[1]
World Malaria Report 2015. Geneva: World Health Organization.
[2]
Foley, M.; Tilley, L. Quinoline Antimalarials: Mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther., 1998, 79, 55-87.
[3]
Flannery, E.L.; Chatterjee, A.K.; Winzeler, E.A. Antimalarial drug-discovery approaches and progress towards new medicines. Nat. Rev. Microbiol., 2013, 11, 849-862.
[4]
Vangapandu, S.; Jain, M.; Kaur, K.; Patil, P.; Patel, S.R.; Jain, R. Recent advances in antimalarial drug development. Med. Res. Rev., 2007, 27, 65-107.
[5]
Dondorp, A.M.; Yeung, S.; White, L.; Nguon, C.; Day, N.P.J.; Socheat, D.; von Seidlein, L. Artemisinin resistance: Current status and scenarios for containment. Nat. Rev. Microbiol., 2010, 8, 272-280.
[6]
White, N.J. Antimalarial drug resistance. J. Clin. Invest., 2004, 113, 1084-1092.
[7]
Sharma, N.; Mohanakrishnan, D.; Shard, A.; Sharma, A. Saima; Sinha, A.K.; Sahal, D. Stilbene-Chalcone hybrids: Design, synthesis, and evaluation as a new class of antimalarial scaffolds that trigger cell death through stage specific apoptosis. J. Med. Chem., 2012, 55, 297-311.
[8]
Birkett, A.J.; Moorthy, V.S.; Loucq, C.; Chitnis, C.E.; Kaslow, D.C. Malaria vaccine R&D in the decade of vaccines: Breakthroughs, challenges and opportunities. Vaccine, 2013, 31(Suppl. 2), B233-B243.
[9]
Lopez, A.E. Privileged scaffolds in medicinal chemistry: Design,
synthesis, evaluation. Royal Soc. Chem. (London), 2015, November,
132-146.
[10]
Musiol, R.; Magdziarz, T.; Kurczyk, A. Quinoline scaffold as a
privileged substructure in antimicrobial drugs. Science against microbial
pathogens: Communicating current research and technological
advances,2011, Méndez-Vilas, A. (Ed.), pp. 72-83.
[11]
Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: A versatile heterocyclic. Saudi Pharm. J., 2013, 21, 1-12.
[12]
Kaur, K.; Jain, M.; Reddy, R.P.; Jain, R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med. Chem., 2010, 45, 3245-3264.
[13]
Vandekerckhove, S.; D’hooghe, M. Quinoline-based antimalarial hybrid compounds. Bioorg. Med. Chem., 2015, 23, 5098-5119.
[14]
Rosenthal, P.J. Antimalarial chemotherapy: Mechanisms of action, resistance, and new directions in drug discovery; Humana Press: Totowa, 2001.
[15]
Singh, S.K.; Singh, S. A brief history of quinoline as antimalarial agents. Int. J. Pharm. Sci. Rev. Res., 2014, 25, 295-302.
[16]
Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J., 2011, 10, 144-144.
[17]
Bawa, S.; Kumar, S.; Drabu, S.; Kumar, R. Structural modifications of quinoline-based antimalarial agents: Recent developments. J. Pharm. Bioallied Sci., 2010, 2, 64-71.
[18]
Baragana, B.; Hallyburton, I.; Lee, M.C.S.; Norcross, N.R.; Grimaldi, R.; Otto, T.D.; Proto, W.R.; Blagborough, A.M.; Meister, S.; Wirjanata, G.; Ruecker, A.; Upton, L.M.; Abraham, T.S.; Almeida, M.J.; Pradhan, A.; Porzelle, A.; Martinez, M.S.; Bolscher, J.M.; Woodland, A.; Norval, S.; Zuccotto, F.; Thomas, J.; Simeons, F.; Stojanovski, L.; Osuna-Cabello, M.; Brock, P.M.; Churcher, T.S.; Sala, K.A.; Zakutansky, S.E.; Jimenez-Diaz, M.B.; Sanz, L.M.; Riley, J.; Basak, R.; Campbell, M.; Avery, V.M.; Sauerwein, R.W.; Dechering, K.J.; Noviyanti, R.; Campo, B.; Frearson, J.A.; Angulo-Barturen, I.; Ferrer-Bazaga, S.; Gamo, F.J.; Wyatt, P.G.; Leroy, D.; Siegl, P.; Delves, M.J.; Kyle, D.E.; Wittlin, S.; Marfurt, J.; Price, R.N.; Sinden, R.E.; Winzeler, E.A.; Charman, S.A.; Bebrevska, L.; Gray, D.W.; Campbell, S.; Fairlamb, A.H.; Willis, P.A.; Rayner, J.C.; Fidock, D.A.; Read, K.D.; Gilbert, I.H. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature, 2015, 522, 315-320.
