Abstract
Hydrogenation of CO2 to energy-rich products over heterogeneous metal catalysts has gained much attention due to their commercial applications. Specifically, the first-row transition metal catalysts are very rarely reported and discussed for the production of formic acid from the hydrogenation of CO2. Herein, hydrotalcite supported copper metal has shown activity and efficiency to produce formic acid from the hydrogenation of CO2, without adding any additional base or promoter and was effectively recycled 4 times after separating by simple filtration without compromising the formic acid yield. Hydrotalcite supported copper-based catalyst (Cu-HT) was synthesized through the coprecipitation method and used as a heterogeneous catalyst for the hydrogenation of CO2. The precise copper metal content determined by ICP in Cu-HT is 0.00944 mmol. The catalyst afforded maximum TOF, 124 h-1 under the employed reaction conditions: 100 mg catalyst, 60 °C, 60 bar total pressure of CO2/H2 (1:1, p/p) with 60 mL of mixed methanol:water (5:1, v/v) solvent. Cu-HT catalyst was synthesised and thoroughly characterized by FT-IR, PXRD, SEM, TEM, XPS and BET surface area. The first-order kinetic dependence with respect to the catalyst amount, partial pressures of CO2, and of H2 was observed and a plausible reaction mechanism is suggested.
Background: CO2 hydrogenation to energy-rich products over heterogeneous metal catalysts has gained much attention due to their commercial applications. Specifically, the first-row transition metal catalysts are very rarely reported and discussed for the production of formic acid from the hydrogenation of CO2.
Objective: The aim is to investigate the heterogeneous catalyst systems, using solid soft base hydrotalcite supported Cu metal-based catalyst for effective and selective hydrogenation of CO2 to formic acid.
Methods: The Cu –HT catalyst was synthesized and characterized by FT-IR, PXRD, SEM, TEM, XPS and BET surface area in which the precise copper content was 0.00944 mmol. The Cu-HT catalysed hydrogenation of CO2 was carried out in the autoclave.
Results: The Cu-HT catalyst afforded maximum TOF of 124 h-1 under the employed reaction conditions: 100 mg catalyst, 60 °C, 60 bar total pressure of CO2/H2 (1:1, p/p) with 60 mL of mixed methanol: water (5:1, v/v) solvent, without adding any additional base or promoter and was recycled 4 times by simple filtration without compromising the formic acid yield. Formation of formic acid was observed to depend on the amount of the catalyst, partial pressures of CO2 and H2, total pressure, temperature and time.
Conclusion: Cu-HT based heterogeneous catalyst was found to be efficient for selective hydrogenation of CO2 to formic acid and was effectively recycled four times after elegantly separating by simple filtration.
Keywords: Formic acid, carbon dioxide, hydrogenation, copper hydrotalcite, heterogeneous catalyst.
Graphical Abstract
[http://dx.doi.org/10.1039/B809990C]
(b) Darensbourg, D.J. Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem. Rev., 2007, 107(6), 2388-2410.
[http://dx.doi.org/10.1021/cr068363q PMID: 17447821]
(c) Dell’Amico, D.B.; Calderazzo, F.; Labella, L.; Marchetti, F.; Pampaloni, G. Converting carbon dioxide into carbamato derivatives. Chem. Rev., 2003, 103(10), 3857-3898.
[http://dx.doi.org/10.1021/cr940266m PMID: 14531715]
(d) Palmer, D.A.; Van Eldik, R. The chemistry of metal carbonato and carbon dioxide complexes. Chem. Rev., 1983, 83, 651-731.
[http://dx.doi.org/10.1021/cr00058a004]
[http://dx.doi.org/10.1021/cr4002758 PMID: 24313306]
(b) Statistics, I. CO2 emissions from fuel combustion-highlights, IEA, Paris, Cited July 2011. Reference: Available from: http://www. iea. org/co2highlights/co2highlights.pdf
(c) Arakawa, H.; Aresta, M.; Armor, J.N.; Barteau, M.A.; Beckman, E.J.; Bell, A.T.; Bercaw, J.E.; Creutz, C.; Dinjus, E.; Dixon, D.A.; Domen, K.; DuBois, D.L.; Eckert, J.; Fujita, E.; Gibson, D.H.; Goddard, W.A.; Goodman, D.W.; Keller, J.; Kubas, G.J.; Kung, H.H.; Lyons, J.E.; Manzer, L.E.; Marks, T.J.; Morokuma, K.; Nicholas, K.M.; Periana, R.; Que, L.; Rostrup-Nielson, J.; Sachtler, W.M.; Schmidt, L.D.; Sen, A.; Somorjai, G.A.; Stair, P.C.; Stults, B.R.; Tumas, W. Catalysis research of relevance to carbon management: Progress, challenges, and opportunities. Chem. Rev., 2001, 101(4), 953-996.
[http://dx.doi.org/10.1021/cr000018s] [PMID: 11709862]
[http://dx.doi.org/10.1002/marc.201500681] [PMID: 26991465]
(b) Sivanesan, D.; Choi, Y.; Lee, J.; Youn, M.H.; Park, K.T.; Grace, A.N.; Kim, H-J.; Jeong, S.K. Carbon dioxide sequestration by using a model carbonic anhydrase complex in tertiary amine medium. ChemSusChem, 2015, 8(23), 3977-3982.
[http://dx.doi.org/10.1002/cssc.201501139] [PMID: 26564396]
(c) Maeda, C.; Miyazaki, Y.; Ema, T. Recent progress in catalytic conversions of carbon dioxide. Catal. Sci. Technol., 2014, 4, 1482-1497.
[http://dx.doi.org/10.1039/c3cy00993a]
(d) Appel, A.M.; Bercaw, J.E.; Bocarsly, A.B.; Dobbek, H.; DuBois, D.L.; Dupuis, M.; Ferry, J.G.; Fujita, E.; Hille, R.; Kenis, P.J.A.; Kerfeld, C.A.; Morris, R.H.; Peden, C.H.F.; Portis, A.R.; Ragsdale, S.W.; Rauchfuss, T.B.; Reek, J.N.H.; Seefeldt, L.C.; Thauer, R.K.; Waldrop, G.L. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev., 2013, 113(8), 6621-6658.
[http://dx.doi.org/10.1021/cr300463y PMID: 23767781]
(e) Darensbourg, D.J.; Wilson, S.J. What’s new with CO2? Recent advances in its copolymerization with oxiranes. Green Chem., 2012, 14, 2665-2671.
[http://dx.doi.org/10.1039/c2gc35928f]
(f) Férey, G.; Serre, C.; Devic, T.; Maurin, G.; Jobic, H.; Llewellyn, P.L.; De Weireld, G.; Vimont, A.; Daturi, M.; Chang, J.S. Why hybrid porous solids capture greenhouse gases? Chem. Soc. Rev., 2011, 40(2), 550-562.
[http://dx.doi.org/10.1039/C0CS00040J PMID: 21180728]
(g) Mikkelsen, M.; Jorgensen, M.; Krebs, F.C. Theteraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 2010, 3, 43-81.
[http://dx.doi.org/10.1039/B912904A]
(h) Riduan, S.N.; Zhang, Y. Recent developments in carbon dioxide utilization under mild conditions. Dalton Trans., 2010, 39(14), 3347-3357.
[http://dx.doi.org/10.1039/b920163g] [PMID: 20379526]
[http://dx.doi.org/10.1002/1099-0739(200012)14:12<751::AIDAOC85>3.0.CO;2-J]
[http://dx.doi.org/10.1039/c2ee21928j]
[http://dx.doi.org/10.1002/cssc.201000023] [PMID: 20379965]
[http://dx.doi.org/10.1039/b909525j] [PMID: 19830313]
[http://dx.doi.org/10.1038/ncomms5017] [PMID: 24886955]
[http://dx.doi.org/10.1039/C3CS60373C] [PMID: 24441866]
[http://dx.doi.org/10.1002/anie.201203185] [PMID: 22807319]
(b) Preti, D.; Resta, C.; Squarcialupi, S.; Fachinetti, G. Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst. Angew. Chem. Int. Ed. Engl., 2011, 50(52), 12551-12554.
[http://dx.doi.org/10.1002/anie.201105481] [PMID: 22057843]
(c) Fellay, C.; Dyson, P.J.; Laurenczy, G. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Angew. Chem. Int. Ed. Engl., 2008, 47(21), 3966-3968.
[http://dx.doi.org/10.1002/anie.200800320] [PMID: 18393267]
(d) Jessop, P.G.; Ikariya, T.; Noyori, R. Homogeneous hydrogenation of carbon dioxide. Chem. Rev., 1995, 95, 259-272.
[http://dx.doi.org/10.1021/cr00034a001]
(e) Zhang, J.Z.; Li, Z.; Wang, H.; Wang, C.Y. Homogeneous catalytic synthesis of formic acid (salts) by hydrogenation of CO2 with H2 in the presence of ruthenium species. J. Mol. Catal. Chem., 1996, 112, 9-14.
[http://dx.doi.org/10.1016/1381-1169(96)00185-9]
Kiso, Y.; Saeki, K. Jpn; Kokai Tokyo Koho: JP, 1977, p. 52036617.
[http://dx.doi.org/10.1021/ja307924a] [PMID: 23171468]
(b) Tanaka, R.; Yamashita, M.; Nozaki, K. Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes. J. Am. Chem. Soc., 2009, 131(40), 14168-14169.
[http://dx.doi.org/10.1021/ja903574e] [PMID: 19775157]
[http://dx.doi.org/10.1039/b607993h] [PMID: 17028673]
(b) Hayashi, H.; Ogo, S.; Fukuzumi, S. Aqueous hydrogenation of carbon dioxide catalysed by water-soluble ruthenium aqua complexes under acidic conditions. Chem. Commun. (Camb.), 2004, (23), 2714-2715.
[http://dx.doi.org/10.1039/b411633j] [PMID: 15568081]
[http://dx.doi.org/10.1016/j.apcata.2011.12.017]
[http://dx.doi.org/10.1016/j.apcata.2011.09.028]
[http://dx.doi.org/10.1016/j.molcata.2009.09.018]
[http://dx.doi.org/10.1016/j.molcata.2009.10.017]
[http://dx.doi.org/10.1016/j.molcata.2008.08.019]
[http://dx.doi.org/10.1039/b616977e]
[http://dx.doi.org/10.1016/j.mcat.2017.12.005]
[http://dx.doi.org/10.1016/j.jcou.2018.04.015]
[http://dx.doi.org/10.1039/C7DT03754F] [PMID: 29220049]
[http://dx.doi.org/10.1002/slct.201700130]
[http://dx.doi.org/10.1016/j.molcata.2008.10.023]
[http://dx.doi.org/10.1016/j.jcis.2006.05.014] [PMID: 16780859]
[http://dx.doi.org/10.1186/1752-153X-6-S2-S10] [PMID: 22594435]
(b) Kim, K.S. Charge transfer transition accompanying x-ray photoionization in transition-metal compounds. J. Electron Spectrosc. Relat. Phenom., 1974, 3, 217.
[http://dx.doi.org/10.1016/0368-2048(74)80012-5]
[http://dx.doi.org/10.1016/j.fuproc.2016.07.015]
(b) Wang, Y.; Qu, F.; Liu, J.; Wang, Y.; Zhou, J. Ruan, S. Enhanced H2S sensing characteristics of CuO-NiO core-shell microspheres sensors. Sens. Actuator B-Chem., 2015, 209, 515-523.
[http://dx.doi.org/10.1016/j.snb.2014.12.010]
(c) Arellano, U.; Shen, J.M.; Wanga, J.A.; Timko, M.T.; Chen, L.F.; Rodríguez, J.T.V.; Asomoza, M.; Estrella, A.; Vargas, O.A.G.; Llanos, M.E. Dibenzothiophene oxidation in a model diesel fuel using CuO/GC catalysts and H2O2 in the presence of acetic acid under acidic condition. Fuel, 2015, 149, 15-25.
[http://dx.doi.org/10.1016/j.fuel.2014.11.001]
[http://dx.doi.org/10.1007/s40097-017-0235-4]
[http://dx.doi.org/10.1016/j.cattod.2005.07.168]
[http://dx.doi.org/10.1039/C6RA26535A]
[http://dx.doi.org/10.1039/C6RA00104A]
[http://dx.doi.org/10.1039/c1cp20453j] [PMID: 21892473]
[http://dx.doi.org/10.1016/j.cattod.2013.11.035]
(b) Himeda, Y. Highly efficient hydrogen evolution by decomposition of formic acid using an iridium catalyst with 4,4′-dihydroxy-2,2′-bipyridine. Green Chem., 2009, 11, 2018-2022.
[http://dx.doi.org/10.1039/b914442k]
(c) Hyde, J.R.; Walsh, B.; Singh, J.; Poliakoff, M. Continuous hydrogenation reactions in supercritical CO2 “without gases”. Green Chem., 2005, 7, 357-361.
[http://dx.doi.org/10.1039/b419276a]
(d) Fan, Li.; Sakaiya, Y.; Fujimoto, K. Low-temperature methanol synthesis from carbon dioxide and hydrogen via formic ester. App. Catal. Gen, 1999, 180, L11-L13.
(e) Darensbourg, D.J.; Ovalles, C. Anionic Group 6B metal carbonyls as homogeneous catalysts for carbon dioxide/hydrogen activation. The production of alkyl formates. J. Am. Chem. Soc., 1984, 106, 3750-3754.
[http://dx.doi.org/10.1021/ja00325a007]
[http://dx.doi.org/10.1016/0022-328X(94)84030-X]
(b) Jessop, P.G.; Ikariya, T.; Noyori, R. Homogeneous catalytic hydrogenation of supercritical carbon dioxide. Nature, 1994, 368, 231.
[http://dx.doi.org/10.1038/368231a0]
(c) Gassner, F.; Leitner, W. Hydrogenation of carbon dioxide to formic acid using water-soluble rhodium catalysts J. Chem. Sot. Chem. Commun., 1993, 1465-1466.
[http://dx.doi.org/10.1007/0-306-47510-3]
(b) Cavani, F.; Trifiro, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today, 1991, 11, 173-301.
[http://dx.doi.org/10.1016/0920-5861(91)80068-K]
[http://dx.doi.org/10.1002/chem.201702010] [PMID: 28742929]
(b) Chang, H-C.; Lo, F-C.; Liu, W-C.; Lin, T-H.; Liaw, W-F.; Kuo, T-S.; Lee, W-Z. Ambient stable trigonal bipyramidal copper(III) complexes equipped with an exchangeable axial ligand. Inorg. Chem., 2015, 54(11), 5527-5533.
[http://dx.doi.org/10.1021/acs.inorgchem.5b00603] [PMID: 25993313]
(c) Casitas, A.; Ribas, X. The role of organometallic copper(III) complexes in homogeneous catalysis Chem. Sci. (Camb.), 2013, 4, 2301.
[http://dx.doi.org/10.1039/c3sc21818]