[2]
Bundy, D.A.P. The global burden of intestinal nematode disease. Trans. R. Soc. Trop. Med. Hyg., 1994, 88(3), 259-261.
[3]
Lamy, E.; van Harten, S.; Sales-Baptista, E.; Guerra, M.M.M.; de Almeida, A.M. Factors influencing livestock productivity. In: Environmental stress and amelioration in livestock production; Springer, 2012; pp. 19-51.
[4]
Conteh, L.; Engels, T.; Molyneux, D.H. Socioeconomic aspects of neglected tropical diseases. Lancet, 2010, 375(9710), 239-247.
[5]
James, C.E.; Hudson, A.L.; Davey, M.W. Drug resistance mechanisms in helminths: Is it survival of the fittest? Trends Parasitol., 2009, 25(7), 328-335.
[6]
Thamsborg, S.M.; Roepstorff, A.; Nejsum, P.; Mejer, H. Alternative approaches to control of parasites in livestock: Nordic and Baltic perspectives. Acta Vet. Scand., 2010, 52(1), S27.
[7]
Gubler, D.J. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol., 2002, 10(2), 100-103.
[9]
Lien, P.T.K.; Duoc, V.T.; Gavotte, L.; Cornillot, E.; Nga, P.T.; Briant, L.; Frutos, R.; Duong, T.N. Role of Aedes aegypti and Aedes albopictus during the 2011 dengue fever epidemics in Hanoi, Vietnam. Asian Pac. J. Trop. Med., 2015, 8(7), 543-548.
[10]
Hay, S.I.; Battle, K.E.; Pigott, D.M.; Smith, D.L.; Moyes, C.L.; Bhatt, S.; Brownstein, J.S.; Collier, N.; Myers, M.F.; George, D.B. Global mapping of infectious disease. Phil. Trans. R. Soc. B., 2013, 368(1614)20120250
[11]
Gubler, D.J. The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res., 2002, 33(4), 330-342.
[12]
Hemingway, J.; Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol., 2000, 45(1), 371-391.
[13]
Benelli, G. Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: A systematic review. Parasitol. Res., 2015, 114(9), 3201-3212.
[14]
Mehlhorn, H. Nanoparticles in the fight against parasites; Springer, 2016, p. 8.
[15]
Athanasiadou, S.; Githiori, J.; Kyriazakis, I. Medicinal plants for helminth parasite control: Facts and fiction. Animal, 2007, 1(9), 1392-1400.
[16]
Wink, M. Medicinal plants: A source of anti-parasitic secondary metabolites. Molecules, 2012, 17(11), 12771-12791.
[17]
Goodsell, D.S. Bionanotechnology: Lessons from nature; John Wiley & Sons, 2004.
[18]
Benelli, G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: A review. Parasitol. Res., 2016, 115(1), 23-34.
[19]
Ajaiyeoba, E.; Onocha, P.; Olarenwaju, O. In vitro anthelmintic properties of Buchholzia coriaceae and Gynandropsis gynandra extracts. Pharm. Biol., 2001, 39(3), 217-220.
[20]
Rahuman, A.A.; Gopalakrishnan, G.; Ghouse, B.S.; Arumugam, S.; Himalayan, B. Effect of Feronia limonia on mosquito larvae. Fitoterapia, 2000, 71(5), 553-555.
[21]
Finney, D.J.; Tattersfield, F. Probit analysis; Cambridge University Press: Cambridge, 1952.
[22]
Basch, E.; Gabardi, S.; Ulbricht, C. Bitter melon (Momordica charantia): A review of efficacy and safety. Am. J. Health Syst. Pharm., 2003, 60(4), 356-359.
[23]
Thenmozhi, A.J.; Subramanian, P. Momordica charantia (bitter melon) decreases serum/tissue lipid parameters in hyperammonemic rats. Int. J. Nutr. Pharmacol. Neurol. Dis., 2013, 3(3), 249.
[24]
Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601), 2176-2179.
[25]
Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996, 12(3), 788-800.
[26]
Singh, A.V.; Jahnke, T.; Kishore, V.; Park, B-W.; Batuwangala, M.; Bill, J.; Sitti, M. Cancer cells biomineralize ionic gold into nanoparticles-microplates via secreting defense proteins with specific gold-binding peptides. Acta Biomater., 2018, 71, 61-71.
[27]
Das, R.; Nath, S.S.; Chakdar, D.; Gope, G.; Bhattacharjee, R. Synthesis of silver nanoparticles and their optical properties. J. Exp. Nanosci., 2010, 5(4), 357-362.
[28]
Rashid, M.M.O.; Ferdous, J.; Banik, S.; Islam, M.R.; Uddin, A.M.; Robel, F.N. Anthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and Momordica charantia fruit extract. BMC Complement. Altern. Med., 2016, 16(1), 242.