[19]
Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med., 2011, 17, 1217-1220.
[20]
Banek, K.; Lalani, M.; Staedke, S.G.; Chandramohan, D. Adherence to artemisinin-based combination therapy for the treatment of malaria: A systematic review of the evidence. Malar. J., 2014, 13, 7.
[21]
Sinclair, D.; Zani, B.; Donegan, S.; Olliaro, P.; Garner, P. Artemisinin-based combination therapy for treating uncomplicated malaria. Cochrane Database Syst. Rev., 2009.CD007483
[22]
Price, R.N. Artemisinin drugs: Novel antimalarial agents. Expert Opin. Investig. Drugs, 2000, 9, 1815-1827.
[23]
Noedl, H.; Se, Y.; Schaecher, K.; Smith, B.L.; Socheat, D.; Fukuda, M.M. Evidence of artemisinin-resistant malaria in Western Cambodia. N. Engl. J. Med., 2008, 359, 2619-2620.
[24]
Mita, T.; Tanabe, K. Evolution of Plasmodium falciparum drug resistance: Implications for the development and containment of artemisinin resistance. Jpn. J. Infect. Dis., 2012, 65, 465-475.
[25]
Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; Ringwald, P.; Silamut, K.; Imwong, M.; Chotivanich, K.; Lim, P.; Herdman, T.; An, S.S.; Yeung, S.; Singhasivanon, P.; Day, N.P.J.; Lindegardh, N.; Socheat, D.; White, N.J. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med., 2009, 361, 455-467.
[26]
Paloque, L.; Ramadani, A.P.; Mercereau-Puijalon, O.; Augereau, J-M.; Benoit-Vical, F. Plasmodium falciparum: Multifaceted resistance to artemisinins. Malar. J., 2016, 15, 1-12.
[27]
Wongsrichanalai, C.; Sibley, C.H. Fighting drug-resistant Plasmodium falciparum: The challenge of artemisinin resistance. Clin. Microbiol. Infect., 2013, 19, 908-916.
[28]
Kumar, R.; Kumar, I.; Sharma, R.; Sharma, U. Catalyst and solvent-free alkylation of quinoline N-oxides with olefins: A direct access to quinoline-substituted [small alpha]-hydroxy carboxylic derivatives. Org. Biomol. Chem., 2016, 14, 2613-2617.
[29]
Sharma, R.; Kumar, R.; Kumar, I.; Sharma, U. RhIII-catalyzed dehydrogenative coupling of quinoline N-oxides with alkenes: N-oxide as traceless directing group for remote C–H activation. Eur. J. Org. Chem., 2015, 2015, 7519-7528.
[30]
Pagola, S.; Stephens, P.W.; Bohle, D.S.; Kosar, A.D.; Madsen, S.K. The structure of malaria pigment [beta]-haematin. Nature, 2000, 404, 307-310.
[31]
Pandey, K.C.; Wang, S.X.; Sijwali, P.S.; Lau, A.L.; McKerrow, J.H.; Rosenthal, P.J. The Plasmodium falciparum cysteine protease falcipain-2 captures its substrate, hemoglobin, via a unique motif. Proc. Natl. Acad. Sci. USA, 2005, 102, 9138-9143.
[32]
Sijwali, P.S.; Rosenthal, P.J. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 2004, 101, 4384-4389.
[33]
Francis, S.E.; Sullivan, D.J.; Goldberg, D.E. Hemoglobin metabolism in the malaria parasite Plasmodium Falciparum. Annu. Rev. Microbiol., 1997, 51, 97-123.
[34]
Trager, W.; Jensen, J.B. Human malaria parasites in continuous culture. Science, 1976, 193, 673-675.
[35]
Lambros, C.; Vanderberg, J.P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J. Parasitol., 1979, 65, 418-420.
[36]
Smilkstein, M.; Sriwilaijaroen, N.; Kelly, J.X.; Wilairat, P.; Riscoe, M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob. Agents Chemother., 2004, 48, 1803-1806.
[37]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30, 2785-2791.
[38]
Rajendran, V. Structural analysis of oncogenic mutation of isocitrate dehydrogenase 1. Mol. Biosyst., 2016, 12, 2276-2287.
[39]
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4, 435-447.
[40]
Van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26, 1701-1718.
[41]
Baran, M.; Mazerski, J. Molecular modelling of membrane sterols with the use of the GROMOS 96 force field. Chem. Phys. Lipids, 2002, 120, 21-31.
[42]
Kerr, I.D.; Lee, J.H.; Pandey, K.C.; Harrison, A.; Sajid, M.; Rosenthal, P.J.; Brinen, L.S. Structures of falcipain-2 and falcipain-3 bound to small molecule inhibitors: Implications for substrate specificity. J. Med. Chem., 2009, 52, 852-857.
[43]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng., 1995, 8, 127-134.
[44]
Rajendran, V.; Sethumadhavan, R. Drug resistance mechanism of PncA in Mycobacterium tuberculosis. J. Biomol. Struct. Dyn., 2014, 32, 209-221.
[45]
Purohit, R.; Rajendran, V.; Sethumadhavan, R. Studies on adaptability of binding residues flap region of TMC-114 resistance HIV-1 protease mutants. J. Biomol. Struct. Dyn., 2011, 29, 137-152.
[46]
Kanyiva, K.S.; Nakao, Y.; Hiyama, T. Nickel-catalyzed addition of pyridine-N-oxides across alkynes. Angew. Chem. Int. Ed., 2007, 46, 8872-8874.
[47]
Cho, S.H.; Hwang, S.J.; Chang, S. Palladium-catalyzed C−H functionalization of pyridine N-oxides: Highly selective alkenylation and direct arylation with unactivated arenes. J. Am. Chem. Soc., 2008, 130, 9254-9256.
[48]
Campeau, L-C.; Stuart, D.R.; Leclerc, J-P.; Bertrand-Laperle, M.; Villemure, E.; Sun, H-Y.; Lasserre, S.; Guimond, N.; Lecavallier, M.; Fagnou, K. Palladium-catalyzed direct arylation of azine and azole N-oxides: Reaction development, scope and applications in synthesis. J. Am. Chem. Soc., 2009, 131, 3291-3306.
[49]
Araki, Y.; Kobayashi, K.; Yonemoto, M.; Kondo, Y. Functionalisation of heteroaromatic N-oxides using organic superbase catalyst. Org. Biomol. Chem., 2011, 9, 78-80.
[50]
Ryu, J.; Cho, S.H.; Chang, S. A Versatile rhodium(I) catalyst system for the addition of heteroarenes to both alkenes and alkynes by a C-H bond activation. Angew. Chem. Int. Ed., 2012, 51, 3677-3681.
[51]
Wu, Z.; Pi, C.; Cui, X.; Bai, J.; Wu, Y. Direct C-2 alkylation of quinoline N-oxides with ethers via palladium-catalyzed dehydrogenative cross-coupling reaction. Adv. Synth. Catal., 2013, 355, 1971-1976.
[52]
Wu, Z.; Song, H.; Cui, X.; Pi, C.; Du, W.; Wu, Y. Sulfonylation of quinoline N-oxides with aryl sulfonyl chlorides via copper-catalyzed C-H bonds activation. Org. Lett., 2013, 15, 1270-1273.
[53]
Chen, X.; Zhu, C.; Cui, X.; Wu, Y. Direct 2-acetoxylation of quinoline N-oxides via copper catalyzed C-H bond activation. Chem. Commun., 2013, 49, 6900-6902.
[54]
Zhu, C.; Yi, M.; Wei, D.; Chen, X.; Wu, Y.; Cui, X. Copper-catalyzed direct amination of quinoline N-oxides via C-H bond activation under mild conditions. Org. Lett., 2014, 16, 1840-1843.
[55]
Chen, X.; Li, X.; Qu, Z.; Ke, D.; Qu, L.; Duan, L.; Mai, W.; Yuan, J.; Chen, J.; Zhao, Y. H-phosphonate-mediated amination of quinoline N-oxides with tertiary amines: A mild and metal-free synthesis of 2-dialkylaminoquinolines. Adv. Synth. Catal., 2014, 356, 1979-1985.
[56]
Yan, G.; Borah, A.J.; Yang, M. Recent advances in catalytic functionalization of N-oxide compounds via C-H bond activation. Adv. Synth. Catal., 2014, 356, 2375-2394.
[57]
Sharma, R.; Thakur, K.; Kumar, R.; Kumar, I.; Sharma, U. Distant C-H activation/functionalization: A new horizon of selectivity beyond proximity. Catal. Rev., 2015, 57, 345-405.
[58]
Kaushik, N.K.; Bagavan, A.; Rahuman, A.A.; Zahir, A.A.; Kamaraj, C.; Elango, G.; Jayaseelan, C.; Kirthi, A.V.; Santhoshkumar, T.; Marimuthu, S.; Rajakumar, G.; Tiwari, S.K.; Sahal, D. Evaluation of antiplasmodial activity of medicinal plants from North Indian Buchpora and South Indian Eastern Ghats. Malar. J., 2015, 14, 1-8.
[59]
Valdés, A.F-C. Acridine and acridinones: Old and new structures with antimalarial activity. Open Med. Chem. J., 2011, 5, 11-20.
[60]
Chugh, M.; Sundararaman, V.; Kumar, S.; Reddy, V.S.; Siddiqui, W.A.; Stuart, K.D.; Malhotra, P. Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 2013, 110, 5392-5397.