Review Article

含溴结构域蛋白4:可药物治疗的目标

卷 20, 期 15, 2019

页: [1517 - 1536] 页: 20

弟呕挨: 10.2174/1574885514666190618113519

价格: $65

摘要

含溴结构域的蛋白质4(BRD4)属于溴结构域和末端外家族。 BRD4抑制剂可以调节乙酰化的赖氨酸并形成蛋白质复合物,从而启动转录程序,作为组蛋白代码的表观遗传调节剂。 最初,BRD4被认为是对抗恶性肿瘤最有希望的靶标之一。 但是,最近的许多研究表明,BRD4在多种疾病(包括癌症,冠心病,神经系统疾病和肥胖症)中起着至关重要的作用。 目前,几种BRD4抑制剂正在接受临床试验。 寻找新的BRD4抑制剂似乎对于开发新药具有很大的实用性。 在此小型审查中,我们重点介绍了来自天然产物和合成来源的BRD4抑制剂,及其在癌症,糖脂代谢,炎症,神经元刺激激活,人类免疫缺陷病毒和肾纤维化中的应用。

关键词: 含溴结构域的蛋白质4,小分子抑制剂,药理学,肿瘤,冠心病,天然产物,合成化合物。

图形摘要

[1]
Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009; 325(5942): 834-40.
[http://dx.doi.org/10.1126/science.1175371] [PMID: 19608861]
[2]
Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 1998; 20(8): 615-26.
[http://dx.doi.org/10.1002/(SICI)1521-1878(199808)20:8<615:AID-BIES4>3.0.CO;2-H] [PMID: 9780836]
[3]
Ganai SA. Histone deacetylase inhibitors modulating non-epigenetic players: The novel molecular targets for therapeutic intervention. Curr Drug Targets 2016; 19(6): 593-601.
[http://dx.doi.org/10.2174/1389450117666160527143257] [PMID: 27231104]
[4]
Peng L, Seto E. Deacetylation of nonhistone proteins by HDACs and the implications in cancer. Handb Exp Pharmacol 2011; 206: 39-56.
[http://dx.doi.org/10.1007/978-3-642-21631-2_3] [PMID: 21879445]
[5]
Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 2007; 1(1): 19-25.
[http://dx.doi.org/10.1016/j.molonc.2007.01.001] [PMID: 19383284]
[6]
Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkühler C. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res 2007; 17(3): 195-211.
[http://dx.doi.org/10.1038/sj.cr.7310149] [PMID: 17325692]
[7]
He XM, Lin L, Li SY. HDACs and HDAC inhibitors in colorectal cancer. Linchuang Zhongliuxue Zazhi 2009; 14(03): 270-3.
[8]
Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene 2007; 26(37): 5420-32.
[http://dx.doi.org/10.1038/sj.onc.1210610] [PMID: 17694083]
[9]
Filippakopoulos P, Knapp S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov 2014; 13(5): 337-56.
[http://dx.doi.org/10.1038/nrd4286] [PMID: 24751816]
[10]
Sanchez R, Zhou MM. The role of human bromodomains in chromatin biology and gene transcription. Curr Opin Drug Discov Devel 2009; 12(5): 659-65.
[PMID: 19736624]
[11]
Müller S, Lingard H, Knapp S. Selective inhibition of acetyl-lysine effector domains of the bromodomain family in oncology. Nuclear Signaling Pathways and Targeting Transcription in Cancer 2014; pp. 279-98.
[http://dx.doi.org/10.1007/978-1-4614-8039-6_11]
[12]
Ember SWJ, Zhu JY, Olesen SH, et al. Acetyl-lysine binding site of bromodomain-containing protein 4 (BRD4) interacts with diverse kinase inhibitors. ACS Chem Biol 2014; 9(5): 1160-71.
[http://dx.doi.org/10.1021/cb500072z] [PMID: 24568369]
[13]
Lee JE, Park YK, Park S, et al. Brd4 binds to active enhancers to control cell identity gene induction in adipogenesis and myogenesis. Nat Commun 2017; 8(1): 2217-28.
[http://dx.doi.org/10.1038/s41467-017-02403-5] [PMID: 29263365]
[14]
Sakurai N, Inamochi Y, Inoue T, et al. BRD4 regulates adiponectin gene induction by recruiting the P-TEFb complex to the transcribed region of the gene. Sci Rep 2017; 7(1): 11962.
[http://dx.doi.org/10.1038/s41598-017-12342-2] [PMID: 28931940]
[15]
Valor LM, Pulopulos MM, Jimenez-Minchan M, Olivares R, Lutz B, Barco A. Ablation of CBP in forebrain principal neurons causes modest memory and transcriptional defects and a dramatic reduction of histone acetylation but does not affect cell viability. J Neurosci 2011; 31(5): 1652-63.
[http://dx.doi.org/10.1523/JNEUROSCI.4737-10.2011] [PMID: 21289174]
[16]
French CA. Small-molecule targeting of BET proteins in cancer. Adv Cancer Res 2016; 131: 21-58.
[http://dx.doi.org/10.1016/bs.acr.2016.04.001] [PMID: 27451123]
[17]
Jahagirdar R, Zhang H, Azhar S, et al. A novel BET bromodomain inhibitor, RVX-208, shows reduction of atherosclerosis in hyperlipidemic ApoE deficient mice. Atherosclerosis 2014; 236(1): 91-100.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.06.008] [PMID: 25016363]
[18]
Nicholls SJ, Gordon A, Johannson J, et al. ApoA-I induction as a potential cardioprotective strategy: rationale for the SUSTAIN and ASSURE studies. Cardiovasc Drugs Ther 2012; 26(2): 181-7.
[http://dx.doi.org/10.1007/s10557-012-6373-5] [PMID: 22349989]
[19]
Nicodeme E, Jeffrey KL, Schaefer U, et al. Suppression of inflammation by a synthetic histone mimic. Nature 2010; 468(7327): 1119-23.
[http://dx.doi.org/10.1038/nature09589] [PMID: 21068722]
[20]
Saura CA, Valero J. The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev Neurosci 2011; 22(2): 153-69.
[http://dx.doi.org/10.1515/rns.2011.018] [PMID: 21476939]
[21]
Belkina AC, Denis GV. BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer 2012; 12(7): 465-77.
[http://dx.doi.org/10.1038/nrc3256] [PMID: 22722403]
[22]
Fu LL, Tian M, Li X, et al. Inhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery. Oncotarget 2015; 6(8): 5501-16.
[http://dx.doi.org/10.18632/oncotarget.3551] [PMID: 25849938]
[23]
Filippakopoulos P, Picaud S, Mangos M, et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012; 149(1): 214-31.
[http://dx.doi.org/10.1016/j.cell.2012.02.013] [PMID: 22464331]
[24]
Florence B, Faller DV. You bet-cha: a novel family of transcriptional regulators. Front Biosci 2001; 6(1): D1008-18.
[http://dx.doi.org/10.2741/Florence] [PMID: 11487468]
[25]
Dey A, Ellenberg J, Farina A, et al. A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G(2)-to-M transition. Mol Cell Biol 2000; 20(17): 6537-49.
[http://dx.doi.org/10.1128/MCB.20.17.6537-6549.2000] [PMID: 10938129]
[26]
Wang R, Li Q, Helfer CM, Jiao J, You J. Bromodomain protein Brd4 associated with acetylated chromatin is important for maintenance of higher-order chromatin structure. J Biol Chem 2012; 287(14): 10738-52.
[http://dx.doi.org/10.1074/jbc.M111.323493] [PMID: 22334664]
[27]
Dey A, Nishiyama A, Karpova T, McNally J, Ozato K. Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription. Mol Biol Cell 2009; 20(23): 4899-909.
[http://dx.doi.org/10.1091/mbc.e09-05-0380] [PMID: 19812244]
[28]
Shi J, Vakoc CR. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell 2014; 54(5): 728-36.
[http://dx.doi.org/10.1016/j.molcel.2014.05.016] [PMID: 24905006]
[29]
Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol Cell 2006; 23(3): 297-305.
[http://dx.doi.org/10.1016/j.molcel.2006.06.014] [PMID: 16885020]
[30]
Saunders A, Core LJ, Lis JT. Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 2006; 7(8): 557-67.
[http://dx.doi.org/10.1038/nrm1981] [PMID: 16936696]
[31]
Cherrier T, Le Douce V, Eilebrecht S, et al. CTIP2 is a negative regulator of P-TEFb. Proc Natl Acad Sci USA 2013; 110(31): 12655-60.
[http://dx.doi.org/10.1073/pnas.1220136110] [PMID: 23852730]
[32]
Yang Z, Yik JH, Chen R, et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 2005; 19(4): 535-45.
[http://dx.doi.org/10.1016/j.molcel.2005.06.029] [PMID: 16109377]
[33]
Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 2005; 19(4): 523-34.
[http://dx.doi.org/10.1016/j.molcel.2005.06.027] [PMID: 16109376]
[34]
Chen R, Yik JH, Lew QJ, Chao SH. Brd4 and HEXIM1: multiple roles in P-TEFb regulation and cancer. BioMed Res Int 2014; 2014232870
[http://dx.doi.org/10.1155/2014/232870] [PMID: 24592384]
[35]
Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature 2010; 468(7327): 1067-73.
[http://dx.doi.org/10.1038/nature09504] [PMID: 20871596]
[36]
Xiang T, Bai JY, She C, Yu DJ, Zhou XZ, Zhao TL. Bromodomain protein BRD4 promotes cell proliferation in skin squamous cell carcinoma. Cell Signal 2018; 42: 106-13.
[http://dx.doi.org/10.1016/j.cellsig.2017.10.010] [PMID: 29050985]
[37]
Wang L, Wu X, Huang P, et al. JQ1, a small molecule inhibitor of BRD4, suppresses cell growth and invasion in oral squamous cell carcinoma. Oncol Rep 2016; 36(4): 1989-96.
[http://dx.doi.org/10.3892/or.2016.5037] [PMID: 27573714]
[38]
French CA. NUT midline carcinoma. Cancer Genet Cytogenet 2010; 203(1): 16-20.
[http://dx.doi.org/10.1016/j.cancergencyto.2010.06.007] [PMID: 20951314]
[39]
French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res 2003; 63(2): 304-7.
[PMID: 12543779]
[40]
Muller S, Filippakopoulos P, Knapp S. Bromodomains as therapeutic targets. Expert Rev Mol Med 2011; 13: e29-42.
[http://dx.doi.org/10.1017/S1462399411001992] [PMID: 21933453]
[41]
Mirguet O, Gosmini R, Toum J, et al. Discovery of epigenetic regulator I-BET762: lead optimization to afford a clinical candidate inhibitor of the BET bromodomains. J Med Chem 2013; 56(19): 7501-15.
[http://dx.doi.org/10.1021/jm401088k] [PMID: 24015967]
[42]
Zuber J, Shi J, Wang E, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478(7370): 524-8.
[http://dx.doi.org/10.1038/nature10334] [PMID: 21814200]
[43]
Albrecht BK, Gehling VS, Hewitt MC, et al. Identification of a benzoisoxazoloazepine inhibitor (CPI-0610) of the bromodomain and extra-terminal (BET) family as a candidate for human clinical trials. J Med Chem 2016; 59(4): 1330-9.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01882] [PMID: 26815195]
[44]
Siu KT, Ramachandran J, Yee AJ, et al. Preclinical activity of CPI-0610, a novel small-molecule bromodomain and extra-terminal protein inhibitor in the therapy of multiple myeloma. Leukemia 2017; 31(8): 1760-9.
[http://dx.doi.org/10.1038/leu.2016.355] [PMID: 27890933]
[45]
Weinstein IB. Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science 2002; 297(5578): 63-4.
[http://dx.doi.org/10.1126/science.1073096] [PMID: 12098689]
[46]
Asangani IA, Dommeti VL, Wang X, et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 2014; 510(7504): 278-82.
[http://dx.doi.org/10.1038/nature13229] [PMID: 24759320]
[47]
Mertz JA, Conery AR, Bryant BM, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA 2011; 108(40): 16669-74.
[http://dx.doi.org/10.1073/pnas.1108190108] [PMID: 21949397]
[48]
Lockwood WW, Zejnullahu K, Bradner JE, Varmus H. Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc Natl Acad Sci USA 2012; 109(47): 19408-13.
[http://dx.doi.org/10.1073/pnas.1216363109] [PMID: 23129625]
[49]
Villar-Prados A, Wu SY, Court KA, et al. Predicting novel therapies and targets: Regulation of Notch3 by the bromodomain protein BRD4. Mol Cancer Ther 2019; 18(2): 421-36.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0365] [PMID: 30420565]
[50]
Zhang Z, Ma P, Jing Y, et al. BET bromodomain inhibition as a therapeutic strategy in ovarian cancer by downregulating foxm1. Theranostics 2016; 6(2): 219-30.