[29]
Ajitha, B.; Reddy, Y.A.K.; Reddy, P.S. Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: Evaluation of their innate antimicrobial and catalytic activities. J. Photochem. Photobiol. B Biol., 2015, 146, 1-9.
[30]
Malaikozhundan, B.; Vaseeharan, B.; Vijayakumar, S.; Sudhakaran, R.; Gobi, N.; Shanthini, G. Antibacterial and antibiofilm assessment of Momordica charantia fruit extract coated silver nanoparticle. Biocatal. Agric. Biotechnol., 2016, 8, 189-196.
[31]
Singh, A.V.; Gemmati, D.; Kanase, A.; Pandey, I.; Misra, V.; Kishore, V.; Jahnke, T.; Bill, J. Nanobiomaterials for vascular biology and wound management: A review. Veins Lymph., 2018, 7(2), 34-47.
[32]
Zhang, F.; Lin, L.; Xie, J. A mini-review of chemical and biological properties of polysaccharides from Momordica charantia. Int. J. Biol. Macromol., 2016, 92, 246-253.
[33]
Roopan, S.M.; Madhumitha, G.; Rahuman, A.A.; Kamaraj, C.; Bharathi, A.; Surendra, T. Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind. Crops Prod., 2013, 43, 631-635.
[34]
Shankar, S.S.; Ahmad, A.; Sastry, M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog., 2003, 19(6), 1627-1631.
[35]
Singh, A.V.; Vyas, V.; Maontani, E.; Cartelli, D.; Parazzoli, D.; Oldani, A.; Zeri, G.; Orioli, E.; Gemmati, D.; Zamboni, P. Investigation of in vitro cytotoxicity of the redox state of ionic iron in neuroblastoma cells. J. Neurosci. Rural Pract., 2012, 3(3), 301-310.
[36]
Singh, A.V.; Batuwangala, M.; Mundra, R.; Mehta, K.; Patke, S.; Falletta, E.; Patil, R.; Gade, W.N. Biomineralized anisotropic gold microplate–macrophage interactions reveal frustrated phagocytosis-like phenomenon: A novel paclitaxel drug delivery vehicle. ACS Appl. Mater. Interfaces, 2014, 6(16), 14679-14689.
[37]
Unfried, K.; Albrecht, C.; Klotz, L-O.; Von Mikecz, A.; Grether-Beck, S.; Schins, R.P. Cellular responses to nanoparticles: Target structures and mechanisms. Nanotoxicol, 2007, 1(1), 52-71.
[38]
Ndhlala, A.R.; Ghebrehiwot, H.M.; Ncube, B.; Aremu, A.O.; Gruz, J.; Subrtova, M.; Dolezal, K.; du Plooy, C.P.; Abdelgadir, H.A.; Van, S.J. Antimicrobial, anthelmintic activities and characterisation of functional phenolic acids of Achyranthes aspera Linn: A medicinal plant used for the treatment of wounds and ringworm in East Africa. Front. Pharmacol., 2015, 6, 274.
[39]
Pueblos, K.R.S.; Bajalla, M.; Pacheco, D.; Ganot, S.; Paig, D.; Tapales, R.; Lagare, J.; Quimque, M.T.J. In: Comparative anthelmintic
activity investigation of selected ethno-medicinal weeds,
AIP Conference Proceedings, AIP Publishing: , 2017. 020027.
[40]
Pappas, P.W. Acid phosphatase activity in the isolated brush border membrane of the tapeworm, Hymenolepis diminuta: Partial characterization and differentiation from the alkaline phosphatase activity. J. Cell. Biochem., 1988, 37(4), 395-403.
[41]
Tomar, R.S.; Preet, S. Evaluation of anthelmintic activity of biologically synthesized silver nanoparticles against the gastrointestinal nematode, Haemonchus contortus. J. Helminthol., 2017, 91(4), 454-461.
[42]
Khan, Y.A.; Singh, B.R.; Ullah, R.; Shoeb, M.; Naqvi, A.H.; Abidi, S.M.A. Anthelmintic effect of biocompatible Zinc Oxide Nanoparticles (ZnO NPs) on Gigantocotyle explanatum, a neglected parasite of Indian water buffalo. PLoS One, 2015, 10(7)e0133086
[43]
Govindarajan, M.; Rajeswary, M.; Muthukumaran, U.; Hoti, S.L.; Khater, H.F.; Benelli, G. Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: A potent eco-friendly tool against malaria and arbovirus vectors. J. Photochem. Photobiol. B Biol., 2016, 161, 482-489.
[44]
Velu, K.; Elumalai, D.; Hemalatha, P.; Janaki, A.; Babu, M.; Hemavathi, M.; Kaleena, P.K. Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors. Environ. Sci. Pollut. Res. Int., 2015, 22(22), 17769-17779.
