apoptosis during renal inflammation. J. Immunol., 2003, 170(6), 3254-3262.
[http://dx.doi.org/10.4049/jimmunol.170.6.3254] [PMID: 12626584]
[19]
Shaposhnik, Z.; Wang, X.; Lusis, A.J. Arterial colony stimulating factor-1 influences atherosclerotic lesions by regulating monocyte migration and apoptosis. J. Lipid Res., 2010, 51(7), 1962-1970.
[http://dx.doi.org/10.1194/jlr.M005215] [PMID: 20194110]
[20]
McDermott, R.S.; Deneux, L.; Mosseri, V.; Védrenne, J.; Clough, K.; Fourquet, A.; Rodriguez, J.; Cosset, J.M.; Sastre, X.; Beuzeboc, P.; Pouillart, P.; Scholl, S.M. Circulating macrophage colony stimulating factor as a marker of tumour progression. Eur. Cytokine Netw., 2002, 13(1), 121-127.
[PMID: 11956031]
[21]
Aharinejad, S.; Paulus, P.; Sioud, M.; Hofmann, M.; Zins, K.; Schäfer, R.; Stanley, E.R.; Abraham, D. Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res., 2004, 64(15), 5378-5384.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0961] [PMID: 15289345]
[22]
Kubota, Y.; Takubo, K.; Shimizu, T.; Ohno, H.; Kishi, K.; Shibuya, M.; Saya, H.; Suda, T. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J. Exp. M., 2009, 206(5), 1089-1102.
[http://dx.doi.org/10.1084/jem.20081605] [PMID: 19398755]
[23]
Pyonteck, S.M.; Akkari, L.; Schuhmacher, A.J.; Bowman, R.L.; Sevenich, L.; Quail, D.F.; Olson, O.C.; Quick, M.L.; Huse, J.T.; Teijeiro, V.; Setty, M.; Leslie, C.S.; Oei, Y.; Pedraza, A.; Zhang, J.; Brennan, C.W.; Sutton, J.C.; Holland, E.C.; Daniel, D.; Joyce, J.A. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med., 2013, 19(10), 1264-1272.
[http://dx.doi.org/10.1038/nm.3337] [PMID: 24056773]
[24]
Coussens, L.; Van Beveren, C.; Smith, D.; Chen, E.; Mitchell, R.L.; Isacke, C.M.; Verma, I.M.; Ullrich, A. Structural alteration of viral homologue of receptor proto-oncogene fms at carboxyl terminus. Nature, 1986, 320(6059), 277-280.
[http://dx.doi.org/10.1038/320277a0] [PMID: 2421165]
[25]
Kamps, M.P.; Taylor, S.S.; Sefton, B.M. Direct evidence that oncogenic tyrosine kinases and cyclic AMP-dependent protein kinase have homologous ATP-binding sites. Nature, 1984, 310(5978), 589-592.
[http://dx.doi.org/10.1038/310589a0] [PMID: 6431300]
[26]
Sherr, C.J.; Roussel, M.F.; Rettenmier, C.W. Colony-stimulating factor-1 receptor (c-fms). J. Cell. Biochem., 1988, 38(3), 179-187.
[http://dx.doi.org/10.1002/jcb.240380305] [PMID: 2852667]
[27]
Yeung, Y.G.; Stanley, E.R. Proteomic approaches to the analysis of early events in colony-stimulating factor-1 signal transduction. Mol. Cell. Proteomics, 2003, 2(11), 1143-1155.
[http://dx.doi.org/10.1074/mcp.R300009-MCP200] [PMID: 12966146]
[28]
Felix, J.; De Munck, S.; Verstraete, K.; Meuris, L.; Callewaert, N.; Elegheert, J.; Savvides, S.N. Structure and assembly mechanism of the signaling complex mediated by human CSF-1. Structure, 2015, 23(9), 1621-1631.
[http://dx.doi.org/10.1016/j.str.2015.06.019] [PMID: 26235028]
[29]
Chen, X.; Liu, H.; Focia, P.J.; Shim, A.H.; He, X. Structure of macrophage colony stimulating factor bound to FMS: diverse signaling assemblies of class III receptor tyrosine kinases. Proc. Natl. Acad. Sci. USA, 2008, 105(47), 18267-18272.
[http://dx.doi.org/10.1073/pnas.0807762105] [PMID: 19017797]
[30]
Ma, X.; Lin, W.Y.; Chen, Y.; Stawicki, S.; Mukhyala, K.; Wu, Y.; Martin, F.; Bazan, J.F.; Starovasnik, M.A. Structural basis for the dual recognition of helical cytokines IL-34 and CSF-1 by CSF-1R. Structure, 2012, 20(4), 676-687.
[http://dx.doi.org/10.1016/j.str.2012.02.010] [PMID: 22483114]
[31]
Stanley, E.R.; Chitu, V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb. Perspect. Biol., 2014, 6(6)a021857
[http://dx.doi.org/10.1101/cshperspect.a021857] [PMID: 24890514]
[32]
El-Gamal, M.I.; Anbar, H.S.; Yoo, K.H.; Oh, C.H. FMS kinase inhibitors: current status and future prospects. Med. Res. Rev., 2013, 33(3), 599-636.
[http://dx.doi.org/10.1002/med.21258] [PMID: 22434539]
[33]
Zhang, C.; Ibrahim, P.N.; Zhang, J.; Burton, E.A.; Habets, G.; Zhang, Y.; Powell, B.; West, B.L.; Matusow, B.; Tsang, G.; Shellooe, R.; Carias, H.; Nguyen, H.; Marimuthu, A.; Zhang, K.Y.; Oh, A.; Bremer, R.; Hurt, C.R.; Artis, D.R.; Wu, G.; Nespi, M.; Spevak, W.; Lin, P.; Nolop, K.; Hirth, P.; Tesch, G.H.; Bollag, G. Design and pharmacology of a highly specific dual FMS and KIT kinase inhibitor. Proc. Natl. Acad. Sci. USA, 2013, 110(14), 5689-5694.
[http://dx.doi.org/10.1073/pnas.1219457110] [PMID: 23493555]
[34]
Walter, M.; Lucet, I.S.; Patel, O.; Broughton, S.E.; Bamert, R.; Williams, N.K.; Fantino, E.; Wilks, A.F.; Rossjohn, J. The 2.7 A crystal structure of the autoinhibited human c-Fms kinase domain. J. Mol. Biol., 2007, 367(3), 839-847.
[http://dx.doi.org/10.1016/j.jmb.2007.01.036] [PMID: 17292918]
[35]
Kuropkat, C.; Dünne, A.A.; Plehn, S.; Ossendorf, M.; Herz, U.; Renz, H.; Werner, J.A. Macrophage colony-stimulating factor as a tumor marker for squamous cell carcinoma of the head and neck. Tumour Biol., 2003, 24(5), 236-240.
[http://dx.doi.org/10.1159/000076138] [PMID: 15001836]
[36]
Kang, H.G.; Lee, S.Y.; Jeon, H.S.; Choi, Y.Y.; Kim, S.; Lee, W.K.; Lee, H.C.; Choi, J.E.; Bae, E.Y.; Yoo, S.S.; Lee, J.; Cha, S.I.; Kim, C.H.; Lee, M.H.; Kim, Y.T.; Kim, J.H.; Hong, Y.C.; Kim, Y.H.; Park, J.Y. A functional polymorphism in CSF1R gene is a novel susceptibility marker for lung cancer among never-smoking females. J. Thorac. Oncol., 2014, 9(11), 1647-1655.
[http://dx.doi.org/10.1097/JTO.0000000000000310] [PMID: 25144241]
[37]
Kaminska, J.; Kowalska, M.; Kotowicz, B.; Fuksiewicz, M.; Glogowski, M.; Wojcik, E.; Chechlinska, M.; Steffen, J. Pretreatment serum levels of cytokines and cytokine receptors in patients with non-small cell lung cancer, and correlations with clinicopathological features and prognosis. M-CSF - an independent prognostic factor. Oncology, 2006, 70(2), 115-125.
[http://dx.doi.org/10.1159/000093002] [PMID: 16645324]
[38]
Maher, M.G.; Sapi, E.; Turner, B.; Gumbs, A.; Perrotta, P.L.; Carter, D.; Kacinski, B.M.; Haffty, B.G. Prognostic significance of colony-stimulating factor receptor expression in ipsilateral breast cancer recurrence. Clin. Cancer Res., 1998, 4(8), 1851-1856.
[PMID: 9717811]
[39]
Mroczko, B.; Szmitkowski, M.; Wereszczynska-Siemiatkowska, U.; Jurkowska, G. Stem cell factor and macrophage-colony stimulating factor in patients with pancreatic cancer. Clin. Chem. Lab. Med., 2004, 42(3), 256-260.
[http://dx.doi.org/10.1515/CCLM.2004.047] [PMID: 15080556]
[40]
Richardsen, E.; Uglehus, R.D.; Due, J.; Busch, C.; Busund, L.T.R. The prognostic impact of M-CSF, CSF-1 receptor, CD68 and CD3 in prostatic carcinoma. Histopathology, 2008, 53(1), 30-38.
[http://dx.doi.org/10.1111/j.1365-2559.2008.03058.x] [PMID: 18510570]
[41]
Haran-Ghera, N.; Krautghamer, R.; Lapidot, T.; Peled, A.; Dominguez, M.G.; Stanley, E.R. Increased circulating colony-stimulating factor-1 (CSF-1) in SJL/J mice with radiation-induced acute myeloid leukemia (AML) is associated with autocrine regulation of AML cells by CSF-1. Blood, 1997, 89(7), 2537-2545.
[http://dx.doi.org/10.1182/blood.V89.7.2537] [PMID: 9116300]
[42]
Mroczko, B.; Szmitkowski, M.; Okulczyk, B. Hematopoietic growth factors in colorectal cancer patients. Clin. Chem. Lab. Med., 2003, 41(5), 646-651.
[http://dx.doi.org/10.1515/CCLM.2003.098] [PMID: 12812262]
[43]
Gruessner, C.; Gruessner, A.; Glaser, K.; Abushahin, N.; Laughren, C.; Zheng, W.; Chambers, S.K. Biomarkers and endosalpingiosis in the ovarian and tubal microenvironment of women at high-risk for pelvic serous carcinoma. Am. J. Cancer Res., 2014, 4(1), 61-72.
[PMID: 24482739]
[44]
De, I.; Nikodemova, M.; Steffen, M.D.; Sokn, E.; Maklakova, V.I.; Watters, J.J.; Collier, L.S. CSF1 overexpression has pleiotropic effects on microglia in vivo. Glia, 2014, 62(12), 1955-1967.
[http://dx.doi.org/10.1002/glia.22717] [PMID: 25042473]
[45]
Mok, S.; Tsoi, J.; Koya, R.C.; Hu-Lieskovan, S.; West, B.L.; Bollag, G.; Graeber, T.G.; Ribas, A. Inhibition of colony stimulating factor-1 receptor improves antitumor efficacy of BRAF inhibition. BMC Cancer, 2015, 15, 356.
[http://dx.doi.org/10.1186/s12885-015-1377-8] [PMID: 25939769]
[46]
Espinosa, I.; Edris, B.; Lee, C.H.; Cheng, H.W.; Gilks, C.B.; Wang, Y.; Montgomery, K.D.; Varma, S.; Li, R.; Marinelli, R.J.; West, R.B.; Nielsen, T.; Beck, A.H.; van de Rijn, M. CSF1 expression in nongynecological leiomyosarcoma is associated with increased tumor angiogenesis. Am. J. Pathol., 2011, 179(4), 2100-2107.
[http://dx.doi.org/10.1016/j.ajpath.2011.06.021] [PMID: 21854753]
[47]
De Palma, M.; Murdoch, C.; Venneri, M.A.; Naldini, L.; Lewis, C.E. Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol., 2007, 28(12), 519-524.
[http://dx.doi.org/10.1016/j.it.2007.09.004] [PMID: 17981504]
[48]
De Palma, M.; Venneri, M.A.; Galli, R.; Sergi Sergi, L.; Politi, L.S.; Sampaolesi, M.; Naldini, L. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 2005, 8(3), 211-226.
[http://dx.doi.org/10.1016/j.ccr.2005.08.002] [PMID: 16169466]
[49]
Hernandez, L.; Smirnova, T.; Kedrin, D.; Wyckoff, J.; Zhu, L.; Stanley, E.R.; Cox, D.; Muller, W.J.; Pollard, J.W.; Van Rooijen, N.; Segall, J.E. The EGF/CSF-1 paracrine invasion loop can be triggered by heregulin beta1 and CXCL12. Cancer Res., 2009, 69(7), 3221-3227.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2871] [PMID: 19293185]
[50]
Wyckoff, J.; Wang, W.; Lin, E.Y.; Wang, Y.; Pixley, F.; Stanley, E.R.; Graf, T.; Pollard, J.W.; Segall, J.; Condeelis, J. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res., 2004, 64(19), 7022-7029.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1449] [PMID: 15466195]
[51]
Coniglio, S.J.; Eugenin, E.; Dobrenis, K.; Stanley, E.R.; West, B.L.; Symons, M.H.; Segall, J.E. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol. Med., 2012, 18, 519-527.
[http://dx.doi.org/10.2119/molmed.2011.00217] [PMID: 22294205]
[52]
Joyce, J.A.; Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer, 2009, 9(4), 239-252.
[http://dx.doi.org/10.1038/nrc2618] [PMID: 19279573]
[53]
Wyckoff, J.B.; Wang, Y.; Lin, E.Y.; Li, J.F.; Goswami, S.; Stanley, E.R.; Segall, J.E.; Pollard, J.W.; Condeelis, J. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res., 2007, 67(6), 2649-2656.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1823] [PMID: 17363585]
[54]
Qian, B.; Deng, Y.; Im, J.H.; Muschel, R.J.; Zou, Y.; Li, J.; Lang, R.A.; Pollard, J.W. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One, 2009, 4(8)e6562
[http://dx.doi.org/10.1371/journal.pone.0006562] [PMID: 19668347]
[55]
Allavena, P.; Mantovani, A. Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin. Exp. Immunol., 2012, 167(2), 195-205.
[http://dx.doi.org/10.1111/j.1365-2249.2011.04515.x] [PMID: 22235995]
[56]
Ding, L.; Linsley, P.S.; Huang, L.Y.; Germain, R.N.; Shevach, E.M. IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression. J. Immunol., 1993, 151(3), 1224-1234.
[PMID: 7687627]
[57]
Curiel, T.J.; Coukos, G.; Zou, L.; Alvarez, X.; Cheng, P.; Mottram, P.; Evdemon-Hogan, M.; Conejo-Garcia, J.R.; Zhang, L.; Burow, M.; Zhu, Y.; Wei, S.; Kryczek, I.; Daniel, B.; Gordon, A.; Myers, L.; Lackner, A.; Disis, M.L.; Knutson, K.L.; Chen, L.; Zou, W. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med., 2004, 10(9), 942-949.
[http://dx.doi.org/10.1038/nm1093] [PMID: 15322536]
[58]
Butte, M.J.; Keir, M.E.; Phamduy, T.B.; Sharpe, A.H.; Freeman, G.J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity, 2007, 27(1), 111-122.
[http://dx.doi.org/10.1016/j.immuni.2007.05.016] [PMID: 17629517]
[59]
Daurkin, I.; Eruslanov, E.; Stoffs, T.; Perrin, G.Q.; Algood, C.; Gilbert, S.M.; Rosser, C.J.; Su, L.M.; Vieweg, J.; Kusmartsev, S. Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway. Cancer Res., 2011, 71(20), 6400-6409.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1261] [PMID: 21900394]
[60]
Xu, J.; Escamilla, J.; Mok, S.; David, J.; Priceman, S.; West, B.; Bollag, G.; McBride, W.; Wu, L. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res., 2013, 73(9), 2782-2794.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3981] [PMID: 23418320]
[61]
Xuan, Q.J.; Wang, J.X.; Nanding, A.; Wang, Z.P.; Liu, H.; Lian, X.; Zhang, Q.Y. Tumor-associated macrophages are correlated with tamoxifen resistance in the postmenopausal breast cancer patients. Pathol. Oncol. Res., 2014, 20(3), 619-624.
[http://dx.doi.org/10.1007/s12253-013-9740-z] [PMID: 24414992]
[62]
Haegel, H.; Thioudellet, C.; Hallet, R.; Geist, M.; Menguy, T.; Le Pogam, F.; Marchand, J.B.; Toh, M.L.; Duong, V.; Calcei, A.; Settelen, N.; Preville, X.; Hennequi, M.; Grellier, B.; Ancian, P.; Rissanen, J.; Clayette, P.; Guillen, C.; Rooke, R.; Bonnefoy, J.Y. A unique anti-CD115 monoclonal antibody which inhibits osteolysis and skews human monocyte differentiation from M2-polarized macrophages toward dendritic cells. MAbs, 2013, 5(5), 736-747.
[http://dx.doi.org/10.4161/mabs.25743] [PMID: 23924795]
[63]
Grellier, B.; Le Pogam, F.; Vitorino, M.; Starck, J.P.; Geist, M.; Duong, V.; Haegel, H.; Menguy, T.; Bonnefoy, J.Y.; Marchand, J.B.; Ancian, P. 3D modeling and characterization of the human CD115 monoclonal antibody H27K15 epitope and design of a chimeric CD115 target. MAbs, 2014, 6(2), 533-546.
[http://dx.doi.org/10.4161/mabs.27736] [PMID: 24492308]
[64]
Cassier, P.A.; Italiano, A.; Gomez-Roca, C.A.; Le Tourneau, C.; Toulmonde, M.; Cannarile, M.A.; Ries, C.; Brillouet, A.; Müller, C.; Jegg, A.M.; Bröske, A.M.; Dembowski, M.; Bray-French, K.; Freilinger, C.; Meneses-Lorente, G.; Baehner, M.; Harding, R.; Ratnayake, J.; Abiraj, K.; Gass, N.; Noh, K.; Christen, R.D.; Ukarma, L.; Bompas, E.; Delord, J.P.; Blay, J.Y.; Rüttinger, D. CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. Lancet Oncol., 2015, 16(8), 949-956.
[http://dx.doi.org/10.1016/S1470-2045(15)00132-1] [PMID: 26179200]
[65]
Sankhala, K.K.; Blay, J.Y.; Ganjoo, K.N.; Italiano, A.; Hassan, A.B.; Kim, T.M.; Ravi, V.; Cassier, P.A.; Rutkowski, P.; Sankar, N.; Qazi, I.; Sikorski, R.S.; Collins, H.; Zhang, C.; Shocron, E.; Gelderblom, H. A phase I/II dose escalation and expansion study of cabiralizumab (cabira; FPA-008), an anti-CSF1R antibody, in tenosynovial giant cell tumor (TGCT, diffuse pigmented villonodular synovitis D-PVNS). J. Clin. Oncol., 2017, 35(15)(Suppl.), 11078-11078.
[http://dx.doi.org/10.13140/RG.2.2.18553.16485]
[66]
Haegel, H.; Ziller-Remy, C.; Barraud, L.; Bonnefoy, J.Y.; Cochin, S.; Duong, V.; Geist, M.; Grellier, B.; Hallet, R.; Marchand, J.B.; Menguy, T.; Rooke, R.; Thioudellet, C.; Reymann, C.; Préville, X. Abstract 288: TG3003, an immunomodulatory anti-CD115 mAb targeting M2-macrophage polarization in the tumor microenvironment. Cancer Res., 2015, 75(15)(Suppl.), 288.
[http://dx.doi.org/10.1158/1538-7445.AM2015-288]
[67]
Hulieskovan, S.; Patnaik, A.; Eisenberg, P.; Sachdev, J.; Weise, A.; Kaufman, D.R.; Aromin, I.; West, B.L.; Tong, S.; Ribas, A. Phase 1/2a study of double immune suppression blockade by combining a CSF1R inhibitor (pexidartinib/PLX3397) with an anti PD-1 antibody (pembrolizumab) to treat advanced melanoma and other solid tumors. Gynecol. Oncol., 2016, 141(1), 147-148.
[http://dx.doi.org/10.1016/j.ygyno.2016.04.385]
[68]
Rugo, H.S. Sharma, N.; Reebel, L.; Rodal, M.B.; Peck, A.; West, B.L.; Marimuthu, A.; Karlin, D.A.; Dowlati, A. Le, M.H.; Coussens, L.M.; Wesolowski, R. 447PD - Phase Ib study of Plx3397, a Csf1R inhibitor, and paclitaxel in patients with advanced solid tumors. Ann. Oncol., 2014, 25(Suppl. 4), iv148.
[http://dx.doi.org/10.1093/annonc/mdu331.7]
[69]
Lin, C.C.; Lee, J.H.; Hsu, C.H.; Chen, W.W.; Yen, Y.H.; Yang, C.H.; Zhang, L.; Sasaki, S.I.; Chiu, L.; Cheng, A.L. Abstract A080: a phase 1 study of single-agent pexidartinib in Asian patients with advanced solid tumors (NCT02734433). Mol. Cancer Ther., 2018, 17(1)(Suppl.), A080-A080.
[http://dx.doi.org/10.1158/1535-7163.TARG-17-A080]
[70]
Mérour, J.Y.; Buron, F.; Plé, K.; Bonnet, P.; Routier, S. The azaindole framework in the design of kinase inhibitors. Molecules, 2014, 19(12), 19935-19979.
[http://dx.doi.org/10.3390/molecules191219935] [PMID: 25460315]
[71]
Kang, S.; Bader, A.G.; Vogt, P.K. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc. Natl. Acad. Sci. USA, 2005, 102(3), 802-807.
[http://dx.doi.org/10.1073/pnas.0408864102] [PMID: 15647370]
[72]
Tap, W.D.; Wainberg, Z.A.; Anthony, S.P.; Ibrahim, P.N.; Zhang, C.; Healey, J.H.; Chmielowski, B.; Staddon, A.P.; Cohn, A.L.; Shapiro, G.I.; Keedy, V.L.; Singh, A.S.; Puzanov, I.; Kwak, E.L.; Wagner, A.J.; Von Hoff, D.D.; Weiss, G.J.; Ramanathan, R.K.; Zhang, J.; Habets, G.; Zhang, Y.; Burton, E.A.; Visor, G.; Sanftner, L.; Severson, P.; Nguyen, H.; Kim, M.J.; Marimuthu, A.; Tsang, G.; Shellooe, R.; Gee, C.; West, B.L.; Hirth, P.; Nolop, K.; van de Rijn, M.; Hsu, H.H.; Peterfy, C.; Lin, P.S.; Tong-Starksen, S.; Bollag, G. Structure-guided blockade of csf1r kinase in tenosynovial giant-cell tumor. N. Engl. J. Med., 2015, 373(5), 428-437.
[http://dx.doi.org/10.1056/NEJMoa1411366] [PMID: 26222558]
[73]
Genovese, M.C.; Hsia, E.; Belkowski, S.M.; Chien, C.; Masterson, T.; Thurmond, R.L.; Manthey, C.L.; Yan, X.D.; Ge, T.; Franks, C.; Greenspan, A. Results from a phase IIA parallel group study of JNJ-40346527, an oral CSF-1R inhibitor, in patients with active rheumatoid arthritis despite disease-modifying antirheumatic drug therapy. J. Rheumatol., 2015, 42(10), 1752-1760.
[http://dx.doi.org/10.3899/jrheum.141580] [PMID: 26233509]
[74]
von Tresckow, B.; Morschhauser, F.; Ribrag, V.; Topp, M.S.; Chien, C.; Seetharam, S.; Aquino, R.; Kotoulek, S.; de Boer, C.J.; Engert, A. An open-label, multicenter, phase I/II study of JNJ-40346527, a CSF-1R inhibitor, in patients with relapsed or refractory hodgkin lymphoma. Clin. Cancer Res., 2015, 21(8), 1843-1850.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1845] [PMID: 25628399]
[75]
Wiesmann, M.; Daniel, D.L.; Pryer, N.; Sutton, J.; Sung, V.; Wang, T.; Jeffry, U.; Oei, Y.; Kaufman, S.; Lenahan, W.; Lee, I.; Huh, K.; Sim, J. Abstract 3629: BLZ945, a selective c-fms (CSF-1R) kinase inhibitor for the suppression of tumor-induced osteolytic lesions in bone. Cancer Res., 2010, 70(8)(Suppl.), 3629-3629.
[76]
Sampson, J.H.; Maus, M.V.; June, C.H. Immunotherapy for Brain Tumors. J. Clin. Oncol., 2017, 35(21), 2450-2456.
[http://dx.doi.org/10.1200/JCO.2017.72.8089] [PMID: 28640704]
[77]
Bendell, J.C.; Tolcher, A.W.; Jones, S.F.; Beeram, M.; Infante, J.R.; Larsen, P.; Rasor, K.; Garrus, J.E.; Li, J.; Cable, P.L.; Eberhardt, C.; Schreiber, J.; Rush, S.; Wood, K.W.; Barrett, E.; Patnaik, A. Abstract A252: a phase 1 study of ARRY-382, an oral inhibitor of colony-stimulating factor-1 receptor (CSF1R), in patients with advanced or metastatic cancers. Mol. Cancer Ther., 2013, 12(11), A252.
[http://dx.doi.org/10.1158/1535-7163.TARG-13-A252]
[78]
Smith, B.D.; Kaufman, M.D.; Leary, C.B.; Hood, M.M.; Lu, W.P.; Turner, B.A.; Vogeti, S.; Wise, S.C.; Flynn, D.L. Abstract A53: the specific FMS kinase inhibitor, DCC-3014, durably inhibits FMS kinase in vivo and blocks cancer bone invasiveness. Cancer Res., 2015, 75(1)(Suppl.), A53-A53.
[http://dx.doi.org/10.1158/1538-7445.CHTME14-A53]
[79]
Smith, B.D.; Leary, C.B.; Lu, W.P.; Kaufman, M.D.; Flynn, D.L. Abstract 4889: the highly specific CSF1R inhibitor DCC-3014 exhibits immunomodulatory and anti-invasive activities in cancer models. Cancer Res., 2016, 76(14)(Suppl.), 4889-4889.
[http://dx.doi.org/10.1158/10.1158/1538-7445.AM2016-4889]
[80]
Cunyat, F.; Rainho, J.N.; West, B.; Swainson, L.; McCune, J.M.; Stevenson, M. Colony-stimulating factor 1 receptor antagonists sensitize human immunodeficiency virus type 1-infected macrophages to TRAIL-mediated killing. J. Virol., 2016, 90(14), 6255-6262.
[http://dx.doi.org/10.1128/JVI.00231-16] [PMID: 27122585]
[81]
Feng, X.; Jopson, T.D.; Paladini, M.S.; Liu, S.; West, B.L.; Gupta, N.; Rosi, S. Colony-stimulating factor 1 receptor blockade prevents fractionated whole-brain irradiation-induced memory deficits. J. Neuroinflammation, 2016, 13(1), 215.
[http://dx.doi.org/10.1186/s12974-016-0671-y] [PMID: 27576527]
[82]
Armstrong, R.C.; Belli, B.; Rowbottom, M.W.; Nepomuceno, R.R.; Dao, A.Q.; Rooks, A.M.; Brigham, D.; McMannus, C.W.; Hocker, M.D.; Holladay, M.W.; Liu, G. Abstract 903: AC708 is a potent and selective inhibitor of CSF1R and reduces tumor associated macrophage infiltration in a breast tumor model. Cancer Res., 2013, 73(8)(Suppl.), 903-903.
[http://dx.doi.org/10.1158/1538-7445.AM2013-903]
[83]
Mok, S.; Duffy, C.; Du, R.; Allison, J.P. Abstract PR01: blocking colony stimulating factor 1 receptor (CSF-1R) and tropomyosin receptor kinase (Trk) improves antitumor efficacy of immunotherapy. Cancer Immunol. Res., 2017, 5(3)(Suppl.), PR01-PR01.
[http://dx.doi.org/10.1158/2326-6074.TUMIMM16-PR01]
[84]
Patch, R.J.; Brandt, B.M.; Asgari, D.; Baindur, N.; Chadha, N.K.; Georgiadis, T.; Cheung, W.S.; Petrounia, I.P.; Donatelli, R.R.; Chaikin, M.A.; Player, M.R. Potent 2′-aminoanilide inhibitors of cFMS as potential anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2007, 17(22), 6070-6074.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.057] [PMID: 17904845]
[85]
Meegalla, S.K.; Wall, M.J.; Chen, J.; Wilson, K.J.; Ballentine, S.K.; Desjarlais, R.L.; Schubert, C.; Crysler, C.S.; Chen, Y.; Molloy, C.J.; Chaikin, M.A.; Manthey, C.L.; Player, M.R.; Tomczuk, B.E.; Illig, C.R. Structure-based optimization of a potent class of arylamide FMS inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(12), 3632-3637.
[http://dx.doi.org/10.1016/j.bmcl.2008.04.059] [PMID: 18495479]
[86]
Illig, C.R.; Manthey, C.L.; Wall, M.J.; Meegalla, S.K.; Chen, J.; Wilson, K.J.; Ballentine, S.K.; Desjarlais, R.L.; Schubert, C.; Crysler, C.S.; Chen, Y.; Molloy, C.J.; Chaikin, M.A.; Donatelli, R.R.; Yurkow, E.; Zhou, Z.; Player, M.R.; Tomczuk, B.E. Optimization of a potent class of arylamide colony-stimulating factor-1 receptor inhibitors leading to anti-inflammatory clinical candidate 4-cyano-N-[2-(1-cyclohexen-1-yl)-4-[1-[(dimethylamino)acetyl]-4-piperidinyl]phenyl]-1H-imidazole-2-carboxamide (JNJ-28312141). J. Med. Chem., 2011, 54(22), 7860-7883.
[http://dx.doi.org/10.1021/jm200900q] [PMID: 22039836]
[87]
Illig, C.R.; Manthey, C.L.; Meegalla, S.K.; Wall, M.J.; Chen, J.; Wilson, K.J.; DesJarlais, R.L.; Ballentine, S.K.; Schubert, C.; Crysler, C.S.; Chen, Y.; Molloy, C.J.; Chaikin, M.A.; Donatelli, R.R.; Yurkow, E.; Zhou, Z.; Player, M.R.; Tomczuk, B.E. Enhancement of kinase selectivity in a potent class of arylamide FMS inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(23), 6363-6369.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.061] [PMID: 24138939]
[88]
Meyers, M.J.; Pelc, M.; Kamtekar, S.; Day, J.; Poda, G.I.; Hall, M.K.; Michener, M.L.; Reitz, B.A.; Mathis, K.J.; Pierce, B.S.; Parikh, M.D.; Mischke, D.A.; Long, S.A.; Parlow, J.J.; Anderson, D.R.; Thorarensen, A. Structure-based drug design enables conversion of a DFG-in binding CSF-1R kinase inhibitor to a DFG-out binding mode. Bioorg. Med. Chem. Lett., 2010, 20(5), 1543-1547.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.078] [PMID: 20137931]
[89]
Scott, D.A.; Bell, K.J.; Campbell, C.T.; Cook, D.J.; Dakin, L.A.; Del Valle, D.J.; Drew, L.; Gero, T.W.; Hattersley, M.M.; Omer, C.A.; Tyurin, B.; Zheng, X. 3-amido-4-anilinoquinolines as CSF-1R kinase inhibitors 2: Optimization of the PK profile. Bioorg. Med. Chem. Lett., 2009, 19(3), 701-705.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.044] [PMID: 19114305]
[90]
Drew, L.; Bell, K.; Dakin, L.; Hattersley, M.; Lawson, D.; Repik, G.; Scott, D.; Shen, M.; Omer, C. Abstract #259: the selective CSF-1R inhibitor AZ683 reduces tumor associated macrophages and inhibits growth of breast cancer xenograft models. Cancer Res., 2009, 69(9)(Suppl.), 259-259.
[91]
Scott, D.A.; Dakin, L.A.; Daly, K.; Del Valle, D.J.; Diebold, R.B.; Drew, L.; Ezhuthachan, J.; Gero, T.W.; Ogoe, C.A.; Omer, C.A.; Redmond, S.P.; Repik, G.; Thakur, K.; Ye, Q.; Zheng, X. Mitigation of cardiovascular toxicity in a series of CSF-1R inhibitors, and the identification of AZD7507. Bioorg. Med. Chem. Lett., 2013, 23(16), 4591-4596.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.031] [PMID: 23842474]
[92]
Boulter, L.; Guest, R.V.; Kendall, T.J.; Wilson, D.H.; Wojtacha, D.; Robson, A.J.; Ridgway, R.A.; Samuel, K.; Van Rooijen, N.; Barry, S.T.; Wigmore, S.J.; Sansom, O.J.; Forbes, S.J. WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J. Clin. Invest., 2015, 125(3), 1269-1285.
[http://dx.doi.org/10.1172/JCI76452] [PMID: 25689248]
[93]
Ramachandran, S.A.; Jadhavar, P.S.; Miglani, S.K.; Singh, M.P.; Kalane, D.P.; Agarwal, A.K.; Sathe, B.D.; Mukherjee, K.; Gupta, A.; Haldar, S.; Raja, M.; Singh, S.; Pham, S.M.; Chakravarty, S.; Quinn, K.; Belmar, S.; Alfaro, I.E.; Higgs, C.; Bernales, S.; Herrera, F.J.; Rai, R. Design, synthesis and optimization of bis-amide derivatives as CSF1R inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(10), 2153-2160.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.064] [PMID: 28377059]
[94]
Im, D.; Jung, K.; Yang, S.; Aman, W.; Hah, J.M. Discovery of 4-arylamido 3-methyl isoxazole derivatives as novel FMS kinase inhibitors. Eur. J. Med. Chem., 2015, 102, 600-610.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.031] [PMID: 26318067]
[95]
Xun, Q.; Zhang, Z.; Luo, J.; Tong, L.; Huang, M.; Wang, Z.; Zou, J.; Liu, Y.; Xu, Y.; Xie, H.; Tu, Z.C.; Lu, X.; Ding, K. Design, synthesis, and structure-activity relationship study of 2-Oxo-3,4-dihydropyrimido[4,5- d]pyrimidines as new colony stimulating factor 1 receptor (csf1r) kinase inhibitors. J. Med. Chem., 2018, 61(6), 2353-2371.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01612] [PMID: 29499108]
[96]
Liao, C.B.; Peng, S.Z.; Ho, C.H.; Lee, C.P.; Chang, J.M.; Huang, H.J.; Ciou, S.Y.; Pan, Y.C.; Chen, Y.K. Abstract 3206: a potent and selective CSF-1R inhibitor, DCR-0064, inhibits colony stimulating factor 1 signaling in vitro and in vivo. Cancer Res., 2017, 77(13)(Suppl.)
[http://dx.doi.org/10.1021/10.1158/1538-7445.AM2017-3206]
[97]
Dewar, A.L.; Cambareri, A.C.; Zannettino, A.C.W.; Miller, B.L.; Doherty, K.V.; Hughes, T.P.; Lyons, A.B. Macrophage colony-stimulating factor receptor c-fms is a novel target of imatinib. Blood, 2005, 105(8), 3127-3132.
[http://dx.doi.org/10.1182/blood-2004-10-3967] [PMID: 15637141]
[98]
Taylor, J.R.; Brownlow, N.; Domin, J.; Dibb, N.J. FMS receptor for M-CSF (CSF-1) is sensitive to the kinase inhibitor imatinib and mutation of Asp-802 to Val confers resistance. Oncogene, 2006, 25(1), 147-151.
[http://dx.doi.org/10.1038/sj.onc.1209007] [PMID: 16170366]
[99]
Guo, J.; Marcotte, P.A.; McCall, J.O.; Dai, Y.; Pease, L.J.; Michaelides, M.R.; Davidsen, S.K.; Glaser, K.B. Inhibition of phosphorylation of the colony-stimulating factor-1 receptor (c-Fms) tyrosine kinase in transfected cells by ABT-869 and other tyrosine kinase inhibitors. Mol. Cancer Ther., 2006, 5(4), 1007-1013.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0359] [PMID: 16648572]
[100]
Sonpavde, G.; Hutson, T.E.; Rini, B.I. Axitinib for renal cell carcinoma. Expert Opin. Investig. Drugs, 2008, 17(5), 741-748.
[http://dx.doi.org/10.1517/13543784.17.5.741] [PMID: 18447599]
[101]
Murray, L.J.; Abrams, T.J.; Long, K.R.; Ngai, T.J.; Olson, L.M.; Hong, W.; Keast, P.K.; Brassard, J.A.; O’Farrell, A.M.; Cherrington, J.M.; Pryer, N.K. SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin. Exp. Metastasis, 2003, 20(8), 757-766.
[http://dx.doi.org/10.1023/B:CLIN.0000006873.65590.68] [PMID: 14713109]
[102]
Yap, T.A.; Arkenau, H.T.; Camidge, D.R.; George, S.; Serkova, N.J.; Gwyther, S.J.; Spratlin, J.L.; Lal, R.; Spicer, J.; Desouza, N.M.; Leach, M.O.; Chick, J.; Poondru, S.; Boinpally, R.; Gedrich, R.; Brock, K.; Stephens, A.; Eckhardt, S.G.; Kaye, S.B.; Demetri, G.; Scurr, M. First-in-human phase I trial of two schedules of OSI-930, a novel multikinase inhibitor, incorporating translational proof-of-mechanism studies. Clin. Cancer Res., 2013, 19(4), 909-919.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2258] [PMID: 23403628]
[103]
Poulsen, A.; William, A.; Blanchard, S.; Lee, A.; Nagaraj, H.; Wang, H.; Teo, E.; Tan, E.; Goh, K.C.; Dymock, B. Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3). J. Comput. Aided Mol. Des., 2012, 26(4), 437-450.
[http://dx.doi.org/10.1007/s10822-012-9572-z] [PMID: 22527961]
[104]
Fletcher, G.C.; Brokx, R.D.; Denny, T.A.; Hembrough, T.A.; Plum, S.M.; Fogler, W.E.; Sidor, C.F.; Bray, M.R. ENMD-2076 is an orally active kinase inhibitor with antiangiogenic and antiproliferative mechanisms of action. Mol. Cancer Ther., 2011, 10(1), 126-137.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0574] [PMID: 21177375]
[105]
Zhou, Y.; Shan, S.; Li, Z.B.; Xin, L.J.; Pan, D.S.; Yang, Q.J.; Liu, Y.P.; Yue, X.P.; Liu, X.R.; Gao, J.Z.; Zhang, J.W.; Ning, Z.Q.; Lu, X.P. CS2164, a novel multi-target inhibitor against tumor angiogenesis, mitosis and chronic inflammation with anti-tumor potency. Cancer Sci., 2017, 108(3), 469-477.
[http://dx.doi.org/10.1111/cas.13141] [PMID: 28004478]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy