Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Review Article

Development of Green and Clean Processes for Perfumes and Flavors Using Heterogeneous Chemical Catalysis

Author(s): Radhika S. Malkar and Ganapati D. Yadav*

Volume 9, Issue 1, 2020

Page: [32 - 58] Pages: 27

DOI: 10.2174/2211544708666190613163523

Abstract

Background: In this review, different heterogeneous catalysts based on acid, base, metal and enzymes are discussed for the synthesis of industrially relevant perfumes and flavor compounds. These molecules are mainly produced by a variety of reaction pathways such as esterification, isomerization, hydration, alkylation, hydrogenation, oxidation, etc. All these reactions are discussed thoroughly for the synthesis of vital aromatic compounds. The review also summarizes various recent technologies applied for designing new catalysts to obtain the maximum yield of the desired product. Overall, this review highlights the green, clean and eco-friendly processes which can be industrially accepted for the synthesis of perfumes, flavors and fragrances.

Objective: The objective of the current review was to emphasize on the synthesis of industrially important perfumes and flavor molecules such as α-terpineol, cyclohexyl esters, thymol, raspberry ketone, etc. using heterogeneous catalysts.

Results: Three hundred and eight papers are reported in this review, the majority of which are on heterogeneous catalysis for the synthesis of molecules which impart flavor or possess perfumery characteristics. Among all, the preparation of esters is highlighted as they represent an imperative functional group in aroma chemicals.

Conclusion: The review confirms the need for heterogeneous catalysis in pollution-free and costeffective synthesis of flavor and perfumery compounds.

Keywords: Heterogeneous catalysis, perfume, flavor, fragrance, superacids, bases, redox, hydrogenation, Friedel-Crafts reactions, green chemistry, multiphase reactions, phase transfer catalysis.

Graphical Abstract

[1]
Size of the global fragrance, deodorant and antiperspirant market from 2012 to 2024 2012.https://www.statista.com/statistics/259221/global-fragrance-market-size/
[2]
Perfume & fragrances market 2018 - global sales, price, revenue, gross margin and market share., [April 14, 2019]; https://www.reuters.com/brandfeatures/venture-capital/article?id=71793
[3]
Perfume types - perfume classification and notes., [April 14, 2019]; http://www.historyofperfume.net/perfume-facts/perfume-classification-and-fragrance-notes/
[4]
Food ingredients first. Global flavors & fragrances market to reach US$36 billion in 2022., [April 14, 2019]; https://www.foodingredientsfirst.com/news/ial-consultants-publishes-global-report-for-flavor-fragrance-markets.html
[5]
Ohloff, G. Classification and genesis of food flavours. Flavour Ind., 1972, 3, 501-508.
[6]
Quayyum, H. Chemistry and Biochemistry of Some Vegetables. In:; book: Handbook of Fruit and Vegetable Flavors, 2010, pp. 573-625.
[http://dx.doi.org/10.1002/9780470622834.ch32.]
[7]
Song, J.; Forney, C.F. Flavour volatile production and regulation in fruit. Can. J. Plant Sci., 2008, 88(3), 537-550.
[http://dx.doi.org/10.4141/CJPS07170]
[8]
Yadav, G.D. Friedel-Crafts reactions in fragrance and flavour industry:current practices and scope for heterogeneous acid catalysis; Perfum. Flavours Assoc.: India, 1994, pp. 13-20.
[9]
Hensen, K.; Mahaim, C.; Hölderich, W.F. Alkoxylation of limonene and alpha-pinene over beta zeolite as heterogeneous catalyst. Appl. Catal. A Gen., 1997, 149(2), 311-329.
[http://dx.doi.org/10.1016/S0926-860X(96)00273-6]
[10]
Zaijun, L. Recent development in green synthesis. Synth. Catal., 2016, 1, 1-2.
[11]
Budiman, A.; Arifta, T.I.; Diana, D.; Sutijan, S. Continuous production of a-terpineol from a-pinene isolated from indonesian crude turpentine. Mod. Appl. Sci., 2015, 9(4), 225-232.
[http://dx.doi.org/10.5539/mas.v9n4p225]
[12]
Findik, S.; Gündüz, G. Isomerization of α-pinene to camphene. J. Am. Oil Chem. Soc., 1997, 74(9), 1145-1151.
[http://dx.doi.org/10.1007/s11746-997-0038-8]
[13]
Erman, W.E. Chemistry of the Monoterpenes, An Encyclopedic Handbook; Marcel Dekker: New York, 1985.
[14]
Welsh, F.W.; Murray, W.D.; Williams, R.E.; Katz, I. Microbiological and enzymatic production of flavor and fragrance chemicals. Crit. Rev. Biotechnol., 1989, 9(2), 105-169.
[http://dx.doi.org/10.3109/07388558909040617]
[15]
Comelli, N.; Avila, M.C.; Volzone, C.; Ponzi, M. Hydration of α-pinene catalyzed by acid clays. Cent. Eur. J. Chem., 2013, 11(5), 689-697.
[16]
van der Waal. Jan C.; van Bekkum, H.; Vital, J. M. The hydration and isomerization of α-pinene over zeolite beta. A new coupling reaction betwen α-pinene and ketones. J. Mol. Cataiysis. A. Chem, 1996, 105, 185-192.
[17]
Vital, J.; Ramos, A.M.; Silva, I.F.; Castanheiro, J.E. The effect of α-terpineol on the hydration of α-pinene over zeolites dispersed in polymeric membranes. Catal. Today, 2001, 67(1–3), 217-223.
[http://dx.doi.org/10.1016/S0920-5861(01)00289-9]
[18]
Wijayati, N.; Pranowo, H.D. Synthesis of terpineol from alpha-pinene catalyzed by TCA/Y-zeolite. Indo. J. Chem, 2011, 11(3), 234-237.
[http://dx.doi.org/10.22146/ijc.21386]
[19]
Castanheiro, J.E.; Ramos, A.M.; Fonseca, I.; Vital, J. The acid-catalysed reaction of α-pinene over molybdophosphoric acid immobilised in dense polymeric membranes. Catal. Today, 2003, 82(1–4), 187-193.
[http://dx.doi.org/10.1016/S0920-5861(03)00232-3]
[20]
Ávila, M.C.; Comelli, N.A.; Rodríguez-Castellón, E.; Jiménez-López, A.; Carrizo Flores, R.; Ponzi, E.N.; Ponzi, M.I. Study of solid acid catalysis for the hydration of α-pinene. J. Mol. Catal. Chem., 2010, 322(1–2), 106-112.
[http://dx.doi.org/10.1016/j.molcata.2010.02.028]
[21]
Avila, M.C.; Comelli, N.A.; Firpo, N.H.; Ponzi, E.N.; Ponzi, M.I. Hydration and acetylation of limonene. Supported heteropolyacids. J. Chil. Chem. Soc., 2008, 1, 1460-1462.
[http://dx.doi.org/10.4067/S0717-97072008000100027]
[22]
Thomas, A.F.; Bessiere, Y. Limonene. Nat. Prod. Rep., 1989, 6(4), 291-309.
[http://dx.doi.org/10.1039/NP9890600291]
[23]
Robles-Dutenhefner, P.A.; Da Silva, K.A.; Siddiqui, M.R.H.; Kozhevnikov, I.V.; Gusevskaya, E.V. Hydration and acetoxylation of monoterpenes catalyzed by heteropoly acid. J. Mol. Catal. Chem., 2001, 175(1–2), 33-42.
[http://dx.doi.org/10.1016/S1381-1169(01)00217-5]
[24]
Yadav, M.K.; Patil, M.V.; Jasra, R.V. Acetoxylation and hydration of limonene and alpha-pinene using cation-exchanged zeolite beta. J. Mol. Catal. Chem., 2009, 297(1–2), 101-109.
[http://dx.doi.org/10.1016/j.molcata.2008.09.017]
[25]
Royals, E. Synthesis of terpinyl ethers from D-limonene. J. Am. Chem. Soc., 1949, 71(7), 2568-2571.
[http://dx.doi.org/10.1021/ja01175a092]
[26]
Pito, D.S.; Fonseca, I.M.; Ramos, A.M.; Vital, J.; Castanheiro, J.E. Methoxylation of α-pinene over poly(vinyl alcohol) containing sulfonic acid groups. Chem. Eng. J., 2009, 147(2–3), 302-306.
[http://dx.doi.org/10.1016/j.cej.2008.11.020]
[27]
Pito, D.S.; Matos, I.; Fonseca, I.M.; Ramos, A.M.; Vital, J.; Castanheiro, J.E. Methoxylation of α-pinene over heteropolyacids immobilized in silica. Appl. Catal. A Gen., 2010, 373(1–2), 140-146.
[http://dx.doi.org/10.1016/j.apcata.2009.11.006]
[28]
Matos, I.; Silva, M.F.; Ruiz-Rosas, R.; Vital, J.; Rodríguez-Mirasol, J.; Cordero, T.; Castanheiro, J.E.; Fonseca, I.M. Methoxylation of α-pinene over mesoporous carbons and microporous carbons: A comparative study. Microporous Mesoporous Mater., 2014, 199, 66-73.
[http://dx.doi.org/10.1016/j.micromeso.2014.08.006]
[29]
Catrinescu, C.; Fernandes, C.; Castilho, P.; Breen, C. Selective methoxylation of α-pinene to α-terpinyl methyl ether over Al 3+ion-exchanged cays. Appl. Catal. A Gen., 2015, 489(1), 171-179.
[http://dx.doi.org/10.1016/j.apcata.2014.10.028]
[30]
Castanheiro, M.C.S.P.E. Alkoxylation of terpenes over tungstophosphoric acid immobilised on silica support.Environmentally Benign Catalysts; Springer: Dordrecht, 2013, pp. 153-164.
[31]
Sell, D. P. and C. The Chemistry of Fragrances; Royal Society of Chemistry: London; Royal Society of Chemistry: London, 1999.
[32]
Gscheidmeier, M.; Haberlein, H.; Haberlein, J.; Christian, H. Process for the preparation of camphene by the rearrangement of apinene U.S. Patent, 5,826,202. 1998.
[33]
Wróblewska, A.; Miądlicki, P.; Sreńscek-Nazzal, J.; Sadłowski, M.; Koren, Z.C.; Michalkiewicz, B. Alpha-pinene isomerization over Ti-SBA-15 catalysts obtained by the direct method: The influence of titanium content, temperature, catalyst amount and reaction time. Microporous Mesoporous Mater., 2018, 258, 72-82.
[http://dx.doi.org/10.1016/j.micromeso.2017.09.007]
[34]
Ponzi, E.; Masini, O.; Comelli, N.; Grzona, L.; Carrascull, A.M.P. Isomerization of a -pinen. Influence of the concentration of iron in sulphate circonious oxide. Bull. Chil. Soc. Chem., 1999, 44(3), 271-277.
[35]
Grzona, L.; Comelli, N.; Masini, O.; Ponzi, E.M.P. Catalytic ketonization over oxide catalysts, part IV. Cycloketonization of diethyl hexanodiate. React. Kinet. Catal. Lett., 2000, 70(2), 271-274.
[http://dx.doi.org/10.1023/A:1005643731718]
[36]
Volzone, C.; Masini, O.; Comelli, N.A.; Grzona, L.M.; Ponzi, E.N.; Ponzi, M.I. Production of camphene and limonene from pinene over acid di- and trioctahedral smectite clays. Appl. Catal. A Gen., 2001, 214(2), 213-218.
[http://dx.doi.org/10.1016/S0926-860X(01)00494-X]
[37]
Severino, A.; Esculcas, A.; Rocha, J.; Vital, J.; Lobo, L.S. Effect of extra-lattice aluminium species on the activity, selectivity and stability of acid zeolites in the liquid phase isomerisation of α-pinene. Appl. Catal. A Gen., 1996, 142(2), 255-278.
[http://dx.doi.org/10.1016/0926-860X(96)00091-9]
[38]
Chimal-Valencia, O.; Robau-Sánchez, A.; Collins-Martínez, V.; Aguilar-Elguézabal, A. Ion exchange resins as catalyst for the isomerization of α-pinene to camphene. Bioresour. Technol., 2004, 93(2), 119-123.
[http://dx.doi.org/10.1016/j.biortech.2003.10.016] [PMID: 15051072]
[39]
Comelli, N.A.; Ponzi, E.N.; Ponzi, M.I. α-Pinene isomerization to camphene: effect of thermal treatment on sulfated zirconia. Chem. Eng. J., 2006, 117(2), 93-99.
[http://dx.doi.org/10.1016/j.cej.2005.08.006]
[40]
Li, Y.; Wang, C.; Chen, H.; Hua, W.; Yue, Y.; Gao, Z. Isomerization of α-pinene over porous phosphate heterostructure materials: Effects of porosity and acidity. Catal. Lett., 2009, 131(3-4), 560-565.
[41]
Tzompantzi, F.; Valverde, M.; Pérez-Larios, A.; Rico, J.L.; Mantilla, A.; Gómez, R. Synthesis of camphene by α-pinene isomerization using W2O3-Al2O3 catalysts. Top. Catal., 2010, 53(15-18), 1176-1178.
[42]
Davis, C.B. and J. J. M. Catalytic Isomerization of α-pinene. U.S. Patent 3,824 135 1974.
[43]
Nora, A. Comelli, Liliana M. Grzona, Omar Masini, E. N. P. and M. I. P. Obtention of camphene with H3PW12O40 catalysts supported on TiO2, SiO2 and ZrO2nH2O. J. Chil. Chem. Soc., 2004, 49(3), 245-250.
[44]
Frattini, L.; Isaacs, M.A.; Parlett, C.M.A.; Wilson, K.; Kyriakou, G.; Lee, A.F. Support enhanced α-pinene isomerization over HPW/SBA-15. Appl. Catal. B Environ, 2017, 200, 10-18.
[45]
Atalay, B.; Gündüz, G. Isomerizaton of α-pinene over H3PW12O40 catalysts supported on natural zeolite. Chem. Eng. J., 2011, 168(3), 1311-1318.
[http://dx.doi.org/10.1016/j.cej.2011.02.037]
[46]
Nie, G.; Zou, J.J.; Feng, R.; Zhang, X.; Wang, L. HPW/MCM-41 catalyzed isomerization and dimerization of pure pinene and crude turpentine. Catal. Today, 2014, 234, 271-277.
[http://dx.doi.org/10.1016/j.cattod.2013.12.003]
[47]
Rocha, K.A.S.; Robles-Dutenhefner, P.A.; Kozhevnikov, I.V.; Gusevskaya, E.V. Phosphotungstic heteropoly acid as efficient heterogeneous catalyst for solvent-free isomerization of α-pinene and longifolene. Appl. Catal. A Gen., 2009, 352(1-), 188-192.
[http://dx.doi.org/10.1016/j.apcata.2008.10.005]
[48]
Alsalme, A.; Kozhevnikova, E.F.; Kozhevnikov, I.V. Alpha-pinene isomerisation over heteropoly acid catalysts in the gas-phase. Appl. Catal. A Gen., 2010, 390(1–2), 219-224.
[http://dx.doi.org/10.1016/j.apcata.2010.10.018]
[49]
Newman, A.D.; Lee, A.F.; Wilson, K.; Young, N.A. On the active site in H3PW12O40/SiO2 catalysts for fine chemical synthesis. Catal. Lett., 2005, 102(1–2), 45-50.
[http://dx.doi.org/10.1007/s10562-005-5201-y]
[50]
Newman, A.D.; Brown, D.R.; Siril, P.; Lee, A.F.; Wilson, K. Structural studies of high dispersion H3PW12O40/SiO2 solid acid catalysts. Phys. Chem. Chem. Phys., 2006, 8(24), 2893-2902.
[http://dx.doi.org/10.1039/b603979k] [PMID: 16775645]
[51]
Gündüz, G.; Dimitrova, R.; Yilmaz, S.; Dimitrov, L.; Spassova, M. Isomerisation of α-pinene over beta zeolites synthesised by different methods. J. Mol. Catal. Chem., 2005, 225(2), 253-258.
[http://dx.doi.org/10.1016/j.molcata.2004.09.018]
[52]
Özkan, F.; Gündüz, G.; Akpolat, O.; Beşün, N.; Murzin, D.Y. Isomerization of α-pinene over ion-exchanged natural zeolites. Chem. Eng. J., 2003, 91(2–3), 257-269.
[http://dx.doi.org/10.1016/S1385-8947(02)00162-6]
[53]
Rachwalik, R.; Olejniczak, Z.; Jiao, J.; Huang, J.; Hunger, M.; Sulikowski, B. Isomerization of α-pinene over dealuminated ferrierite-type zeolites. J. Catal., 2007, 252(2), 161-170.
[http://dx.doi.org/10.1016/j.jcat.2007.10.001]
[54]
Mokrzycki, Ł.; Sulikowski, B.; Olejniczak, Z. Properties of desilicated ZSM-5, ZSM-12, MCM-22 and ZSM-12/MCM-41 derivatives in isomerization of α-pinene. Catal. Lett., 2009, 127(3–4), 296-303.
[http://dx.doi.org/10.1007/s10562-008-9678-z]
[55]
Simakova, I.L.; Solkina, Y.S.; Moroz, B.L.; Simakova, O.A.; Reshetnikov, S.I.; Prosvirin, I.P.; Bukhtiyarov, V.I.; Parmon, V.N.; Murzin, D.Y. Selective vapour-phase α-pinene isomerization to camphene over gold-on-alumina catalyst. Appl. Catal. A Gen., 2010, 385(1–2), 136-143.
[http://dx.doi.org/10.1016/j.apcata.2010.07.002]
[56]
Solkina, Y.S.; Reshetnikov, S.I.; Estrada, M.; Simakov, A.; Murzin, D.Y.; Simakova, I.L. Evaluation of gold on alumina catalyst deactivation dynamics during alpha-pinene isomerization. Chem. Eng. J., 2011, 176–177, 42-48.
[http://dx.doi.org/10.1016/j.cej.2011.03.106]
[57]
Meyer, U.; Hoelderich, W.F. Application of basic zeolites in the decomposition reaction of 2- methyl-3-butyn-2-ol and the isomerization of 3-carene. J. Mol. Catal. Chem., 1999, 142(2), 213-222.
[http://dx.doi.org/10.1016/S1381-1169(98)00289-1]
[58]
Sidorenko, A.Y.; Aho, A.; Ganbaatar, J.; Batsuren, D.; Utenkova, D.B.; Sen’kov, G.M.; Wärnå, J.; Murzin, D.Y.; Agabekov, V.E. Catalytic isomerization of α-pinene and 3-carene in the presence of modified layered aluminosilicates. Mol. Catal., 2017, 443, 193-202.
[http://dx.doi.org/10.1016/j.mcat.2017.10.014]
[59]
Eggersdorfer, M. Ullmann’s Encyclopedia of Industrial Chemistry, Terpenes.Ullmann’s encyclopedia of industrial chemistry, Terpenes; Wiley-VCH: Weinheim, 2012, pp. 419-460.
[60]
Makarouni, D.; Lycourghiotis, S.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Dourtoglou, V. Transformation of limonene into p-cymene over acid activated natural mordenite utilizing atmospheric oxygen as a green oxidant: a novel mechanism. Appl. Catal. B, 2018, 224, 740-750.
[http://dx.doi.org/10.1016/j.apcatb.2017.11.006]
[61]
Lycourghiotis, S.; Makarouni, D.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Dourtoglou, V. Activation of natural mordenite by various acids: characterization and evaluation in the transformation of limonene into p-cymene. Mol. Catal., 2018, 450, 95-103.
[http://dx.doi.org/10.1016/j.mcat.2018.03.013]
[62]
Ma, X.; Zhou, D.; Chu, X.; Li, D.; Wang, J.; Song, W.; Xia, Q. Highly selective isomerization of biomass β-pinene over hierarchically acidic MCM-22 catalyst. Microporous Mesoporous Mater., 2017, 237, 180-188.
[http://dx.doi.org/10.1016/j.micromeso.2016.09.040]
[63]
Arata, K.K.T. Isomerization of alpha-pinene oxide over solid acids and bases. Chem. Lett., 1979, 8(8), 1017-1018.
[http://dx.doi.org/10.1246/cl.1979.1017]
[64]
Kunkeler, P.J.; Van Der Waal, J.C.; Bremmer, J.; Zuurdeeg, B.J.; Downing, R.S.; Van Bekkum, H. Application of zeolite titanium beta in the rearrangement of α -pinene oxide to campholenic aldehyde. Catal. Lett., 1998, 53, 135-138.
[http://dx.doi.org/10.1023/A:1019049704709]
[65]
Gervasini, A.; Messi, C.; Carniti, P.; Ponti, A.; Ravasio, N.; Zaccheria, F. Insight into the properties of fe oxide present in high concentrations on mesoporous silica. J. Catal., 2009, 262(2), 224-234.
[http://dx.doi.org/10.1016/j.jcat.2008.12.016]
[66]
Ravindra, D.B.; Nie, Y.T.; Jaenicke, S.; Chuah, G.K. Isomerisation of alpha-pinene oxide over B2O3/SiO2 and Al-MSU catalysts. Catal. Today, 2004, 96, 147-153.
[http://dx.doi.org/10.1016/j.cattod.2004.06.117]
[67]
Neri, G.; Rizzo, G.; Crisafulli, C.; De Luca, L.; Donato, A.; Musolino, M.G.; Pietropaolo, R. Isomerization of α-pinene oxide to campholenic aldehyde over Lewis acids supported on silica and titania nanoparticles. Appl. Catal. A Gen., 2005, 295(2), 116-125.
[http://dx.doi.org/10.1016/j.apcata.2005.07.027]
[68]
Coelho, J.V.; De Meireles, A.L.P.; Kelly, A.; Rocha, S.; Pereira, M.C.; Oliveira, L.C.A.; Gusevskaya, E.V. Isomerization of alpha-pinene oxide catalyzed by iron-modified mesoporous silicates. Appl. Catal. A Gen., 2012, 443–444, 125-132.
[http://dx.doi.org/10.1016/j.apcata.2012.07.030]
[69]
Timofeeva, M.N.; Panchenko, V.N.; Hasan, Z.; Abedin, N.; Mel, M.S.; Abel, A.A.; Matrosova, M.M.; Volcho, K.P.; Hwa, S. Effect of iron content on selectivity in isomerization of alpha-pinene oxide to campholenic aldehyde over Fe-MMM-2 and Fe-VSB-5. Appl. Catal. A Gen., 2014, 469, 427-433.
[http://dx.doi.org/10.1016/j.apcata.2013.10.016]
[70]
Ravasio, N.; Zaccheria, F.; Gervasini, A.; Messi, C. A new Fe based, heterogeneous Lewis acid: selective isomerization of a -pinene oxide. Catal. Commun., 2008, 9, 1125-1127.
[http://dx.doi.org/10.1016/j.catcom.2007.10.019]
[71]
Wilson, K. Novel heterogeneous zinc triflate catalysts for the rearrangement of α -pinene oxide. Catal. Lett., 1999, 61, 51-55.
[http://dx.doi.org/10.1023/A:1019000317198]
[72]
Timofeeva, M.N.; Panchenko, V.N.; Abel, A.A.; Abedin, N.; Ahmed, I.; Ayupov, A.B.; Volcho, K.P.; Hwa, S. Rearrangement of a-pinene oxide to campholenic aldehyde over the trimesate metal – organic frameworks MIL-100, MIL-110 and MIL-96. J. Catal., 2014, 311, 114-120.
[http://dx.doi.org/10.1016/j.jcat.2013.11.006]
[73]
Alaerts, L.; Séguin, E.; Poelman, H.; Thibault-Starzyk, F.; Jacobs, P.A.; De Vos, D.E. Probing the Lewis acidity and catalytic activity of the metal-organic framework [Cu3(btc)2] (BTC=benzene-1,3,5-tricarboxylate). Chemistry, 2006, 12(28), 7353-7363.
[http://dx.doi.org/10.1002/chem.200600220] [PMID: 16881030]
[74]
Valente, A.A.; Bruno, M.; Gomes, A.C.; Coelho, A.C.; Brand, P.; Pillinger, M.; Gonçalves, I.S. Catalytic isomerisation of alpha-pinene oxide in the presence of ETS-10 supported ferrocenium ions. J. Organomet. Chem., 2015, 791, 66-71.
[http://dx.doi.org/10.1016/j.jorganchem.2015.05.026]
[75]
Sundaravel, B.; Mohan, C.; Vinodh, R.; Seog, W. Synthesis of campholenic aldehyde from α-pinene using bi-functional PrAlPO-5 molecular sieves. J. Taiwan Inst. Chem. Eng., 2016, 63, 157-165.
[http://dx.doi.org/10.1016/j.jtice.2016.02.028]
[76]
Suh, Y.W.; Kim, N.K.; Ahn, W.S.; Rhee, H.K. One-pot synthesis of campholenic aldehyde from α-pinene over Ti-HMS catalyst II: Effects of reaction conditions. J. Mol. Catal. Chem., 2003, 198(1–2), 309-316.
[http://dx.doi.org/10.1016/S1381-1169(02)00733-1]
[77]
Shcherban, N.D.; Yu, R.; Mäki-arvela, P.; Sergiienko, S.A.; Bezverkhyy, I.; Eränen, K.; Yu, D. Isomerization of α -pinene oxide over ZSM-5 based micro-mesoporous materials. Appl. Catal. A Gen., 2018, 560, 236-247.
[http://dx.doi.org/10.1016/j.apcata.2018.05.007]
[78]
Costa, V.V.; Kelly, A.; Rocha, S.; De Sousa, L.F.; Robles-dutenhefner, P.A.; Gusevskaya, E.V. Isomerization of alpha-pinene oxide over cerium and tin catalysts: Selective synthesis of trans -carveol and trans -sobrerol. J. Mol. Catal. Chem., 2011, 345, 69-74.
[http://dx.doi.org/10.1016/j.molcata.2011.05.020]
[79]
Gou, M.L.; Wang, R.; Qiao, Q.; Yang, X. Suitable acidity of ZSM-5 for the isomerization of styrene oxide to phenylacetaldehyde. Catal. Commun., 2014, 56, 143-147.
[http://dx.doi.org/10.1016/j.catcom.2014.07.024]
[80]
Fei, X.; Jianfeng, Z.; Xiaoxia, Y. Isomerization of styrene oxide to phenyl acetaldehyde over different modified beta zeolites. Catal. Lett., 2017, 147(6), 1523-1532.
[http://dx.doi.org/10.1007/s10562-017-2004-x]
[81]
Salla, I.; Bergadà, O.; Salagre, P.; Cesteros, Y.; Medina, F. Isomerisation of styrene oxide to phenylacetaldehyde by fluorinated mordenites using microwaves. J. Catal., 2005, 232, 239-245.
[http://dx.doi.org/10.1016/j.jcat.2004.10.011]
[82]
Costa, V.V.; Da Silva Rocha, K.A.; Kozhevnikov, I.V.; Gusevskaya, E.V. Isomerization of styrene oxide to phenylacetaldehyde over supported phosphotungstic heteropoly acid. Appl. Catal. A Gen., 2010, 383(1–2), 217-220.
[http://dx.doi.org/10.1016/j.apcata.2010.06.005]
[83]
Kochkar, H.; Clacens, J.; Figueras, F. Isomerization of styrene epoxide on basic solids. Catal. Lett., 2002, 78, 91-94.
[http://dx.doi.org/10.1023/A:1014914207019]
[84]
Yadav, G.D.; Gawade, B.A. Novelties of combustion synthesized and functionalized solid superacid catalysts in selective isomerization of styrene oxide to 2-phenyl acetaldehyde. Catal. Today, 2013, 207, 145-152.
[http://dx.doi.org/10.1016/j.cattod.2012.05.002]
[85]
Yadav, G.D.; Mehta, P.H. Heterogeneous Catalysis in esterification reactions: preparation of phenethyl acetate and cyclohexyl acetate by using a variety of solid acidic catalysts. Ind. Eng. Chem. Res., 1994, 33(9), 2198-2208.
[http://dx.doi.org/10.1021/ie00033a025]
[86]
Carey, F.A.; Sundberg, R.J. Advanced Organic Chemisty Part B:Reactions and Synthesis; Springer: US, 1990.
[87]
Yadav, G.D.; Mujeebur Rahuman, M.S.M. Synthesis of fragrance and flavour grade esters: activities of different ion exchange resins and kinetic studies. Clean Technol. Environ. Policy, 2003, 5(2), 128-135.
[http://dx.doi.org/10.1007/s10098-003-0196-9]
[88]
Guillén, M.; Benaiges, M.D.; Valero, F. Improved ethyl butyrate synthesis catalyzed by an immobilized recombinant rhizopus oryzae lipase: A comprehensive statistical study by production, reaction rate and yield analysis. J. Mol. Catal., B Enzym., 2016, 133, S371-S376.
[http://dx.doi.org/10.1016/j.molcatb.2017.02.010]
[89]
Onoja, E.; Chandren, S.; Razak, F.I.A.; Wahab, R.A. Enzymatic synthesis of butyl butyrate by candida rugosa lipase supported on magnetized-nanosilica from oil palm leaves: Process optimization, kinetic and thermodynamic study. J. Taiwan Inst. Chem. Eng., 2018, 91, 105-118.
[http://dx.doi.org/10.1016/j.jtice.2018.05.049]
[90]
Melo, A.D.Q.; Silva, F.F.M.; Dos Santos, J.C.S.; Fernández-Lafuente, R.; Lemos, T.L.G.; Dias Filho, F.A. Synthesis of benzyl acetate catalyzed by lipase immobilized in nontoxic chitosan-polyphosphate beads. Molecules, 2017, 22(12), 1-18.
[http://dx.doi.org/10.3390/molecules22122165] [PMID: 29215558]
[91]
Garlapati, V.K.; Banerjee, R. Solvent-free synthesis of flavour esters through immobilized lipase mediated transesterification. Enzyme Res., 2013. 2013367410
[http://dx.doi.org/10.1155/2013/367410] [PMID: 23819043]
[92]
Dange, P.N.; Kulkarni, A.V.; Rathod, V.K. Ultrasound assisted synthesis of methyl butyrate using heterogeneous catalyst. Ultrason. Sonochem., 2015, 26, 257-264.
[http://dx.doi.org/10.1016/j.ultsonch.2015.02.014] [PMID: 25825149]
[93]
Zhang, X.; Ouyang, K.; Liang, J.; Chen, K.; Tang, X.; Han, X. Optimization of process variables in the synthesis of butyl butyrate using amino acid-functionalized heteropolyacids as catalysts. Green Process. Synth., 2016, 5(3), 321-329.
[http://dx.doi.org/10.1515/gps-2015-0131]
[94]
Yadav, G.D. Synergism of clay and heteropoly acids as nano-catalysts for the development of green processes with potential industrial applications. Catal. Surv. from Asia, 2005, 9(2), 117-137.
[95]
Alimelzci, A.; Halit, B.L.H. Synthesis of isobutyl propionate using amberlyst 15 is as a catalyst. Proceeding Eur. Congr. Chem. Eng. EccE-6, Copenhagen, 16-20 September 2007.
[96]
Yang, X.; Dong, K.; Tan, X. Study on catalytic synthesis of isobutyl propionate using environmentally friendly catalys. 2012 Int. Conf. Biomed. Eng. Biotechnol. iCBEB 2012.2012, pp. 543-546.
[http://dx.doi.org/10.1109/iCBEB.2012.375]
[97]
Prasad, N.N.P. Synthesis of Isoamyl acetate usin nax and nay zeolites as catalysts. React. Kinet. Catal. Lett., 1997, 61(1), 155-160.
[http://dx.doi.org/10.1007/BF02477528]
[98]
Fang, M.; Chen, K.; Zhang, J.; Yan, W.; Tang, X.; Han, X. Synthesis of isoamyl acetate using polyoxometalate-based sulfonated ionic liquid as catalyst. Indian J. Chem A., 2014, 53, 1485-1492.
[99]
Pang, X.Y.; Lv, P.; Yang, Y.S.; Ren, H.L.; Gong, F. Estrification of acetic acid with isoamyl alcohol over expandable graphite catalyst. E-J. Chem., 2008, 5(1), 149-154.
[http://dx.doi.org/10.1155/2008/941953]
[100]
Wolfson, A.; Saidkarimov, D.; Dlugy, C.; Tavor, D. Green synthesis of isoamyl acetate in glycerol triacetate. Green Chem. Lett. Rev., 2009, 2(2), 107-110.
[http://dx.doi.org/10.1080/17518250903170850]
[101]
Xu, M.; Yuan, H.; Liu, W.; Wang, J.; Yang, F.Z. Catalytic synthesis of isoamyl acetate catalyzed by (NH4)6 [MnMo9O32 8H2O supported activated carbon with waugh structure. Adv. Mat. Res., 2013, 781-784, 190-193.
[102]
Liu, S.H.; Wang, L.X.; Guo, L.L.; Yuan, H.; Yang, F.Z. Catalytic synthesis of benzyl acetate by anion exchange resin supported Waugh-type (NH4)6 [MnMo9O32]•8H2O. Adv. Mat. Res., 2013, 750–752, 1227-1230.
[103]
Amarnath, C.A.; Palaniappan, S.; Saravanan, C. Preparation of benzyl acetate using polyaniline salts as catalysts - part II. Polym. Adv. Technol., 2004, 15(3), 118-121.
[http://dx.doi.org/10.1002/pat.414]
[104]
Benhmid, A.; Narayana, K.V.; Martin, A.; Lücke, B.; Pohl, M-M. Highly active and selective Pd–Cu–TiO2 catalyst for the direct synthesis of benzyl acetate by gas phase acetoxylation of toluene. Chem. Lett., 2004, 33(10), 1238-1239.
[http://dx.doi.org/10.1246/cl.2004.1238]
[105]
Yadav, G.D.; Sharma, M.M. Kinetics of reaction of benzyl chloride with sodium acetate/benzoate: Phase transfer catalysis in solid-liquid system. Ind. Eng. Chem. Process Des. Dev., 1981, 20(2), 385-390.
[106]
D’Souza, J.; Nagaraju, N. Esterification of salicylic acid with methanol/dimethyl carbonate over anion-modified metal oxides. Indian J. Chem. Technol., 2007, 14(3), 292-300.
[107]
Zhang, M.; Zhu, W.S.; Li, H.M.; Shi, H.; Yan, Y.S.; Wang, Z.G. Esterification of salicylic acid using ce4+modified cation-exchange resin as catalyst. J. Chil. Chem. Soc., 2012, 57(4), 1477-1481.
[http://dx.doi.org/10.4067/S0717-97072012000400029]
[108]
Ramishvili, T.; Tsitsishvili, V.; Chedia, R.; Sanaia, E.; Gabunia, V.; Kokiashvili, N. Preparation of ultradispersed crystallites of modified natural clinoptilolite with the use of ultrasound and its application as a catalyst in the synthesis of methyl salicylate. Am. J. Nano Res. App., 2017, 5, 26-32.
[109]
Molleti, J.; Yadav, G.D. Green synthesis of methyl salicylate using novel sulfated iron oxide–zirconia catalyst. Clean Technol. Environ. Policy, 2019, 21(3), 533-545.
[110]
Yadav, G.D.; Goel, P.K. Selective synthesis of perfumery grade cyclohexyl esters from cyclohexene and carboxylic acids over ion exchange resins: an example of 100% atom economy. Green Chem., 2000, 2(2), 71-78.
[http://dx.doi.org/10.1039/a908035j]
[111]
Yadav, G.D.; Mehta, P.H. Solid acid catalyzed esterification of cyclohexanol with acetic acid. Indian Chem. Eng., 1993, 35(4), 179-185.
[112]
Yadav, G.D.; Rahuman, M.S.M.M. Cation-exchange resin-catalysed acylations and esterifications in fine abstract. Org. Process Res. Dev., 2002, 2, 706-713.
[http://dx.doi.org/10.1021/op0255229]
[113]
Yadav, G.D.; Krishnan, M.S. An ecofriendly catalytic route for the preparation of perfumery grade methyl anthranilate from anthranilic acid and methanol. Org. Process Res. Dev., 1998, 2(2), 86-95.
[114]
Yadav, G.D.; Rahuman, M.S.M.M. Activities of clays and ion exchange resins in the synthesis of phthalate esters. Clean Technol. Environ. Policy, 2004, 6(2), 114-119.
[115]
Yadav, G.D.; Mujeebur Rahuman, M.S.M. Synthesis of fragrance and flavour grade esters: activities of different ion exchange resins and kinetic studies. Clean Technol. Environ. Policy, 2003, 5(2), 128-135.
[http://dx.doi.org/10.1007/s10098-003-0196-9]
[116]
Yadav, G.D.; Pujari, A.A. Kinetics of acetalization of perfumery aldehydes with alkanols over solid acid catalysts. Can. J. Chem. Eng., 1999, 77(3), 489-496.
[117]
Yadav, G.D.; Kadam, A.A. Selective engineering using Mg-Al calcined hydrotalcite and microwave irradiation in mono-transesterification of diethyl malonate with cyclohexanol. Chem. Eng. J., 2013, 230, 547-557.
[118]
Yadav, G.D.; Murkute, A.D. Kinetics of synthesis of perfumery grade p-tert-butylcyclohexyl acetate over ion exchange resin. Int. J. Chem. React. Eng., 2003, 1, 1-11.
[119]
Reddy, C.R.; Vijayakumar, B.; Iyengar, P.; Nagendrappa, G.; Jai Prakash, B.S. Synthesis of phenylacetates using aluminium-exchanged montmorillonite clay catalyst. J. Mol. Catal. Chem., 2004, 223(1–2), 117-122.
[http://dx.doi.org/10.1016/j.molcata.2003.11.039]
[120]
Bhaskar, M.; Surekha, M.; Suma, N. Esterification of phenyl acetic acid with p-cresol using metal cation exchanged montmorillonite nanoclay catalysts. R. Soc. Open Sci., 2018, 5(2) 171378
[http://dx.doi.org/10.1098/rsos.171378] [PMID: 29515855]
[121]
Yadav, G.D.; Lande, S.V. Ion-exchange resin catalysis in benign synthesis of perfumery grade p-cresylphenyl acetate from p-cresol and phenylacetic acid. Org. Process Res. Dev., 2005, 9(3), 288-293.
[http://dx.doi.org/10.1021/op0500133]
[122]
Chandra Shekara, B.M.; Ravindra Reddy, C.; Madhuranthakam, C.R.; Jai Prakash, B.S.; Bhat, Y.S. Kinetics of esterification of phenylacetic acid with p-cresol over H-beta-zeolite catalyst under microwave irradiation. Ind. Eng. Chem. Res., 2011, 50(7), 3829-3835.
[http://dx.doi.org/10.1021/ie101134k]
[123]
Jin, T.S.; Ma, Y.R.; Li, Y.; Sun, X.; Li, T.S. An efficient and convenient procedure for preparation of mandelates catalysed by TiO2/SO42- solid superacid. Synth. Commun., 2001, 31(13), 2051-2054.
[http://dx.doi.org/10.1081/SCC-100104424]
[124]
Yadav, G.D.; Bhagat, R.D. Clean esterification of mandelic acid over Cs2.5H0.5PW12O40 supported on acid treated clay. Clean Technol. Environ. Policy, 2005, 7(4), 245-251.
[http://dx.doi.org/10.1007/s10098-005-0012-9]
[125]
Malkar, R.S.; Yadav, G.D. Synthesis of cinnamyl benzoate over novel heteropoly acid encapsulated ZIF-8. Appl. Catal. A Gen., 2018, 560, 54-65.
[http://dx.doi.org/10.1016/j.apcata.2018.04.038]
[126]
Malkar, R.S.; Yadav, G.D. Superior activity and selectivity of multifunctional catalyst Pd-DTP@ZIF-8 in one pot synthesis of 3-phenyl propyl benzoate. Inorg. Chim. Acta, 2019, 490, 282-293.
[http://dx.doi.org/10.1016/j.ica.2019.03.012]
[127]
Bhanawase, S.L.; Yadav, G.D. Novel alkali-promoted hydrotalcite for selective synthesis of 2-methoxy phenyl benzoate from guaiacol and benzoic anhydride. Clean Technol. Environ. Policy, 2017, 19(4), 1169-1180.
[128]
Horchani, H.; Ben Salem, N.; Zarai, Z.; Sayari, A.; Gargouri, Y.; Chaâbouni, M. Enzymatic Synthesis of eugenol benzoate by immobilized Staphylococcus aureus lipase: Optimization using response surface methodology and determination of antioxidant activity. Bioresour. Technol., 2010, 101(8), 2809-2817.
[129]
Manan, F.M.A.; Attan, N.; Zakaria, Z.; Keyon, A.S.A.; Wahab, R.A. Enzymatic esterification of eugenol and benzoic acid by a novel chitosan-chitin nanowhiskers supported Rhizomucor miehei lipase: Process optimization and kinetic assessments. Enzyme Microb. Technol., 2018, 108, 42-52.
[130]
Yadav, G.D.; Yadav, A.R. Insight into esterification of eugenol to eugenol benzoate using a solid super acidic modified zirconia catalyst UDCaT-5. Chem. Eng. J., 2012, 192, 146-155.
[131]
Tiwari, M.S.; Yadav, G.D. Kinetics of Friedel-Crafts benzoylation of veratrole with benzoic anhydride using Cs2.5H0.5PW12O40/K-10 solid acid catalyst. Chem. Eng. J., 2015, 266, 64-73.
[132]
Yadav, G.D.; George, G. Single step synthesis of 4-hydroxybenzophenone via esterification and Fries rearrangement: Novelty of cesium substituted heteropoly acid supported on clay. J. Mol. Catal. A. Chem., 2008, 292(1–2), 54-61.
[133]
Chaube, V.D.; Moreau, P.; Finiels, A.; Ramaswamy, A.V.; Singh, A.P. A Novel single step selective synthesis of 4-hydroxybenzophenone (4-HBP) using zeolite H-beta. Catal. Lett., 2002, 79(1), 89-94.
[134]
Yadav, G.D.; Satoskar, D.V. Kinetics of epoxidation of alkyl esters of undecylenic acid: Comparison of traditional routes vs. Ishii-Venturello chemistry. J. Am. Oil Chem. Soc., 1997, 74(4), 397-407.
[135]
Taarning, E.; Nielsen, I.S.; Egeblad, K.; Madsen, R.; Christensen, C.H. Chemicals from renewables: Aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts. ChemSusChem, 2008, 1(1-2), 75-78.
[http://dx.doi.org/10.1002/cssc.200700033] [PMID: 18605666]
[136]
Signoretto, M.; Menegazzo, F.; Contessotto, L.; Pinna, F.; Manzoli, M.; Boccuzzi, F. Au/ZrO2: An efficient and reusable catalyst for the oxidative esterification of renewable furfural. Appl. Catal. B, 2013, 129, 287-293.
[http://dx.doi.org/10.1016/j.apcatb.2012.09.035]
[137]
Menegazzo, F.; Signoretto, M.; Marchese, D.; Pinna, F.; Manzoli, M. Structure-activity relationships of Au/ZrO2 catalysts for 5-hydroxymethylfurfural oxidative esterification: Effects of zirconia sulphation on gold dispersion, position and shape. J. Catal., 2015, 326, 1-8.
[http://dx.doi.org/10.1016/j.jcat.2015.03.006]
[138]
Manzoli, M.; Menegazzo, F.; Signoretto, M.; Cruciani, G.; Pinna, F. Effects of synthetic parameters on the catalytic performance of Au/CeO2 for furfural oxidative esterification. J. Catal., 2015, 330, 465-473.
[http://dx.doi.org/10.1016/j.jcat.2015.07.030]
[139]
Menegazzo, F.; Signoretto, M.; Pinna, F.; Manzoli, M.; Aina, V.; Cerrato, G.; Boccuzzi, F. Oxidative esterification of renewable furfural on gold-based catalysts: Which is the best support? J. Catal., 2014, 309, 241-247.
[http://dx.doi.org/10.1016/j.jcat.2013.10.005]
[140]
Ampelli, C.; Centi, G.; Genovese, C.; Papanikolaou, G.; Pizzi, R.; Perathoner, S.; van Putten, R.J.; Schouten, K.J.P.; Gluhoi, A.C.; van der Waal, J.C. A comparative catalyst evaluation for the selective oxidative esterification of furfural. Top. Catal., 2016, 59(17–18), 1659-1667.
[http://dx.doi.org/10.1007/s11244-016-0675-y]
[141]
Radhakrishnan, R.; Kannan, K.; Kumaravel, S.; Thiripuranthagan, S. Oxidative esterification of furfural over Au-Pd/HAP-T and Au-Ag/HAP-T bimetallic catalysts supported on mesoporous hydroxyapatite nanorods. RSC Advances, 2016, 6(51), 45907-45922.
[http://dx.doi.org/10.1039/C6RA07614A]
[142]
Huo, N.; Ma, H.; Wang, X.; Wang, T.; Wang, G.; Wang, T.; Hou, L.; Gao, J.; Xu, J. High-efficiency oxidative esterification of furfural to methylfuroate with a non-precious metal Co-N-C/MgO catalyst. Cuihua Xuebao. Chin. J. Catal., 2017, 38(7), 1148-1154.
[http://dx.doi.org/10.1016/S1872-2067(17)62841-9]
[143]
Radhakrishnan, R.; Thiripuranthagan, S.; Devarajan, A.; Kumaravel, S.; Erusappan, E.; Kannan, K. Oxidative esterification of furfural by au nanoparticles supported CMK-3 mesoporous catalysts. Appl. Catal. A Gen., 2017, 545, 33-43.
[http://dx.doi.org/10.1016/j.apcata.2017.07.031]
[144]
Menegazzo, F.; Fantinel, T.; Signoretto, M.; Pinna, F.; Manzoli, M. On the process for furfural and HMF oxidative esterification over Au/ZrO2. J. Catal., 2014, 319, 61-70.
[http://dx.doi.org/10.1016/j.jcat.2014.07.017]
[145]
Sharma, P. Cinnamic acid derivatives: a new chapter of various pharmacological activities. J. Chem. Pharm. Res., 2011, 3(2), 403-423.
[146]
Yufeng, C. An overview on synthetic methods of alkyl cinnamates. Eur. Chem. Bull., 2013, 2(2), 76-77.
[147]
Buonerba, A.; Noschese, A.; Grassi, A.A. Highly efficient direct aerobic oxidative esterification of cinnamyl alcohol with alkyl alcohols catalysed by gold nanoparticles incarcerated in a nanoporous polymer matrix: A tool for investigating the role of the polymer host. Chem- A Eur. J., 2014, 20(18), 5478-5486.
[http://dx.doi.org/10.1002/chem.201303880] [PMID: 24644103]
[148]
Franck, H.G.; Stadelhofer, W.J. Industrial Aromatic Chemistry; Springer Berlin Heidelberg, 1988.
[http://dx.doi.org/10.1007/978-3-642-73432-8]
[149]
Nitta, M.; Katsumi, Y.; Kazuo, A. The alkylation of m-cresol with with propylene by supported metal Sulfates. Bull. Chem. Soc. Jpn., 1974, 47, 2897-2898.
[http://dx.doi.org/10.1246/bcsj.47.2897]
[150]
Nitta, M.; Aomura, K.; Yamaguchi, K. Alkylation of phenols. II. The selective formation of thymol from m-cresol and propylene with a γ-alumina catalyst. Bull. Chem. Soc. Jpn., 1974, 2630-2364.
[151]
Biederman, W.; Koller, H.; Wedemeyer, K. Process for preparation of thymol. U.S. Patent 4,086,283, 1978.
[152]
Wimmer, P.; Buysch, H.J.; Puppe, L. Process for the preparation of thymol. U.S. Patent 5,030,770, 1991.
[153]
Velu, S.; Sivasanker, S. Alkylation of m-cresol with methanol and 2-propanol over calcined magnesium-aluminium hydrotalcites. Res. Chem. Intermed., 1998, 24(6), 657-666.
[http://dx.doi.org/10.1163/156856798X00555]
[154]
Grabowska, H.; Mita, W.; Trawczyński, J.; Wrzyszcz, J.; Zawadzki, M. A Method for obtaining thymol by gas phase catalytic alkylation of m-cresol over zinc aluminate spinel. Appl. Catal. A Gen., 2001, 220(1–2), 207-213.
[http://dx.doi.org/10.1016/S0926-860X(01)00722-0]
[155]
Umamaheswari, V.; Palanichamy, M.; Arabindoo, B.; Murugesan, V. Regioselective t-butylation of m-cresol over mesoporous Al-MCM-41 molecular sieves. Indian J. Chem. Sect. A, 2000, 39(12), 1241-1247.
[156]
Yadav, G.D.; Pathre, G.S. Novel mesoporous solid superacidic catalysts: activity and selectivity in the synthesis of thymol by isopropylation of m-cresol with 2-propanol over UDCaT-4, -5, and -6. J. Phys. Chem. A, 2005, 109(48), 11080-11088.
[http://dx.doi.org/10.1021/jp052335e] [PMID: 16331954]
[157]
Teissedre, P.L.; Waterhouse, A.L. Inhibition of oxidation of human low-density lipoproteins by phenolic substances in different essential oils varieties. J. Agric. Food Chem., 2000, 48(9), 3801-3805.
[http://dx.doi.org/10.1021/jf990921x] [PMID: 10995274]
[158]
Liu, S.; Liu, X.; Wang, C. Isopropylation of m-cresol catalyzed by recoverable acidic ionic liquids. Ind. Eng. Chem. Res., 2013, 52(47), 16719-16723.
[http://dx.doi.org/10.1021/ie402394p]
[159]
Amandi, R.; Hyde, J.R.; Ross, S.K.; Lotz, T.J.; Poliakoff, M. Continuous reactions in supercritical fluids; a cleaner, more selective synthesis of thymol in supercritical CO2. Green Chem., 2005, 7(5), 288-293.
[http://dx.doi.org/10.1039/b418983c]
[160]
Malkar, R.S.; Yadav, G.D. Selectivity engineering in synthesis of thymol using sulfated ZrO2-TiO2. Ind. Eng. Chem. Res., 2017, 56(30), 8437-8447.
[http://dx.doi.org/10.1021/acs.iecr.7b01454]
[161]
Grabowska, H.; Syper, L.; Zawadzki, M. Vapour phase alkylation of ortho-, meta- and para-cresols with isopropyl alcohol in the presence of sol-gel prepared alumina catalyst. Appl. Catal. A Gen., 2004, 277(1–2), 91-97.
[http://dx.doi.org/10.1016/j.apcata.2004.08.034]
[162]
Selvaraj, M.; Kawi, S. Comparison of mesoporous and microporous solid acid catalysts for highly selective synthesis of thymol by vapor phase isopropylation of m-cresol. Microporous Mesoporous Mater., 2008, 109(1–3), 458-469.
[http://dx.doi.org/10.1016/j.micromeso.2007.05.053]
[163]
Yadav, G.D.; Kamble, S.B. Synthesis of carvacrol by Friedel-Crafts alkylation of o-cresol with isopropanol using superacidic catalyst UDCaT-5. J. Chem. Technol. Biotechnol., 2009, 84(10), 1499-1508.
[http://dx.doi.org/10.1002/jctb.2210]
[164]
Gozzi, C.; Convard, A.; Husset, M. Heterogeneous acid-catalysed isomerization of carvone to carvacrol. React. Kinet. Catal. Lett., 2009, 97(2), 301-306.
[http://dx.doi.org/10.1007/s11144-009-0030-4]
[165]
Baldev, S.; Jyoti, P.; Parveen, S.; Suresh, C.; Pinki, K.; Sudip, M. Role of acidity for the production of carvacrol from carvone over sulphated zircona. Indian J. Chem. Technol., 2011, 18, 21-28.
[166]
Han, X.; Armstrong, D.W. Using geminal dicationic ionic liquids as solvents for high-temperature organic reactions. Org. Lett., 2005, 7(19), 4205-4208.
[http://dx.doi.org/10.1021/ol051637w] [PMID: 16146388]
[167]
Sang Sung Lee, S.C.L. Korean J. Chem. Eng., 2002, 19(3), 406-410.
[http://dx.doi.org/10.1007/BF02697147]
[168]
Yadav, G.D.; Bisht, P.M. Intensification and selectivities in complex multiphase reactions: insight into the selectivity of liquid−liquid phase-transfer-catalyzed O-alkylation of p -methoxyphenol with allyl bromide. Ind. Eng. Chem. Res., 2005, 44(5), 1273-1283.
[http://dx.doi.org/10.1021/ie049710u]
[169]
Yadav, G.D.; Bisht, P.M. Selectivity engineering in multiphase transfer catalysis in the preparation of aromatic ethers. J. Mol. Catal. A. Chem., 2004, 223(1–2), 93-100.
[170]
Yadav, G.D.; Tekale, S.P. Selective O -alkylation of 2-naphthol using phosphonium-based ionic liquid as the phase transfer catalyst. Org. Process Res. Dev., 2010, 14(3), 722-727.
[171]
Yadav, G.D. Insight into green phase transfer catalysis. Top. Catal., 2004, 29(3), 145-161.
[172]
Chakrabarti, A.; Sharma, M.M. Cyclohexanol from cyclohexene via cyclohexyl acetate: Catalysis by ion-exchange resin and acid-treated clay. React. Polym., 1992, 18(2), 107-115.
[http://dx.doi.org/10.1016/0923-1137(92)90248-Z]
[173]
Yadav, G.D.; Kumar, P. Alkylation of phenol with cyclohexene over solid acids: insight in selectivity of o- versus c-alkylation. Appl. Catal. A Gen., 2005, 286(1), 61-70.
[http://dx.doi.org/10.1016/j.apcata.2005.03.001]
[174]
Yadav, G.D.; Pathre, G.S. Chemoselective catalysis by sulphated zirconia in O-alkylation of guaiacol with cyclohexene. J. Mol. Catal. Chem., 2006, 243(1), 77-84.
[http://dx.doi.org/10.1016/j.molcata.2005.08.024]
[175]
Yadav, G.D.; More, S.R. Green alkylation of anisole with cyclohexene over 20% cesium modified heteropoly acid on K-10 acidic montmorillonite clay. Appl. Clay Sci., 2011, 53(2), 254-262.
[http://dx.doi.org/10.1016/j.clay.2011.03.005]
[176]
Yadav, G.D.; Ramesh, P. Selectivity engineering in the O-versus C-alkylation of p-cresol with cyclohexene over sulfated Zirconia. Can. J. Chem. Eng., 2000, 78(5), 917-927.
[177]
Bokade, V.V. Effect of etherifying species on O-alkylation of phenethyl alcohol to pefumery alkyl ethers. Chem. Eng. Res. Des., 2001, 79(6), 625-630.
[http://dx.doi.org/10.1205/026387601316971299]
[178]
Yadav, G.D.; Bokade, V.V. Novelties of heteropoly acid supported on clay: Etherification of phenethyl alcohol with alkanols. Appl. Catal. A Gen., 1996, 147(2), 299-323.
[179]
Yadav, G.D.; Salunke, J.Y. Selectivity engineering of solid base catalyzed O-methylation of 2-naphthol with dimethyl carbonate to 2-Methoxynaphthalene. Catal. Today, 2013, 207, 180-190.
[180]
Hajek, J.; Vandichel, M.; Van De Voorde, B.; Bueken, B.; De Vos, D.; Waroquier, M.; Van Speybroeck, V. Mechanistic studies of aldol condensations in UiO-66 and UiO-66-NH2 metal organic frameworks. J. Catal., 2015, 331, 1-12.
[http://dx.doi.org/10.1016/j.jcat.2015.08.015]
[181]
Vermoortele, F.; Ameloot, R.; Vimont, A.; Serre, C.; De Vos, D. An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation. Chem. Commun. (Camb.), 2011, 47(5), 1521-1523.
[http://dx.doi.org/10.1039/C0CC03038D] [PMID: 21103462]
[182]
Vrbková, E.; Tišler, Z.; Vyskočilová, E.; Kadlec, D.; Červený, L. Aldol condensation of benzaldehyde and heptanal: A comparative study of laboratory and industrially prepared Mg–Al mixed oxides. J. Chem. Technol. Biotechnol., 2017, 93(1), 166-173.
[http://dx.doi.org/10.1002/jctb.5336]
[183]
Yadav, G.D.; Aduri, P. Aldol condensation of benzaldehyde with heptanal to jasminaldehyde over novel Mg-Al mixed oxide on hexagonal mesoporous silica. J. Mol. Catal. Chem., 2012, 355, 142-154.
[http://dx.doi.org/10.1016/j.molcata.2011.12.008]
[184]
Climent, M.J.; Corma, A.; Garcia, H.; Guil-Lopez, R.; Iborra, S.; Fornés, V. Acid-base bifunctional catalysts for the preparation of fine chemicals: Synthesis of jasminaldehyde. J. Catal., 2001, 197(2), 385-393.
[http://dx.doi.org/10.1006/jcat.2000.3086]
[185]
Sudheesh, N.; Sharma, S.K.; Shukla, R.S. Chitosan as an eco-friendly solid base catalyst for the solvent-free synthesis of jasminaldehyde. J. Mol. Catal. Chem., 2010, 321(1–2), 77-82.
[http://dx.doi.org/10.1016/j.molcata.2010.02.005]
[186]
Hamza, A.; Nagaraju, N. Amorphous metal-aluminophosphate catalysts for aldol condensation of n-heptanal and benzaldehyde to jasminaldehyde. Chin. J. Catal., 2015, 36(2), 209-215.
[http://dx.doi.org/10.1016/S1872-2067(14)60206-0]
[187]
Kim, J.; Jin, S.H.; Kang, K.K.; Chung, Y.M.; Lee, C.S. Preparation of chemically uniform and monodisperse microparticles as highly efficient solid acid catalysts for aldol condensation. Chem. Eng. Sci., 2018, 175, 168-174.
[http://dx.doi.org/10.1016/j.ces.2017.09.052]
[188]
Sharma, S.K.; Parikh, P.A.; Jasra, R.V. Reconstructed Mg/Al hydrotalcite as a solid base catalyst for synthesis of jasminaldehyde. Appl. Catal. A Gen., 2010, 386(1–2), 34-42.
[http://dx.doi.org/10.1016/j.apcata.2010.07.021]
[189]
Sharma, S.K.; Patel, H.A.; Jasra, R.V. Synthesis of jasminaldehyde using magnesium organo silicate as a solid base catalyst. J. Mol. Catal. Chem., 2008, 280(1–2), 61-67.
[http://dx.doi.org/10.1016/j.molcata.2007.10.013]
[190]
Ganga, V.S.R.; Abdi, S.H.R.; Kureshy, R.I.; Khan, N.U.H.; Bajaj, H.C. P-Toluene sulfonic acid (PTSA)-MCM-41 as a green, efficient and reusable heterogeneous catalyst for the synthesis of jasminaldehyde under solvent-free condition. J. Mol. Catal. Chem., 2016, 420, 264-271.
[http://dx.doi.org/10.1016/j.molcata.2016.04.030]
[191]
Prabhu, A.; Palanichamy, M. Mesoporous cubic Ia3d materials for the preparation of fine chemicals: synthesis of jasminaldehyde. Microporous Mesoporous Mater., 2013, 168, 126-131.
[http://dx.doi.org/10.1016/j.micromeso.2012.09.020]
[192]
Sharma, S.K.; Parikh, P.A.; Jasra, R.V. Eco-friendly synthesis of jasminaldehyde by condensation of 1-heptanal with benzaldehyde using hydrotalcite as a solid base catalyst. J. Mol. Catal. Chem., 2008, 286(1–2), 55-62.
[http://dx.doi.org/10.1016/j.molcata.2008.01.039]
[193]
Vrbkova, E. Vyskocilova, E. J. K. and L. C. Aldol condensation of benzaldehyde with heptanal using solid-supported caesium and potassium catalysts. Prog. React. Kinet. Mech., 2016, 41(3), 289-300.
[http://dx.doi.org/10.3184/146867816X14701512496355]
[194]
Adwani, J.H.; Khan, N.H.; Shukla, R.S. An elegant synthesis of chitosan grafted hydrotalcite nano-bio composite material and its effective catalysis for solvent-free synthesis of jasminaldehyde. RSC Advances, 2015, 5, 94562-94570.
[http://dx.doi.org/10.1039/C5RA16927E]
[195]
Yadav, G.D.; Fernandes, G.P. Selective synthesis of natural benzaldehyde by hydrolysis of cinnamaldehyde using novel hydrotalcite catalyst. Catal. Today, 2013, 207, 162-169.
[http://dx.doi.org/10.1016/j.cattod.2012.04.052]
[196]
Wagh, D.P.; Yadav, G.D. Green synthesis of alpha-methylcinnamaldehyde via Claisen-Schmidt condensation of benzaldehyde with propanal over Mg–Zr mixed oxide supported on HMS. Mol. Catal., 2018, 459, 119-128.
[197]
Vrbková, E.; Vyskočilová, E.; Červený, L. Potassium modified alumina as a catalyst for the aldol condensation of benzaldehyde with linear C3–C8 aldehydes. React. Kinet. Mech. Catal., 2017, 121(1), 307-316.
[198]
Tichit, D.; Coq, B.; Cerneaux, S.; Durand, R. Condensation of aldehydes for environmentally friendly synthesis of 2-methyl-3-phenyl-propanal by heterogeneous catalysis. Catal. Today, 2002, 75(1–4), 197-202.
[199]
Bhanawase, S.L.; Yadav, G.D. Hydrotalcite as active and selective catalyst for synthesis of dehydrozingerone from vanillin and acetone: Effect of catalyst composition and calcination temperature on activity and selectivity. Curr. Catal., 2017, 6(2), 105-114.
[http://dx.doi.org/10.2174/2211544705666161123122411]
[200]
Strohmeier, G.A.; Kappe, C.O. Rapid parallel synthesis of polymer-bound enones utilizing microwave-assisted solid-phase chemistry. J. Comb. Chem., 2002, 4(2), 154-161.
[http://dx.doi.org/10.1021/cc010043r] [PMID: 11886290]
[201]
Wang, W.; He, Z.; Li, C.; You, Z.; Guo, H. Synthesis of raspberry ketone via Friedel-Crafts alkylation reaction catalyzed by sulfonic acid-functional ionic liquids 1. Petrol. Chem., 2018, 58(1), 56-61.
[http://dx.doi.org/10.1134/S0965544118010152]
[202]
Climent, M.J.; Corma, A.; Iborra, S.; Mifsud, M. Heterogeneous palladium catalysts for a new one-pot chemical route in the synthesis of fragrances based on the Heck reaction. Adv. Synth. Catal., 2007, 349(11–12), 1949-1954.
[http://dx.doi.org/10.1002/adsc.200700026]
[203]
Zumbansen, K.; Döhring, A.; List, B. Morpholinium trifluoroacetate-catalyzed aldol condensation of acetone with both aromatic and aliphatic aldehydes. Adv. Synth. Catal., 2010, 352(7), 1135-1136.
[http://dx.doi.org/10.1002/adsc.200900902]
[204]
Hoelderich, W.F.; Ritzerfeld, V. Preparation of a raspberry ketone precursor in the presence of rare earth oxide catalysts. Appl. Catal. A Gen., 2015, 504, 654-663.
[http://dx.doi.org/10.1016/j.apcata.2015.03.033]
[205]
Zhang, K.; Zhang, H.; Xu, G.; Xiang, S.; Xu, D.; Liu, S.; Li, H. Alkylation of phenol with tert-butyl alcohol catalyzed by large pore zeolites. Appl. Catal. A Gen., 2001, 207(1–2), 183-190.
[http://dx.doi.org/10.1016/S0926-860X(00)00663-3]
[206]
Subramanian, S.; Mitra, A.; Satyanarayana, C.V.V.; Chakrabarty, D.K. Para-selective butylation of phenol over silicoaluminophosphate molecular sieve SAPO-11 catalyst. Appl. Catal. A Gen., 1997, 159(1–2), 229-240.
[http://dx.doi.org/10.1016/S0926-860X(97)00030-6]
[207]
Herrmann, W.A.; Böhm, V.P.W. Heck reaction catalyzed by phospha-palladacycles in non-aqueous ionic liquids. J. Organomet. Chem., 1999, 572(1), 141-145.
[http://dx.doi.org/10.1016/S0022-328X(98)00941-3]
[208]
Krishnan, A.V.; Ojha, K.; Pradhan, N.C. Alkylation of phenol with tertiary butyl alcohol over zeolites. Org. Process Res. Dev., 2002, 6(2), 132-137.
[http://dx.doi.org/10.1021/op010077n]
[209]
Sakthivel, A.; Badamali, S.K.; Selvam, P. Para-selective t-butylation of phenol over mesoporous H-AlMCM-41. Microporous Mesoporous Mater., 2000, 39(3), 457-463.
[http://dx.doi.org/10.1016/S1387-1811(00)00222-5]
[210]
Malkar, R.S.; Yadav, G.D. Selectivity engineering in one pot synthesis of raspberry ketone: crossed aldol condensation of p -hydroxybenzaldehyde and acetone and hydrogenation over novel Ni/Zn-La mixed oxide. Chem. Select, 2019, 4(7), 2140-2152.
[http://dx.doi.org/10.1002/slct.201804060]
[211]
Saudan, L.A. Hydrogenation processes in the synthesis of perfumery ingredients. Acc. Chem. Res., 2007, 40(12), 1309-1319.
[http://dx.doi.org/10.1021/ar700140m] [PMID: 17960898]
[212]
Bachiller-Baeza, B.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A. Influence of Mg and Ce addition to ruthenium based catalysts used in the selective hydrogenation of α,β-unsaturated aldehydes. Appl. Catal. A Gen., 2001, 205(1–2), 227-237.
[http://dx.doi.org/10.1016/S0926-860X(00)00562-7]
[213]
Koo-Amornpattana, W.; Winterbottom, J.M. Pt and Pt-alloy catalysts and their properties for the liquid-phase hydrogenation of cinnamaldehyde. Catal. Today, 2001, 66(2–4), 277-287.
[http://dx.doi.org/10.1016/S0920-5861(00)00654-4]
[214]
Cabiac, A.; Cacciaguerra, T.; Trens, P.; Durand, R.; Delahay, G.; Medevielle, A.; Plée, D.; Coq, B. Influence of textural properties of activated carbons on Pd/carbon catalysts synthesis for cinnamaldehyde hydrogenation. Appl. Catal. A Gen., 2008, 340(2), 229-235.
[http://dx.doi.org/10.1016/j.apcata.2008.02.018]
[215]
Vergunst, T.; Kapteijn, F.; Moulijn, J.A. Kinetics of cinnamaldehyde hydrogenation-concentration dependent selectivity. Catal. Today, 2001, 66(2–4), 381-387.
[http://dx.doi.org/10.1016/S0920-5861(00)00634-9]
[216]
Mahata, N.; Gonçalves, F.; Pereira, M.F.R.; Figueiredo, J.L. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst. Appl. Catal. A Gen., 2008, 339(2), 159-168.
[http://dx.doi.org/10.1016/j.apcata.2008.01.023]
[217]
Giroir-Fendler, A.; Richard, D.; Gallezot, P. Selectivity in cinnamaldehyde hydrogenation of group-VIII metals supported on graphite and carbon. Stud. Surf. Sci. Catal., 1998, 41, 171-178.
[http://dx.doi.org/10.1016/S0167-2991(09)60812-0]
[218]
Vu, H.; Gonçalves, F.; Philippe, R.; Lamouroux, E.; Corrias, M.; Kihn, Y.; Plee, D.; Kalck, P.; Serp, P. Bimetallic catalysis on carbon nanotubes for the selective hydrogenation of cinnamaldehyde. J. Catal., 2006, 240(1), 18-22.
[http://dx.doi.org/10.1016/j.jcat.2006.03.003]
[219]
Jung, A.; Jess, A.; Schubert, T.; Schütz, W. Performance of carbon nanomaterial (nanotubes and nanofibres) supported platinum and palladium catalysts for the hydrogenation of cinnamaldehyde and of 1-octyne. Appl. Catal. A Gen., 2009, 362(1–2), 95-105.
[http://dx.doi.org/10.1016/j.apcata.2009.04.026]
[220]
Wang, D.; Zhu, Y.; Tian, C.; Wang, L.; Zhou, W.; Dong, Y.; Han, Q.; Liu, Y.; Yuan, F.; Fu, H. Synergistic effect of Mo2N and Pt for promoted selective hydrogenation of cinnamaldehyde over Pt-Mo2N/SBA-15. Catal. Sci. Technol., 2016, 6(7), 2403-2412.
[http://dx.doi.org/10.1039/C5CY01654A]
[221]
Pan, H.; Li, J.; Lu, J.; Wang, G.; Xie, W.; Wu, P.; Li, X. Selective hydrogenation of cinnamaldehyde with PtFex/Al2O3@SBA-15 catalyst: Enhancement in activity and selectivity to unsaturated alcohol by Pt-FeOx and Pt-Al2O3@SBA-15 interaction. J. Catal., 2017, 354, 24-36.
[http://dx.doi.org/10.1016/j.jcat.2017.07.026]
[222]
Han, X.; Zhou, R.; Zheng, X. Hydrogenation of cinnamaldehyde over Pt/ZrO2 catalyst modified by Cr, Mn, Fe, Co, Ni and Sn. Indian J. Chem., 2006, 45(7), 1646-1650.
[223]
Bhogeswararao, S.; Srinivas, D. Intramolecular selective hydrogenation of cinnamaldehyde over CeO2-ZrO2-supported Pt catalysts. J. Catal., 2012, 285(1), 31-40.
[http://dx.doi.org/10.1016/j.jcat.2011.09.006]
[224]
Malobela, L.J.; Heveling, J.; Augustyn, W.G.; Cele, L.M. Nickel-cobalt on carbonaceous supports for the selective catalytic hydrogenation of cinnamaldehyde. Ind. Eng. Chem. Res., 2014, 53(36), 13910-13919.
[http://dx.doi.org/10.1021/ie502143a]
[225]
Manikandan, D.; Divakar, D.; Sivakumar, T. Utilization of clay minerals for developing Pt nanoparticles and their catalytic activity in the selective hydrogenation of cinnamaldehyde. Catal. Commun., 2007, 8(11), 1781-1786.
[http://dx.doi.org/10.1016/j.catcom.2007.02.007]
[226]
Tian, Z.; Xiang, X.; Xie, L.; Li, F. Liquid-phase hydrogenation of cinnamaldehyde: Enhancing selectivity of supported gold catalysts by incorporation of cerium into the support. Ind. Eng. Chem. Res., 2013, 52(1), 288-296.
[http://dx.doi.org/10.1021/ie300847j]
[227]
Bertolini, G.R.; Cabello, C.I.; Muñoz, M.; Casella, M.; Gazzoli, D.; Pettiti, I.; Ferraris, G. Catalysts based on Rh(III)-hexamolybdate/γ-Al2O3 and their application in the selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. J. Mol. Catal. Chem., 2013, 366, 109-115.
[http://dx.doi.org/10.1016/j.molcata.2012.09.013]
[228]
Prakash, M.G.; Mahalakshmy, R.; Krishnamurthy, K.R.; Viswanathan, B. Studies on Ni-M (M = Cu, Ag, Au) bimetallic catalysts for selective hydrogenation of cinnamaldehyde. Catal. Today, 2016, 263, 105-111.
[http://dx.doi.org/10.1016/j.cattod.2015.09.053]
[229]
Piqueras, C.M.; Puccia, V.; Vega, D.A.; Volpe, M.A. Selective hydrogenation of cinnamaldehyde in supercritical CO2 over Me-CeO2 (Me=Cu, Pt, Au): Insight of the role of Me-Ce interaction. Appl. Catal. B, 2016, 185, 265-271.
[http://dx.doi.org/10.1016/j.apcatb.2015.12.031]
[230]
Mohire, S.S.; Yadav, G.D. Selective synthesis of hydrocinnamaldehyde over bimetallic Ni-Cu nanocatalyst supported on graphene oxide. Ind. Eng. Chem. Res., 2018, 57(28), 9083-9093.
[http://dx.doi.org/10.1021/acs.iecr.8b00957]
[231]
Zheng, R.; Porosoff, M.D.; Weiner, J.L.; Lu, S.; Zhu, Y.; Chen, J.G. Controlling hydrogenation of C=O and C=C bonds in cinnamaldehyde using silica supported Co-Pt and Cu-Pt bimetallic catalysts. Appl. Catal. A Gen., 2012, 419–420, 126-132.
[http://dx.doi.org/10.1016/j.apcata.2012.01.019]
[232]
Maurel, D.G.F. Activity and selectivity of Pt−Fe/C alloys for the liquid phase hydrogenation of cinnamaldehyde to cinnamyl alcohol. React. Kinet. Catal. Lett., 1987, 35(1–2), 185-193.
[233]
Nakhate, A.V.; Yadav, G.D. Synthesis and characterization of sulfonated carbon-based graphene oxide monolith by solvothermal carbonization for esterification and unsymmetrical ether formation. ACS Sustain. Chem.& Eng., 2016, 4(4), 1963-1973.
[234]
Vilella, I.M.J.; de Miguel, S.R.; Salinas-Martínez de Lecea, C.; Linares-Solano, Á.; Scelza, O.A. Catalytic performance in citral hydrogenation and characterization of ptsn catalysts supported on activated carbon felt and powder. Appl. Catal. A Gen., 2005, 281(1–2), 247-258.
[http://dx.doi.org/10.1016/j.apcata.2004.11.034]
[235]
Asedegbega-Nieto, E.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Modification of the stereoselectivity in the citral hydrogenation by application of carbon nanotubes as support of the Pt particles. Carbon N. Y., 2006, 44(4), 804-806.
[http://dx.doi.org/10.1016/j.carbon.2005.10.043]
[236]
Mäki-Arvela, P.; Tiainen, L.P.; Lindblad, M.; Demirkan, K.; Kumar, N.; Sjöholm, R.; Ollonqvist, T.; Väyrynen, J.; Salmi, T.; Murzin, D.Y. Liquid-phase hydrogenation of citral for production of citronellol: catalyst selection. Appl. Catal. A Gen., 2003, 241(1–2), 271-288.
[http://dx.doi.org/10.1016/S0926-860X(02)00497-0]
[237]
Bailón-García, E.; Carrasco-Marín, F.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J. Influence of the Pt-particle size on the performance of carbon supported catalysts used in the hydrogenation of citral. Catal. Commun., 2016, 82, 36-40.
[http://dx.doi.org/10.1016/j.catcom.2016.04.014]
[238]
Qu, P.F.; Chen, J.G.; Song, Y.H.; Liu, Z.T.; Liu, Z.W.; Li, Y.; Lu, J.; Jiang, J. Effect of Fe(III) on hydrogenation of citral over Pt supported multiwalled carbon nanotube. Catal. Commun., 2015, 68(3), 105-109.
[http://dx.doi.org/10.1016/j.catcom.2015.05.001]
[239]
Neri, G.; Mercadante, L.; Donato, A.; Visco, A.M.; Galvagno, S. Influence of Ru precursor, support and solvent in the hydrogenation of citral over ruthenium catalysts. Catal. Lett., 1994, 29(3–4), 379-386.
[http://dx.doi.org/10.1007/BF00807117]
[240]
Bailón-García, E.; Carrasco-Marín, F.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J. Influence of the pretreatment conditions on the development and performance of active sites of Pt/TiO2 catalysts used for the selective citral hydrogenation. J. Catal., 2015, 327, 86-95.
[http://dx.doi.org/10.1016/j.jcat.2015.04.019]
[241]
Singh, U.K.; Vannice, M.A. Liquid-phase citral hydrogenation over SiO2-Supported group VIII metals. J. Catal., 2001, 199(1), 73-84.
[http://dx.doi.org/10.1006/jcat.2000.3157]
[242]
Coupé, J.N.; Jordão, E.; Fraga, M.A.; Mendes, M.J. A comparative study of SiO2 supported Rh-Sn catalysts prepared by different methods in the hydrogenation of citral. Appl. Catal. A Gen., 2000, 199(1), 45-51.
[http://dx.doi.org/10.1016/S0926-860X(99)00525-6]
[243]
Ekou, T.; Ekou, L.; Vicente, A.; Lafaye, G.; Pronier, S.; Especel, C.; Marécot, P. Citral hydrogenation over Rh and Pt catalysts supported on TiO2: Influence of the preparation and activation protocols of the catalysts. J. Mol. Catal. Chem., 2011, 337(1–2), 82-88.
[http://dx.doi.org/10.1016/j.molcata.2011.01.020]
[244]
Liu, X.; Zhang, Z.; Yang, Y.; Yin, D.; Su, S.; Lei, D.; Yang, J. Selective hydrogenation of citral to 3,7-dimethyloctanal over activated carbon supported nano-palladium under atmospheric pressure. Chem. Eng. J., 2015, 263, 290-298.
[http://dx.doi.org/10.1016/j.cej.2014.11.008]
[245]
Bailón-García, E.; Carrasco-Marín, F.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J. Microspheres of carbon xerogel: An alternative Pt-Support for the selective hydrogenation of citral. Appl. Catal. A Gen., 2014, 482, 318-326.
[http://dx.doi.org/10.1016/j.apcata.2014.06.011]
[246]
Vicente, A.; Lafaye, G.; Especel, C.; Marécot, P.; Williams, C.T. The relationship between the structural properties of bimetallic Pd-Sn/SiO2 catalysts and their performance for selective citral hydrogenation. J. Catal., 2011, 283(2), 133-142.
[http://dx.doi.org/10.1016/j.jcat.2011.07.010]
[247]
Chen, Y.Z.; Liaw, B.J.; Chiang, S.J. Selective hydrogenation of citral over amorphous NiB and CoB nano-catalysts. Appl. Catal. A Gen., 2005, 284(1–2), 97-104.
[http://dx.doi.org/10.1016/j.apcata.2005.01.023]
[248]
Bertero, N.M.; Trasarti, A.F.; Moraweck, B.; Borgna, A.; Marchi, A.J. Selective liquid-phase hydrogenation of citral over supported bimetallic Pt-Co catalysts. Appl. Catal. A Gen., 2009, 358(1), 32-41.
[http://dx.doi.org/10.1016/j.apcata.2009.01.036]
[249]
Galvagno, S.; Milone, C.; Donato, A.; Neri, G.; Pietropaolo, R. Hydrogenation of citral over Ru-Sn/C. Catal. Lett., 1993, 17(1–2), 55-61.
[http://dx.doi.org/10.1007/BF00763927]
[250]
Galvagno, S.; Milone, C.; Donate, A.; Neri, G.; Pietropaolo, R. Influence of metal particle size in the hydrogenation of citral over Ru/C. Catal. Lett., 1993, 18(4), 349-355.
[http://dx.doi.org/10.1007/BF00765281]
[251]
Milone, C.; Tropeano, M.L.; Gulino, G.; Neri, G.; Ingoglia, R.; Galvagno, S. Selective liquid phase hydrogenation of citral on Au/Fe2O3 catalysts. Chem. Commun. (Camb.), 2002, (8), 868-869.
[http://dx.doi.org/10.1039/b201542k] [PMID: 12123019]
[252]
Stolle, A.; Gallert, T.; Schmöger, C.; Ondruschka, B. Hydrogenation of citral: A wide-spread model reaction for selective reduction of α,β-unsaturated aldehydes. RSC Advances, 2013, 3(7), 2112-2153.
[http://dx.doi.org/10.1039/C2RA21498A]
[253]
Kamatou, G.P.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: a simple monoterpene with remarkable biological properties. Phytochemistry, 2013, 96, 15-25.
[http://dx.doi.org/10.1016/j.phytochem.2013.08.005] [PMID: 24054028]
[254]
Allakhverdiev, A.I.; Kul’kova, N.V.; Murzin, D.Y. Liquid-phase stereoselective thymol hydrogenation over supported nickel catalysts. Catal. Lett., 1994, 29(1–2), 57-67.
[http://dx.doi.org/10.1007/BF00814252]
[255]
Besson, M.; Bullivant, L.; Nicolaus, N.; Gallezot, P. Stereoselective thymol hydrogenation: I. Kinetics of thymol hydrogenation on charcoal-supported platinum catalysts. J. Catal., 1993, 140(1), 30-40.
[http://dx.doi.org/10.1006/jcat.1993.1066]
[256]
Tungler, A.; Máthé, T.; Petró, J.; Tarnai, T. Role of catalyst preparation and pretreatment in the stereoselective hydrogenation of thymol. Appl. Catal. A Gen., 1991, 79(2), 161-165.
[http://dx.doi.org/10.1016/0926-860X(91)80002-G]
[257]
Besson, M.; Bullivant, L.; Dechamp, N.; Gallezot, P. Stereoselective thymol hydrogenation: Comparative study of charcoal-supported, platinum, rhodium and iridium catalysts. Stud. Surf. Sci. Catal., 1993, 78, 115-122.
[http://dx.doi.org/10.1016/S0167-2991(08)63310-8]
[258]
Allakhverdiev, A.I.; Kul’kova, N.V.; Murzin, D. Kinetics of thymol hydrogenation over a Ni-Cr2O3 catalyst. Ind. Eng. Chem. Res., 1995, 34(5), 1539-1547.
[http://dx.doi.org/10.1021/ie00044a005]
[259]
Tungler, A.; Mathe, T.; Bende, Z.; Petro, J. Stereoselelctive hydrogenation of thymol. Appl. Catal., 1985, 19, 365-374.
[260]
Galo Cárdenas, T.; Ricardo Oliva, C.P.R.N. Catalytic hydrogenation of thymol over Pd/MgO prepared by SMAD method. J. Chil. Chem. Soc., 2006, 51(4), 1053-1056.
[261]
Dudas, J.; Hanika, J.; Lepuru, J.; Barkhuysen, M. Thymol hydrogenation in bench scale trickle bed reactor. Chem. Biochem. Eng. Q., 2005, 19(3), 255-262.
[262]
Yadav, G.D.; Goel, P.K. Stereoselective hydrogenation of p-tert-butylphenol over supported rhodium catalyst. J. Mol. Catal. A. Chem., 2002, 184(1–2), 281-288.
[263]
Yadav, V.G.; Chandalia, S.B. Synthesis of phenethyl alcohol by catalytic hydrogenation of styrene oxide. Org. Process Res. Dev., 1998, 2(5), 294-297.
[http://dx.doi.org/10.1021/op980027r]
[264]
Bajaj, H.; Abdi, S.; Kureshy, R.; Khan, N.; Dabbawala, A.; Roy, T. Hydrogenation of styrene oxide forming 2-phenyl ethanol. U.S. Patent 2015 9,040,755 B2, [May 26, 2015].
[265]
Yadav, G.D.; Lawate, Y.S. Hydrogenation of styrene oxide to 2-phenyl ethanol over polyurea microencapsulated mono- and bimetallic nanocatalysts: Activity, selectivity, and kinetic modeling. Ind. Eng. Chem. Res., 2013, 52(11), 4027-4039.
[http://dx.doi.org/10.1021/ie302587j]
[266]
Yadav, G.D.; Lawate, Y.S. Selective hydrogenation of styrene oxide to 2-phenyl ethanol over polyurea supported Pd-Cu catalyst in supercritical carbon dioxide. J. Supercrit. Fluids, 2011, 59, 78-86.
[267]
Kanojiya, S.K.; Shukla, G.; Sharma, S.; Dwivedi, R.; Sharma, P.; Prasad, R.; Satalkar, M.; Kane, S.N. Hydrogenation of styrene oxide to 2-phenylethanol over nanocrystalline ni prepared by ethylene glycol reduction method. Int. J. Chem. Eng., 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/406939]
[268]
Patankar, S.C.; Dodiya, S.K.; Yadav, G.D. Cascade engineered synthesis of ethyl benzyl acetoacetate and methyl isobutyl ketone (MIBK) on novel multifunctional catalyst. J. Mol. Catal. A Chem., 2015, 409, 171-182.
[269]
Weerawatanakorn, M.; Wu, J.C.; Pan, M.H.; Ho, C.T. Reactivity and stability of selected flavor compounds. Yao Wu Shi Pin Fen Xi, 2015, 23(2), 176-190.
[http://dx.doi.org/10.1016/j.jfda.2015.02.001] [PMID: 28911372]
[270]
Bråred Christensson, J.; Andersen, K.E.; Bruze, M.; Johansen, J.D.; Garcia-Bravo, B.; Gimenez Arnau, A.; Goh, C.L.; Nixon, R.; White, I.R. Air-oxidized linalool: A frequent cause of fragrance contact allergy. Contact Dermat., 2012, 67(5), 247-259.
[http://dx.doi.org/10.1111/j.1600-0536.2012.02134.x] [PMID: 22906042]
[271]
Reddy, B.M.; Rao, K.N.; Reddy, G.K.; Bharali, P. Characterization and catalytic activity of V2O5/Al2O3-TiO2 for selective oxidation of 4-methylanisole. J. Mol. Catal. Chem., 2006, 253(1–2), 44-51.
[http://dx.doi.org/10.1016/j.molcata.2006.03.016]
[272]
Reddy, B.M.M. Vijaya Kumar, K. J. R. Selective oxidation of p-methoxytoluene to p-methoxybenzaldehyde over V2O5/CaO-MgO catalysts. Appl. Catal. A Gen., 1999, 181, 77-85.
[http://dx.doi.org/10.1016/S0926-860X(98)00385-8]
[273]
Reddy, B.M.; Ganesh, I.; Chowdhury, B. Vapour-phase selective oxidation of 4-methylanisole to anisaldehyde over V2O5/Ga2O3-TiO2 Catalyst. Chem. Lett., 1997, 26(11), 1145-1146.
[http://dx.doi.org/10.1246/cl.1997.1145]
[274]
Yadav, G.D.; Sharma, R.V. Synthesis, characterization and applications of highly active and robust sulfated Fe-TiO2 Catalyst (ICT-3) with superior redox and acidic properties. J. Catal., 2014, 311, 121-128.
[275]
Fei, J.; Sun, L.; Zhou, C.; Ling, H.; Yan, F.; Zhong, X.; Lu, Y.; Shi, J.; Huang, J.; Liu, Z. Tuning the synthesis of manganese oxides nanoparticles for efficient oxidation of benzyl alcohol. Nanoscale Res. Lett., 2017, 12(1), 23.
[http://dx.doi.org/10.1186/s11671-016-1777-y] [PMID: 28063142]
[276]
Habibi, D.; Faraji, A.R.; Arshadi, M.; Fierro, J.L.G. Characterization and catalytic activity of a novel Fe nano-catalyst as efficient heterogeneous catalyst for selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol. J. Mol. Catal. Chem., 2013, 372, 90-99.
[http://dx.doi.org/10.1016/j.molcata.2013.02.014]
[277]
Habibi, D.; Faraji, A.R. Preparation, characterization and catalytic activity of a nano-Co(II)- catalyst as a high efficient heterogeneous catalyst for the selective oxidation of ethylbenzene, cyclohexene, and benzyl alcohol. C. R. Chim., 2013, 16(10), 888-896.
[http://dx.doi.org/10.1016/j.crci.2013.01.002]
[278]
Luo, J.; Yu, H.; Wang, H.; Wang, H.; Peng, F. Aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by carbon nanotubes without any promoter. Chem. Eng. J., 2014, 240, 434-442.
[http://dx.doi.org/10.1016/j.cej.2013.11.093]
[279]
Luo, J.; Peng, F.; Yu, H.; Wang, H. Selective liquid phase oxidation of benzyl alcohol catalyzed by carbon nanotubes. Chem. Eng. J., 2012, 204–205, 98-106.
[http://dx.doi.org/10.1016/j.cej.2012.07.098]
[280]
Zhu, S.; Cen, Y.; Yang, M.; Guo, J.; Chen, C.; Wang, J.; Fan, W. Probing the intrinsic active sites of modified graphene oxide foraerobic benzylic alcohol oxidation. Appl. Catal. B, 2017, 211, 89-97.
[http://dx.doi.org/10.1016/j.apcatb.2017.04.035]
[281]
Liu, J.; Zou, S.; Wu, J.; Kobayashi, H.; Zhao, H.; Fan, J. Green catalytic oxidation of benzyl alcohol over Pt/ZnO in base-free aqueous medium at room temperature. Chin. J. Catal., 2018, 39(6), 1081-1089.
[http://dx.doi.org/10.1016/S1872-2067(18)63022-0]
[282]
Chen, Y.; Zheng, H.; Guo, Z.; Zhou, C.; Wang, C.; Borgna, A.; Yang, Y. Pd Catalysts supported on MnCeOx mixed oxides and their catalytic application in solvent-free aerobic oxidation of benzyl alcohol: support composition and structure sensitivity. J. Catal., 2011, 283(1), 34-44.
[http://dx.doi.org/10.1016/j.jcat.2011.06.021]
[283]
Chen, Y.; Guo, Z.; Chen, T.; Yang, Y. Surface-functionalized TUD-1 mesoporous molecular sieve supported palladium for solvent-free aerobic oxidation of benzyl alcohol. J. Catal., 2010, 275(1), 11-24.
[http://dx.doi.org/10.1016/j.jcat.2010.07.006]
[284]
Yan, Y.; Chen, Y.; Jia, X.; Yang, Y. Palladium nanoparticles supported on organosilane-functionalized carbon nanotube for solvent-free aerobic oxidation of benzyl alcohol. Appl. Catal. B, 2014, 156–157, 385-397.
[http://dx.doi.org/10.1016/j.apcatb.2014.03.043]
[285]
Liu, C.H.; Lin, C.Y.; Chen, J.L.; Lu, K.T.; Lee, J.F.; Chen, J.M. SBA-15-supported Pd catalysts: The effect of pretreatment conditions on particle size and its application to benzyl alcohol oxidation. J. Catal., 2017, 350, 21-29.
[http://dx.doi.org/10.1016/j.jcat.2017.01.019]
[286]
Weerachawanasak, P.; Hutchings, G.J.; Edwards, J.K.; Kondrat, S.A.; Miedziak, P.J.; Prasertham, P.; Panpranot, J. Surface functionalized TiO2 supported Pd catalysts for solvent-freeselective oxidation of benzyl alcohol. Catal. Today, 2015, 250, 218-225.
[http://dx.doi.org/10.1016/j.cattod.2014.06.005]
[287]
Chen, L.; Yan, J.; Tong, Z.; Yu, S.; Tang, J.; Ou, B.; Yue, L.; Tian, L. Nanofiber-like mesoporous alumina supported palladium nanoparticles as a highly active catalyst for base-free oxidation of benzyl alcohol. Microporous Mesoporous Mater., 2018, 266, 126-131.
[http://dx.doi.org/10.1016/j.micromeso.2018.02.037]
[288]
Galvanin, F.; Sankar, M.; Cattaneo, S.; Bethell, D.; Dua, V.; Hutchings, G.J.; Gavriilidis, A. On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst. Chem. Eng. J., 2018, 342, 196-210.
[http://dx.doi.org/10.1016/j.cej.2017.11.165]
[289]
Wang, B.; Lin, M. Thiam Peng Ang, Jie Chang, Yanhui Yang, A. B. Liquid phase aerobic oxidation of benzyl alcohol over pd and rh catalysts on N-doped mesoporous carbon: effect of the surface acido-basicity. Catal. Commun., 2012, 25, 96-101.
[http://dx.doi.org/10.1016/j.catcom.2012.04.005]
[290]
Sun, J.; Han, Y.; Fu, H.; Qu, X.; Xu, Z.; Zheng, S. Au@Pd/TiO2 with atomically dispersed Pd as Highly active catalyst for solvent-free aerobic oxidation of benzyl alcohol. Chem. Eng. J., 2017, 313, 1-9.
[http://dx.doi.org/10.1016/j.cej.2016.12.024]
[291]
Chen, Y.; Wang, H.; Liu, C.J.; Zeng, Z.; Zhang, H.; Zhou, C.; Jia, X.; Yang, Y. Formation of monometallic Au and Pd and bimetallic Au-Pd nanoparticles confined in mesopores via Ar glow-discharge plasma reduction and their catalytic applications in aerobic oxidation of benzyl alcohol. J. Catal., 2012, 289, 105-117.
[http://dx.doi.org/10.1016/j.jcat.2012.01.020]
[292]
Ma, C.Y.; Dou, B.J.; Li, J.J.; Cheng, J.; Hu, Q.; Hao, Z.P.; Qiao, S.Z. Catalytic oxidation of benzyl alcohol on Au or Au-Pd nanoparticles confined in mesoporous silica. Appl. Catal. B, 2009, 92(1–2), 202-208.
[http://dx.doi.org/10.1016/j.apcatb.2009.07.007]
[293]
Zhang, H.; Liu, Y.; Zhang, X. Selective oxidation of benzyl alcohol catalyzed by palladium nanoparticles supported on carbon-coated iron nanocrystals. Cuihua Xuebao. Chin. J. Catal., 2011, 32(11), 1693-1701.
[http://dx.doi.org/10.1016/S1872-2067(10)60273-2]
[294]
Klitgaard, S.K.; Dela Riva, A.T.; Helveg, S.; Werchmeister, R.M.; Christensen, C.H. Aerobic oxidation of alcohols over gold catalysts: role of acid and base. Catal. Lett., 2008, 126(3–4), 213-217.
[http://dx.doi.org/10.1007/s10562-008-9688-x]
[295]
Yadav, G.D.; Haldavanekar, B.V. Mechanistic and kinetic investigation of liquid-liquid phase transfer catalyzed oxidation of benzyl chloride to benzaldehyde. J. Phys. Chem. A, 1997, 101(1), 36-48.
[296]
Yadav, G.D.; Haldavanekar, B.V. Selectivity engineering with polymer-supported reagents: Oxidation of benzyl chloride to benzaldehyde. React. Funct. Polym., 1997, 32(2), 187-194.
[297]
Yadav, G.D.; Mistry, C.K. A New model of capsule membrane phase transfer catalysis for oxidation of benzyl chloride to benzaldehyde with hydrogen peroxide. J. Mol. Catal. A. Chem., 1995, 102(2), 67-72.
[298]
Mark, J.W. Dignum, Josef Kerler, and R. V. Vanilla production: Technological, chemical, and biosynthetic aspects. Food Rev. Int., 2001, 17(2), 199-219.
[299]
Yepez, R.; García, S.; Schachat, P.; Sánchez-Sánchez, M.; González-Estefan, J.H.; González-Zamora, E.; Ibarra, I.A.; Aguilar-Pliego, J. Catalytic activity of HKUST-1 in the oxidation of trans-ferulic acid to vanillin. New J. Chem., 2015, 39(7), 5112-5115.
[300]
Di Paola, A.; Bellardita, M.; Megna, B.; Parrino, F.; Palmisano, L. Photocatalytic oxidation of trans-ferulic acid to vanillin on TiO2 and WO3 loaded TiO2 catalysts. Catal. Today, 2015, 252, 195-200.
[http://dx.doi.org/10.1016/j.cattod.2014.09.012]
[301]
Wohlgemuth, R. Green production of fine chemicals by isolated enzymes. Biocatalysis for Green Chemistry and Chemical Process Development; Wiley, 2011, pp. 277-298.
[http://dx.doi.org/10.1002/9781118028308.ch11]
[302]
Dhake, K.P.; Thakare, D.D.; Bhanage, B.M. Lipase: A potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds. Flavour Fragrance J., 2013, 28(2), 71-83.
[http://dx.doi.org/10.1002/ffj.3140]
[303]
Brenna, E.; Crotti, M.; Gatti, F.G.; Parmeggiani, F.; Pugliese, A.; Santangelo, S. Multi-enzymatic cascade procedures for the synthesis of chiral odorous molecules. Importance of Chirality to Flavor Compounds; Karl-Heinz Engel, G.T., Ed.; ACS publications, 2015, Vol. 1212, pp. 59-75.
[http://dx.doi.org/10.1021/bk-2015-1212.ch004]
[304]
Serra, S. Opportunities for biocatalysis in the flavor, fragrance, and cosmetic industry. Biocatalysis for Green Chemistry and Chemical Process Development; Wiley, 2011, pp. 221-254.
[http://dx.doi.org/10.1002/9781118028308.ch9]
[305]
Franssen, M.C.R.; Alessandrini, L.; Terraneo, G. Biocatalytic production of flavors and fragrances. Pure Appl. Chem., 2005, 77(1), 273-279.
[http://dx.doi.org/10.1351/pac200577010273]
[306]
Raveendran, S.; Parameswaran, B.; Ummalyma, S.B.; Abraham, A.; Mathew, A.K.; Madhavan, A.; Rebello, S.; Pandey, A. Applications of microbial enzymes in food industry. Food Technol. Biotechnol., 2018, 56(1), 16-30.
[http://dx.doi.org/10.17113/ftb.56.01.18.5491] [PMID: 29795993]
[307]
Longo, M.A.; Sanromán, M.A. Production of food aroma compounds: microbial and enzymatic methodologies. Food Technol. Biotechnol., 2006, 44(3), 335-353.
[308]
Almeida, A.; de Meneses, A.C.; de Araújo, P.H.H.; de Oliveira, D. A Review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends Food Sci. Technol., 2017, 69, 95-105.
[http://dx.doi.org/10.1016/j.tifs.2017.09.004]

© 2024 Bentham Science Publishers | Privacy Policy