[45]
Roni, M.; Murugan, K.; Panneerselvam, C.; Subramaniam, J.; Nicoletti, M.; Madhiyazhagan, P.; Dinesh, D.; Suresh, U.; Khater, H.F.; Wei, H.; Canale, A.; Alarfaj, A.A.; Munusamy, M.A.; Higuchi, A.; Benelli, G. Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol. Environ. Saf., 2015, 121, 31-38.
[46]
Govindarajan, M.; Kadaikunnan, S.; Alharbi, N.S.; Benelli, G. Single-step biological fabrication of colloidal silver nanoparticles using Hugonia mystax: Larvicidal potential against Zika virus, dengue, and malaria vector mosquitoes. Artif. Cells Nanomed. Biotechnol., 2017, 45(7), 1317-1325.
[47]
Lallawmawma, H.; Sathishkumar, G.; Sarathbabu, S.; Ghatak, S.; Sivaramakrishnan, S.; Gurusubramanian, G.; Kumar, N.S. Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus Say (Diptera: Culicidae). Environ. Sci. Pollut. Res. Int., 2015, 22(22), 17753-17768.
[48]
Poopathi, S.; De Britto, L.J.; Praba, V.L.; Mani, C.; Praveen, M. Synthesis of silver nanoparticles from Azadirachta indica– a most effective method for mosquito control. Environ. Sci. Pollut. Res. Int., 2015, 22(4), 2956-2963.
[49]
Balakrishnan, S.; Srinivasan, M.; Mohanraj, J. Biosynthesis of silver nanoparticles from mangrove plant (Avicennia marina) extract and their potential mosquito larvicidal property. J. Parasit. Dis., 2016, 40(3), 991-996.
[50]
Jayaseelan, C.; Rahuman, A.A.; Rajakumar, G.; Vishnu, K.A.; Santhoshkumar, T.; Marimuthu, S.; Bagavan, A.; Kamaraj, C.; Zahir, A.A.; Elango, G. Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia miers. Parasitol. Res., 2011, 109(1), 185-194.
[51]
Kumarasingha, R.; Preston, S.; Yeo, T-C.; Lim, D.S.L.; Tu, C-L.; Palombo, E.A.; Shaw, J.M.; Gasser, R.B.; Boag, P.R. Anthelmintic activity of selected ethno-medicinal plant extracts on parasitic stages of Haemonchus contortus. Parasit. Vectors, 2016, 9(1), 187.
[52]
Hassan, S.; Singh, A.V. Biophysicochemical perspective of nanoparticle compatibility: A critically ignored parameter in nanomedicine. J. Nanosci. Nanotechnol., 2014, 14(1), 402-414.
[53]
Singh, A.V.; Laux, P.; Luch, A.; Sudrik, C.; Wiehr, S.; Wild, A-M.; Santomauro, G.; Bill, J.; Sitti, M. Review of emerging concepts in nanotoxicology: Opportunities and challenges for safer nanomaterial design. Toxicol. Mech. Methods, 2019, 4, 1-10.
[54]
Singh, A.V.; Jahnke, T.; Wang, S.; Xiao, Y.; Alapan, Y.; Kharratian, S.; Onbasli, M.C.; Kozielski, K.; David, H.; Richter, G.; Bill, J.; Laux, P.; Luch, A.; Sitti, M. Anisotropic gold nanostructures: Optimization via in silico modeling for hyperthermia. ACS Appl. Nano. Mater., 2018, 1(11), 6205-6216.
[55]
Singh, A.V.; Alapan, Y.; Jahnke, T.; Laux, P.; Luch, A.; Aghakhani, A.; Kharratian, S.; Onbasli, M.C.; Bill, J.; Sitti, M. Seed-mediated synthesis of plasmonic gold nanoribbons using cancer cells for hyperthermia applications. J. Mater. Chem., 2018, 6(46), 7573-7581.
[56]
Sheykhansari, S.; Kozielski, K.; Bill, J.; Sitti, M.; Gemmati, D.; Zamboni, P.; Singh, A.V. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: A review. Cell Death Dis., 2018, 9(3), 348.
[57]
Singh, A.V.; Raymond, M.; Pace, F.; Certo, A.; Zuidema, J.M.; McKay, C.A.; Gilbert, R.J.; Lu, X.L.; Wan, L.Q. Astrocytes increase ATP exocytosis mediated calcium signaling in response to microgroove structures. Sci. Rep., 2015, 5, 7847.
[58]
Zhang, T.; Wang, L.; Chen, Q.; Chen, C. Cytotoxic potential of silver nanoparticles. Yonsei Med. J., 2014, 55(2), 283-291.
[59]
Van Haute, D.; Liu, A.T.; Berlin, J.M. Coating metal nanoparticle surfaces with small organic molecules can reduce nonspecific cell uptake. ACS Nano, 2018, 12(1), 117-127.