[http://dx.doi.org/10.7150/thno.13178] [PMID: 26877780]
[51]
Zhu L, Ding X. Molecular design of Stat3-derived peptide selectivity between BET proteins Brd2 and Brd4 in ovarian cancer. J Mol Recognit 2018; 31(2)e2679
[http://dx.doi.org/10.1002/jmr.2679] [PMID: 28983974]
[52]
McLure KG, Gesner EM, Tsujikawa L, et al. RVX-208, an inducer of ApoA-I in humans, is a BET bromodomain antagonist. PLoS One 2013; 8(12) e83190
[http://dx.doi.org/10.1371/journal.pone.0083190] [PMID: 24391744]
[53]
Gosmini R, Nguyen VL, Toum J, et al. The discovery of I-BET726 (GSK1324726A), a potent tetrahydroquinoline ApoA1 up-regulator and selective BET bromodomain inhibitor. J Med Chem 2014; 57(19): 8111-31.
[http://dx.doi.org/10.1021/jm5010539] [PMID: 25249180]
[54]
Wang L, Waltenberger B, Pferschy-Wenzig EM, et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 2014; 92(1): 73-89.
[http://dx.doi.org/10.1016/j.bcp.2014.07.018] [PMID: 25083916]
[55]
Zhang Y, Gu M, Cai W, et al. Dietary component isorhamnetin is a PPARγ antagonist and ameliorates metabolic disorders induced by diet or leptin deficiency. Sci Rep 2016; 6(1): 19288.
[http://dx.doi.org/10.1038/srep19288] [PMID: 28720770]
[56]
Zhang G, Liu R, Zhong Y, et al. Down-regulation of NF-κB transcriptional activity in HIV-associated kidney disease by BRD4 inhibition. J Biol Chem 2012; 287(34): 28840-51.
[http://dx.doi.org/10.1074/jbc.M112.359505] [PMID: 22645123]
[57]
Bandukwala HS, Gagnon J, Togher S, et al. Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors. Proc Natl Acad Sci USA 2012; 109(36): 14532-7.
[http://dx.doi.org/10.1073/pnas.1212264109] [PMID: 22912406]
[58]
Belkina AC, Nikolajczyk BS, Denis GV. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses. J Immunol 2013; 190(7): 3670-8.
[http://dx.doi.org/10.4049/jimmunol.1202838] [PMID: 23420887]
[59]
Eskandarpour M, Alexander R, Adamson P, Calder VL. Pharmacological inhibition of bromodomain proteins suppresses retinal inflammatory disease and downregulates retinal Th17 cells. J Immunol 2017; 198(3): 1093-103.
[http://dx.doi.org/10.4049/jimmunol.1600735] [PMID: 28039300]
[60]
Green EM, Gozani O. Everybody’s welcome: The big tent approach to epigenetic drug discovery. Drug Discov Today Ther Strateg 2012; 9(2-3): e75-81.
[http://dx.doi.org/10.1016/j.ddstr.2011.08.002] [PMID: 23505394]
[61]
Li J, Ma J, Meng G, et al. BET bromodomain inhibition promotes neurogenesis while inhibiting gliogenesis in neural progenitor cells. Stem Cell Res (Amst) 2016; 17(2): 212-21.
[http://dx.doi.org/10.1016/j.scr.2016.07.006] [PMID: 27591477]
[62]
Rvx 208. Drugs R D 2011; 11(2): 207-13.
[http://dx.doi.org/10.2165/11595140-000000000-00000] [PMID: 21679009]
[63]
Li Z, Guo J, Wu Y, Zhou Q. The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. Nucleic Acids Res 2013; 41(1): 277-87.
[http://dx.doi.org/10.1093/nar/gks976] [PMID: 23087374]
[64]
Zhu J, Gaiha GD, John SP, et al. Reactivation of latent HIV-1 by inhibition of BRD4. Cell Rep 2012; 2(4): 807-16.
[http://dx.doi.org/10.1016/j.celrep.2012.09.008] [PMID: 23041316]
[65]
Loeffler I, Wolf G. Transforming growth factor-β and the progression of renal disease. Nephrol Dial Transplant 2014; 29(Suppl. 1): i37-45.
[http://dx.doi.org/10.1093/ndt/gft267] [PMID: 24030832]
[66]
Zhou B, Mu J, Gong Y, et al. Brd4 inhibition attenuates unilateral ureteral obstruction-induced fibrosis by blocking TGF-β-mediated Nox4 expression. Redox Biol 2017; 11: 390-402.
[http://dx.doi.org/10.1016/j.redox.2016.12.031] [PMID: 28063381]
[67]
Vázquez R, Riveiro ME, Astorgues-Xerri L, et al. The bromodomain inhibitor OTX015 (MK-8628) exerts anti-tumor activity in triple-negative breast cancer models as single agent and in combination with everolimus. Oncotarget 2017; 8(5): 7598-613.
[http://dx.doi.org/10.18632/oncotarget.13814] [PMID: 27935867]
[68]
Stathis A, Zucca E, Bekradda M, et al. Clinical response of carcinomas harboring the BRD4-NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov 2016; 6(5): 492-500.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1335] [PMID: 26976114]
[69]
Lu P, Qu X, Shen Y, et al. The BET inhibitor OTX015 reactivates latent HIV-1 through P-TEFb. Sci Rep 2016; 6: 24100-10.
[http://dx.doi.org/10.1038/srep24100] [PMID: 27067814]
[70]
Boi M, Todaro M, Vurchio V, et al. AIRC 5xMille consortium ‘genetics-driven targeted management of lymphoid malignancies’. Therapeutic efficacy of the bromodomain inhibitor OTX015/MK-8628 in ALK-positive anaplastic large cell lymphoma: an alternative modality to overcome resistant phenotypes. Oncotarget 2016; 7(48): 79637-53.
[http://dx.doi.org/10.18632/oncotarget.12876] [PMID: 27793034]
[71]
Devaiah BN, Lewis BA, Cherman N, et al. BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc Natl Acad Sci USA 2012; 109(18): 6927-32.
[http://dx.doi.org/10.1073/pnas.1120422109] [PMID: 22509028]
[72]
Moros A, Rodríguez V, Saborit-Villarroya I, et al. Synergistic antitumor activity of lenalidomide with the BET bromodomain inhibitor CPI203 in bortezomib-resistant mantle cell lymphoma. Leukemia 2014; 28(10): 2049-59.
[http://dx.doi.org/10.1038/leu.2014.106] [PMID: 24721791]
[73]
Picaud S, Leonards K, Lambert JP, et al. Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia. Sci Adv 2016; 2(10)e1600760
[http://dx.doi.org/10.1126/sciadv.1600760] [PMID: 27757418]
[74]
Roberts TC, Etxaniz U, Dall’Agnese A, et al. BRD3 and BRD4 BET bromodomain proteins differentially regulate skeletal myogenesis. Sci Rep 2017; 7(1): 6153-66.
[http://dx.doi.org/10.1038/s41598-017-06483-7] [PMID: 28733670]
[75]
Seal J, Lamotte Y, Donche F, et al. Identification of a novel series of BET family bromodomain inhibitors: binding mode and profile of I-BET151 (GSK1210151A). Bioorg Med Chem Lett 2012; 22(8): 2968-72.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.041] [PMID: 22437115]
[76]
Mark AD, Rab KP, Antje D, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukemia. Nature 2013; 478(7370): 529-33.
[77]
Chaidos A, Caputo V, Gouvedenou K, et al. Potent antimyeloma activity of the novel bromodomain inhibitors I-BET151 and I-BET762. Blood 2014; 123(5): 697-705.
[http://dx.doi.org/10.1182/blood-2013-01-478420] [PMID: 24335499]
[78]
Picaud S, Da Costa D, Thanasopoulou A, et al. PFI-1, a highly selective protein interaction inhibitor, targeting BET Bromodomains. Cancer Res 2013; 73(11): 3336-46.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3292] [PMID: 23576556]
[79]
Fish PV, Filippakopoulos P, Bish G, et al. Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit. J Med Chem 2012; 55(22): 9831-7.
[http://dx.doi.org/10.1021/jm3010515] [PMID: 23095041]
[80]
Liu L, Zhu Y, Liu Z, et al. Synthesis and biological evaluation of N-(3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazin-7-yl)benzenesulfo- namide derivatives as new BET bromodomain inhibitors for anti-hematologic malignancies activities. Mol Divers 2017; 21(1): 125-36.
[http://dx.doi.org/10.1007/s11030-016-9707-6] [PMID: 27858214]
[81]
Wyce A, Ganji G, Smitheman KN, et al. BET inhibition silences expression of MYCN and BCL2 and induces cytotoxicity in neuroblastoma tumor models. PLoS One 2013; 8(8) e72967
[http://dx.doi.org/10.1371/journal.pone.0072967] [PMID: 24009722]
[82]
Gilham D, Wasiak S, Tsujikawa LM, et al. RVX-208, a BET-inhibitor for treating atherosclerotic cardiovascular disease, raises ApoA-I/HDL and represses pathways that contribute to cardiovascular disease. Atherosclerosis 2016; 247: 48-57.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.01.036] [PMID: 26868508]
[83]
Picaud S, Wells C, Felletar I, et al. RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc Natl Acad Sci USA 2013; 110(49): 19754-9.
[http://dx.doi.org/10.1073/pnas.1310658110] [PMID: 24248379]
[84]
Nicholls SJ, Gordon A, Johansson J, et al. Efficacy and safety of a novel oral inducer of apolipoprotein a-I synthesis in statin-treated patients with stable coronary artery disease a randomized controlled trial. J Am Coll Cardiol 2011; 57(9): 1111-9.
[http://dx.doi.org/10.1016/j.jacc.2010.11.015] [PMID: 21255957]
[85]
Kharenko OA, Gesner EM, Patel RG, et al. RVX-297- a novel BD2 selective inhibitor of BET bromodomains. Biochem Biophys Res Commun 2016; 477(1): 62-7.
[http://dx.doi.org/10.1016/j.bbrc.2016.06.021] [PMID: 27282480]
[86]
Jahagirdar R, Attwell S, Marusic S, et al. RVX-297, a BET bromodomain inhibitor, has therapeutic effects in preclinical models of acute inflammation and autoimmune disease. Mol Pharmacol 2017; 92(6): 694-706.
[http://dx.doi.org/10.1124/mol.117.110379] [PMID: 28974538]
[87]
Steegmaier M, Hoffmann M, Baum A, et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol 2007; 17(4): 316-22.
[http://dx.doi.org/10.1016/j.cub.2006.12.037] [PMID: 17291758]
[88]
Chen L, Yap JL, Yoshioka M, et al. Brd4 structure-activity relationships of dual PIK1 kinase/BRD4 bromodomain inhibitor BI-2536. ACS Med Chem Lett 2015; 6(7): 764-9.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00084] [PMID: 26191363]
[89]
Ouyang L, Zhang L, Liu J, et al. Discovery of a small-molecule bromodomain-containing protein 4 (BRD4) inhibitor that induces AMP-activated protein kinase-modulated autophagy-associated cell death in breast cancer. J Med Chem 2017; 60(24): 9990-10012.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00275] [PMID: 29172540]
[90]
Sarthy A, Li L, Albert DH, et al. Abstract 4718: ABBV-075, a novel BET family bromodomain inhibitor, represents a promising therapeutic agent for a broad spectrum of cancer indications. Cancer Res 2016; 76(14)(Suppl.): 4718-8.
[91]
Faivre EJ, Wilcox DM, Hessler P, et al. Abstract 4694: ABBV-075, a novel BET family inhibitor, disrupts critical transcription programs that drive prostate cancer growth to induce potent anti-tumor activity in vitro and in vivo. Cancer Res 2016; 76(14)
[92]
Faivre EJ, Wilcox DM, Hessler P, et al. Abstract 4694: ABBV-075, a novel BET family inhibitor, disrupts critical transcription programs that drive prostate cancer growth to induce potent anti-tumor activity in vitro and in vivo. Cancer Res 2016; 76(14)(Suppl.): 4694-4.
[93]
McDaniel KF, Wang L, Soltwedel T, et al. Discovery of N-(4-(2,4-difluorophenoxy)-3-(6-methyl-7-oxo-6,7-dihydro-1h-pyrrolo[2,3-c]pyridin-4-yl)phenyl)ethanesulfonamide (ABBV-075/Mivebresib), a potent and orally available bromodomain and extraterminal domain (BET) family bromodomain inhibitor. J Med Chem 2017; 60(20): 8369-84.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00746] [PMID: 28949521]
[94]
Gadd MS, Testa A, Lucas X, et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol 2017; 13(5): 514-21.
[http://dx.doi.org/10.1038/nchembio.2329] [PMID: 28288108]
[95]
Saenz DT, Fiskus W, Qian Y, et al. Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells. Leukemia 2017; 31(9): 1951-61.
[http://dx.doi.org/10.1038/leu.2016.393] [PMID: 28042144]
[96]
Lu J, Qian Y, Altieri M, et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol 2015; 22(6): 755-63.
[http://dx.doi.org/10.1016/j.chembiol.2015.05.009] [PMID: 26051217]
[97]
Raina K, Lu J, Qian Y, et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci USA 2016; 113(26): 7124-9.
[http://dx.doi.org/10.1073/pnas.1521738113] [PMID: 27274052]
[98]
Winter GE, Buckley DL, Paulk J, et al. Selective target protein degradation via phthalimide conjugation. Science 2015; 348(6241): 1376-81.
[http://dx.doi.org/10.1126/science.aab1433] [PMID: 25999370]
[99]
Zengerle M, Chan KH, Ciulli A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem Biol 2015; 10(8): 1770-7.
[http://dx.doi.org/10.1021/acschembio.5b00216] [PMID: 26035625]
[100]
Chan KH, Zengerle M, Testa A, Ciulli A. Impact of target warhead and linkage vector on inducing protein degradation: Comparison of bromodomain and extra-terminal (BET) degraders derived from triazolodiazepine (JQ1) and tetrahydroquinoline (I-BET726) BET inhibitor scaffolds. J Med Chem 2018; 61(2): 504-13.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01912] [PMID: 28595007]
[101]
Qin C, Hu Y, Zhou B, et al. Discovery of QCA570 as an exceptionally potent and efficacious proteolysis targeting chimera (PROTAC) degrader of the bromodomain and extra-terminal (BET) proteins capable of inducing complete and durable tumor regression. J Med Chem 2018; 61(15): 6685-704.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00506] [PMID: 30019901]
[102]
Kim YH, Kim M, Yoo M, et al. A natural compound, aristoyagonine, is identified as a potent bromodomain inhibitor by mid-throughput screening. Biochem Biophys Res Commun 2018; 503(2): 882-7.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.091] [PMID: 29928885]
[103]
Yu L, Ding W, Wang Q, et al. Induction of cryptic bioactive 2,5-diketopiperazines in fungus Penicillium sp. DT-F29 by microbial co-culture. Tetrahedron 2017; 73(7): 907-14.
[http://dx.doi.org/10.1016/j.tet.2016.12.077]
[104]
Cheng X, Zhou B, Liu H, Huo C, Ding W. One new indolocarbazole alkaloid from the Streptomyces sp. A22. Nat Prod Res 2018; 32(21): 2583-8.
[http://dx.doi.org/10.1080/14786419.2018.1428595] [PMID: 29355042]
[105]
Lucas X, Wohlwend D, Hügle M, et al. 4-Acyl pyrroles: mimicking acetylated lysines in histone code reading. Angew Chem Int Ed Engl 2013; 52(52): 14055-9.
[http://dx.doi.org/10.1002/anie.201307652] [PMID: 24272870]
[106]
Raj U, Kumar H, Varadwaj PK. Molecular docking and dynamics simulation study of flavonoids as BET bromodomain inhibitors. J Biomol Struct Dyn 2017; 35(11): 2351-62.
[http://dx.doi.org/10.1080/07391102.2016.1217276] [PMID: 27494802]
[107]
Lee JS, Lee MS, Oh WK, Sul JY. Fatty acid synthase inhibition by amentoflavone induces apoptosis and antiproliferation in human breast cancer cells. Biol Pharm Bull 2009; 32(8): 1427-32.
[http://dx.doi.org/10.1248/bpb.32.1427] [PMID: 19652385]
[108]
Banerjee T, Valacchi G, Ziboh VA, van der Vliet A. Inhibition of TNFalpha-induced cyclooxygenase-2 expression by amentoflavone through suppression of NF-kappaB activation in A549 cells. Mol Cell Biochem 2002; 238(1-2): 105-10.
[http://dx.doi.org/10.1023/A:1019963222510] [PMID: 12349896]
[109]
Banerjee T, Van der Vliet A, Ziboh VA. Downregulation of COX-2 and iNOS by amentoflavone and quercetin in A549 human lung adenocarcinoma cell line. Prostaglandins Leukot Essent Fatty Acids 2002; 66(5-6): 485-92.
[http://dx.doi.org/10.1054/plef.2002.0387] [PMID: 12144868]
[110]
Prieto-Martínez FD, Medina-Franco JL. Flavonoids as putative epi-modulators: Insight into their binding mode with BRD4 bromodomains using molecular docking and dynamics. Biomolecules 2018; 8(3): 1-18.
[http://dx.doi.org/10.3390/biom8030061] [PMID: 30041464]
[111]
Takeshi Y, Kazunori M, Andreas O, et al. Structural and thermodynamic characterization of the binding of isoliquiritigenin to the first bromodomain of BRD4. FEBS J 2018.
[112]
Peng F, Du Q, Peng C, et al. Review: The pharmacology of isoliquiritigenin. Phytother Res 2015; 29(7): 969-77.
[http://dx.doi.org/10.1002/ptr.5348] [PMID: 25907962]
[113]
Ning S, Xiao M, Zhu D, et al. Isoliquiritigenin attenuates MiR-21 expression via induction of PIAS3 in breast cancer cells. RSC Advances 2017; 7(29): 18085-92.
[http://dx.doi.org/10.1039/C6RA25511F]
[114]
Kanazawa M, Satomi Y, Mizutani Y, et al. Isoliquiritigenin inhibits the growth of prostate cancer. Eur Urol 2003; 43(5): 580-6.
[http://dx.doi.org/10.1016/S0302-2838(03)00090-3] [PMID: 12706007]
[115]
Ii T, Satomi Y, Katoh D, et al. Induction of cell cycle arrest and p21(CIP1/WAF1) expression in human lung cancer cells by isoliquiritigenin. Cancer Lett 2004; 207(1): 27-35.
[http://dx.doi.org/10.1016/j.canlet.2003.10.023] [PMID: 15050731]
[116]
Ma J, Fu NY, Pang DB, Wu WY, Xu AL. Apoptosis induced by isoliquiritigenin in human gastric cancer MGC-803 cells. Planta Med 2001; 67(8): 754-7.
[http://dx.doi.org/10.1055/s-2001-18361] [PMID: 11731922]
[117]
Athar M, Back JH, Tang X, et al. Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol 2007; 224(3): 274-83.
[http://dx.doi.org/10.1016/j.taap.2006.12.025] [PMID: 17306316]
[118]
Pavan AR, Silva GD, Jornada DH, et al. Unraveling the anticancer effect of curcumin and resveratrol. Nutrients 2016; 8(11) E628
[http://dx.doi.org/10.3390/nu8110628] [PMID: 27834913]
[119]
Dutra LA, Heidenreich D, Silva GDBD, Man Chin C, Knapp S, Santos JLD. Dietary compound resveratrol is a pan-BET bromodomain inhibitor. Nutrients 2017; 9(11): 1172-9.
[http://dx.doi.org/10.3390/nu9111172] [PMID: 29077030]
[120]
Ding H, Zhang D, Zhou B, Ma Z. Inhibitors of BRD4 protein from a marine-derived fungus Alternaria sp. NH-F6. Mar Drugs 2017; 15(3): 76-89.
[http://dx.doi.org/10.3390/md15030076] [PMID: 28300771]
[121]
Wu X, Chen Z, Ding W, Liu Y, Ma Z. Chemical constituents of the fermentative extracts of marine fungi Phoma sp. CZD-F11 and Aspergillus sp. CZD-F18 from Zhoushan Archipelago, China. Nat Prod Res 2018; 32(13): 1562-6.
[http://dx.doi.org/10.1080/14786419.2017.1389929] [PMID: 29082752]
[122]
Ma Q, Ding W, Chen Z, Ma Z. Bisamides and rhamnosides from mangrove actinomycete Streptomyces sp. SZ-A15. Nat Prod Res 2018; 32(7): 761-6.
[http://dx.doi.org/10.1080/14786419.2017.1315578] [PMID: 28438038]
[123]
Park SH, Kim DS, Kim WG, et al. Terrein: a new melanogenesis inhibitor and its mechanism. Cell Mol Life Sci 2004; 61(22): 2878-85.
[http://dx.doi.org/10.1007/s00018-004-4341-3] [PMID: 15558216]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy