Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

An Update on the Use of Alginate in Additive Biofabrication Techniques

Author(s): Amoljit Singh Gill, Parneet Kaur Deol and Indu Pal Kaur*

Volume 25, Issue 11, 2019

Page: [1249 - 1264] Pages: 16

DOI: 10.2174/1381612825666190423155835

Price: $65

Abstract

Background: Solid free forming (SFF) technique also called additive manufacturing process is immensely popular for biofabrication owing to its high accuracy, precision and reproducibility.

Method: SFF techniques like stereolithography, selective laser sintering, fused deposition modeling, extrusion printing, and inkjet printing create three dimension (3D) structures by layer by layer processing of the material. To achieve desirable results, selection of the appropriate technique is an important aspect and it is based on the nature of biomaterial or bioink to be processed.

Result & Conclusion: Alginate is a commonly employed bioink in biofabrication process, attributable to its nontoxic, biodegradable and biocompatible nature; low cost; and tendency to form hydrogel under mild conditions. Furthermore, control on its rheological properties like viscosity and shear thinning, makes this natural anionic polymer an appropriate candidate for many of the SFF techniques. It is endeavoured in the present review to highlight the status of alginate as bioink in various SFF techniques.

Keywords: Stereolithography, selective laser sintering, fused deposition modeling, extrusion printing, inkjet printing, bioink.

[1]
Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 2008; 60(2): 184-98.
[http://dx.doi.org/10.1016/j.addr.2007.08.041] [PMID: 18045729]
[2]
Brunso J, Franco M, Constantinescu T, Barbier L, Santamaría JA, Alvarez J. Custom-machined miniplates and bone-supported guides for orthognathic surgery: A new surgical procedure. J Oral Maxillofac Surg 2016; 74(5): 1061.e1-1061.e12.
[http://dx.doi.org/10.1016/j.joms.2016.01.016] [PMID: 26868183]
[3]
Javan R, Herrin D, Tangestanipoor A. Understanding spatially complex segmental and branch anatomy using 3D Printing: Liver, lung, prostate, coronary arteries, and circle of willis. Acad Radiol 2016; 23(9): 1183-9.
[http://dx.doi.org/10.1016/j.acra.2016.04.010] [PMID: 27283072]
[4]
Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 2006; 103(8): 2480-7.
[http://dx.doi.org/10.1073/pnas.0507681102] [PMID: 16477028]
[5]
Pereira RF, Barrias CC, Granja PL, Bartolo PJ. Advanced biofabrication strategies for skin regeneration and repair. Nanomedicine (Lond) 2013; 8(4): 603-21.
[http://dx.doi.org/10.2217/nnm.13.50] [PMID: 23560411]
[6]
Ranga A, Lutolf MP. High-throughput approaches for the analysis of extrinsic regulators of stem cell fate. Curr Opin Cell Biol 2012; 24(2): 236-44.
[http://dx.doi.org/10.1016/j.ceb.2012.01.006] [PMID: 22301436]
[7]
Tam MD, Latham TR, Lewis M, et al. A pilot study assessing the impact of 3-D printed models of aortic aneurysms on management decisions in EVAR planning. Vasc Endovascular Surg 2016; 50(1): 4-9.
[http://dx.doi.org/10.1177/1538574415623651] [PMID: 26912523]
[8]
Melchels FP, Tonnarelli B, Olivares AL, et al. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials 2011; 32(11): 2878-84.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.023] [PMID: 21288567]
[9]
Lee JW, Kang KS, Lee SH, Kim J-Y, Lee B-K, Cho D-W. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials 2011; 32(3): 744-52.
[http://dx.doi.org/10.1016/j.biomaterials.2010.09.035] [PMID: 20933279]
[10]
Kim K, Dean D, Wallace J, Breithaupt R, Mikos AG, Fisher JP. The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials 2011; 32(15): 3750-63.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.016] [PMID: 21396709]
[11]
Seol YJ, Kang TY, Cho DW. Solid freeform fabrication technology applied to tissue engineering with various biomaterials. Soft Matter 2012; 8: 1730.
[http://dx.doi.org/10.1039/C1SM06863F]
[12]
Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng 2014; 16: 247-76.
[http://dx.doi.org/10.1146/annurev-bioeng-071813-105155] [PMID: 24905875]
[13]
Bártolo PJS. State of the art of solid freeform fabrication for soft and hard tissue engineering In: Brebbia CA, ed. Design and Nature III: Comparing Design in Nature with Science and Engineering. WIT Press, 2006; pp. 233-243. [http://dx.doi.org/10.2495/DN060231]
[14]
Axpe E, Oyen ML. Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci 2016; 17(12): 1976-87.
[http://dx.doi.org/10.3390/ijms17121976] [PMID: 27898010]
[15]
Wong KV, Hernandez A. A review of additive manufacturing. ISRN Mech Eng 2012; 2012208760
[http://dx.doi.org/10.5402/2012/208760]
[16]
Rengier F, Mehndiratta A, von Tengg-Kobligk H, et al. 3D printing based on imaging data: review of medical applications. Int J CARS 2010; 5(4): 335-41.
[http://dx.doi.org/10.1007/s11548-010-0476-x] [PMID: 20467825]
[17]
Winder J, Bibb R. Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg 2005; 63(7): 1006-15.
[http://dx.doi.org/10.1016/j.joms.2005.03.016] [PMID: 16003630]
[18]
Colin A, Boire JY. A novel tool for rapid prototyping and development of simple 3D medical image processing applications on PCs. Comput Methods Programs Biomed 1997; 53(2): 87-92.
[http://dx.doi.org/10.1016/S0169-2607(97)01807-5] [PMID: 9186045]
[19]
Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng 2015; 9: 4.
[http://dx.doi.org/10.1186/s13036-015-0001-4] [PMID: 25866560]
[20]
Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ. D.W. H. Additive manufacturing of tissues and organs. Prog Polym Sci 2012; 37: 1079-104.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.11.007]
[21]
Pereira RF, Bártolo PJ. Recent advances in additive biomanufacturing. In: Masood SH, ed.Comprehensive materials processing: Advances in additive manufacturing and tooling. Oxford: Elsevier 2014; pp. 265-84.
[http://dx.doi.org/10.1016/B978-0-08-096532-1.01009-8]
[22]
Lee JW, Kim JY, Cho DW. Solid free-form fabrication technology and its application to bone tissue engineering. Int J Stem Cells 2010; 3(2): 85-95.
[http://dx.doi.org/10.15283/ijsc.2010.3.2.85] [PMID: 24855546]
[23]
Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Prog Polym Sci 2010; 35: 403-40.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.01.006]
[24]
Catros S, Guillemot F, Nandakumar A, et al. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng Part C Methods 2012; 18(1): 62-70.
[http://dx.doi.org/10.1089/ten.tec.2011.0382] [PMID: 21895563]
[25]
Matsunaga YT, Morimoto Y, Takeuchi S. Molding cell beads for rapid construction of macroscopic 3D tissue architecture. Adv Mater 2011; 23(12): H90-4.
[http://dx.doi.org/10.1002/adma.201004375] [PMID: 21360782]
[26]
Miller JS. The billion cell construct: will three-dimensional printing get us there? PLoS Biol 2014; 12(6)e1001882
[http://dx.doi.org/10.1371/journal.pbio.1001882] [PMID: 24937565]
[27]
Haraguchi Y, Shimizu T, Sasagawa T, et al. Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat Protoc 2012; 7(5): 850-8.
[http://dx.doi.org/10.1038/nprot.2012.027] [PMID: 22481530]
[28]
Gaetani R, Doevendans PA, Metz CH, et al. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 2012; 33(6): 1782-90.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.003] [PMID: 22136718]
[29]
Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003; 24(13): 2363-78.
[http://dx.doi.org/10.1016/S0142-9612(03)00030-9] [PMID: 12699674]
[30]
Freyman TM, Yannas IV, Gibson LJ. Cellular materials as porous scaffolds for tissue engineering. Prog Mater Sci 2001; 46: 273-82.
[http://dx.doi.org/10.1016/S0079-6425(00)00018-9]
[31]
Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 2001; 7(5): 557-72.
[http://dx.doi.org/10.1089/107632701753213183] [PMID: 11694190]
[32]
Khalil S, Sun W. Bioprinting endothelial cells with alginate for 3D tissue constructs. J Biomech Eng 2009; 131(11)111002
[http://dx.doi.org/10.1115/1.3128729] [PMID: 20353253]
[33]
Jeon O, Bouhadir KH, Mansour JM, Alsberg E. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 2009; 30(14): 2724-34.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.034] [PMID: 19201462]
[34]
Chueh BH, Zheng Y, Torisawa YS, et al. Patterning alginate hydrogels using light-directed release of caged calcium in a microfluidic device. Biomed Microdevices 2010; 12(1): 145-51.
[http://dx.doi.org/10.1007/s10544-009-9369-6] [PMID: 19830565]
[35]
Cui J, Wang M, Zheng Y, Rodríguez Muñiz GM, del Campo A. Light-triggered cross-linking of alginates with caged Ca2+. Biomacromolecules 2013; 14(5): 1251-6.
[http://dx.doi.org/10.1021/bm400022h] [PMID: 23517470]
[36]
Higham AK, Bonino CA, Raghavan SR, Khan SA. Photo-activated ionic gelation of alginate hydrogel: real-time rheological monitoring of the two-step crosslinking mechanism. Soft Matter 2014; 10(27): 4990-5002.
[http://dx.doi.org/10.1039/C4SM00411F] [PMID: 24894636]
[37]
Heymann RR, Thum MD, Hardee AL, Falvey DE. Visible light initiated release of calcium ions through photochemical electron transfer reactions. Photochem Photobiol Sci 2017; 16(6): 1003-8.
[http://dx.doi.org/10.1039/C6PP00469E] [PMID: 28497836]
[38]
Elomaa L, Teixeira S, Hakala R, Korhonen H, Grijpma DW, Seppälä JV. Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomater 2011; 7(11): 3850-6.
[http://dx.doi.org/10.1016/j.actbio.2011.06.039] [PMID: 21763796]
[39]
Melchels FP, Bertoldi K, Gabbrielli R, Velders AH, Feijen J, Grijpma DW. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 2010; 31(27): 6909-16.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.068] [PMID: 20579724]
[40]
Arcaute K, Mann BK, Wicker RB. Practical use of hydrogels in stereolithography for tissue engineering applications. In: ed., Stereolithography. Springer, 2011; pp. 299-331. [http://dx.doi.org/10.1007/978-0-387-92904-0_12]
[41]
Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 2015; 7(4)045009
[http://dx.doi.org/10.1088/1758-5090/7/4/045009] [PMID: 26696527]
[42]
Gauvin R, Chen Y-C, Lee JW, et al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 2012; 33(15): 3824-34.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.048] [PMID: 22365811]
[43]
Melchels FP, Feijen J, Grijpma DW. A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 2009; 30(23-24): 3801-9.
[http://dx.doi.org/10.1016/j.biomaterials.2009.03.055] [PMID: 19406467]
[44]
Jansen J, Melchels FP, Grijpma DW, Feijen J. Fumaric acid monoethyl ester-functionalized poly(D,L-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography. Biomacromolecules 2009; 10(2): 214-20.
[http://dx.doi.org/10.1021/bm801001r] [PMID: 19090782]
[45]
Shie M-Y, Chang W-C, Wei L-J, et al. 3D printing of cytocompatible water-based light-cured polyurethane with hyaluronic acid for cartilage tissue engineering applications. Materials (Basel) 2017; 10(2): 136.
[http://dx.doi.org/10.3390/ma10020136] [PMID: 28772498]
[46]
Schüller-Ravoo S, Teixeira SM, Feijen J, Grijpma DW, Poot AA. Flexible and elastic scaffolds for cartilage tissue engineering prepared by stereolithography using poly(trimethylene carbonate)-based resins. Macromol Biosci 2013; 13(12): 1711-9.
[http://dx.doi.org/10.1002/mabi.201300399] [PMID: 24214105]
[47]
Lee K-W, Wang S, Fox BC, Ritman EL, Yaszemski MJ, Lu L. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules 2007; 8(4): 1077-84.
[http://dx.doi.org/10.1021/bm060834v] [PMID: 17326677]
[48]
Scalera F, Corcione CE, Montagna F, Sannino A, Maffezzoli A. Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering. Ceram Int 2014; 40: 15455-62.
[http://dx.doi.org/10.1016/j.ceramint.2014.06.117]
[49]
Sodian R, Loebe M, Hein A, et al. Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO J 2002; 48(1): 12-6.
[http://dx.doi.org/10.1097/00002480-200201000-00004] [PMID: 11814091]
[50]
Bian W, Li D, Lian Q, et al. Fabrication of a bio-inspired beta-Tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering. Rapid Prototyping J 2012; 18: 68-80.
[http://dx.doi.org/10.1108/13552541211193511]
[51]
Doraiswamy A, Narayan RJ, Harris ML, Qadri SB, Modi R, Chrisey DB. Laser microfabrication of hydroxyapatite-osteoblast-like cell composites. J Biomed Mater Res A 2007; 80(3): 635-43.
[http://dx.doi.org/10.1002/jbm.a.30969] [PMID: 17051538]
[52]
Koch L, Deiwick A, Schlie S, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng 2012; 109(7): 1855-63.
[http://dx.doi.org/10.1002/bit.24455] [PMID: 22328297]
[53]
Wu PK, Ringeisen BR, Krizman DB, et al. Laser transfer of biomaterials: Matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE Direct Write. Rev Sci Instrum 2003; 74: 2546-57.
[http://dx.doi.org/10.1063/1.1544081]
[54]
Koch L, Kuhn S, Sorg H, et al. Laser printing of skin cells and human stem cells. Tissue Eng Part C Methods 2010; 16(5): 847-54.
[http://dx.doi.org/10.1089/ten.tec.2009.0397] [PMID: 19883209]
[55]
Ozawa F, Ino K, Arai T, et al. Alginate gel microwell arrays using electrodeposition for three-dimensional cell culture. Lab Chip 2013; 13(15): 3128-35.
[http://dx.doi.org/10.1039/c3lc50455g] [PMID: 23764965]
[56]
Shi X-W, Tsao C-Y, Yang X, et al. Electroaddressing of Cell Populations by Co-Deposition with Calcium Alginate Hydrogels. Adv Funct Mater 2009; 19: 2074-80.
[http://dx.doi.org/10.1002/adfm.200900026]
[57]
Cheng Y, Luo X, Betz J, Payne GF, Bentley WE, Rubloff GW. Mechanism of anodic electrodeposition of calcium alginate. Soft Matter 2011; 7: 5677-84.
[http://dx.doi.org/10.1039/c1sm05210a]
[58]
Betz JF, Cheng Y, Tsao CY, et al. Optically clear alginate hydrogels for spatially controlled cell entrapment and culture at microfluidic electrode surfaces. Lab Chip 2013; 13(10): 1854-8.
[http://dx.doi.org/10.1039/c3lc50079a] [PMID: 23559159]
[59]
Wan W, Dai G, Zhang L, Shen Y. Paper-based electrodeposition chip for 3D alginate hydrogel formation. Micromachines (Basel) 2015; 6: 1546-59.
[http://dx.doi.org/10.3390/mi6101438]
[60]
Chen W, Zhu B, Ma L, Hua X. Shape-controlled fabrication of cell-laden calcium alginate-PLL hydrogel microcapsules by electrodeposition on microelectrode. J Biomater Appl 2017; 32(4): 504-10.
[http://dx.doi.org/10.1177/0885328217726439] [PMID: 28823201]
[61]
Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jérĵme R. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications. Biomaterials 2002; 23(18): 3871-8.
[http://dx.doi.org/10.1016/S0142-9612(02)00131-X] [PMID: 12164192]
[62]
Cheng Y, Luo X, Betz J, et al. In situ quantitative visualization and characterization of chitosan electrodeposition with paired sidewall electrodes. Soft Matter 2010; 6: 3177-83.
[http://dx.doi.org/10.1039/c0sm00124d]
[63]
Fusco S, Chatzipirpiridis G, Sivaraman KM, Ergeneman O, Nelson BJ, Pané S. Chitosan electrodeposition for microrobotic drug delivery. Adv Healthc Mater 2013; 2(7): 1037-44.
[http://dx.doi.org/10.1002/adhm.201200409] [PMID: 23355508]
[64]
Gray KM, Liba BD, Wang Y, et al. Electrodeposition of a biopolymeric hydrogel: potential for one-step protein electroaddressing. Biomacromolecules 2012; 13(4): 1181-9.
[http://dx.doi.org/10.1021/bm3001155] [PMID: 22414205]
[65]
Xu C, Zhang M, Huang Y, Ogale A, Fu J, Markwald RR. Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink. Langmuir 2014; 30(30): 9130-8.
[http://dx.doi.org/10.1021/la501430x] [PMID: 25005170]
[66]
Rimann M, Bono E, Annaheim H, Bleisch M, Graf-Hausner U. Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells. J Lab Autom 2016; 21(4): 496-509.
[http://dx.doi.org/10.1177/2211068214567146] [PMID: 25609254]
[67]
Guillotin B, Souquet A, Catros S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 2010; 31(28): 7250-6.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.055] [PMID: 20580082]
[68]
Fu Q, Saiz E, Tomsia AP. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater 2011; 7(10): 3547-54.
[http://dx.doi.org/10.1016/j.actbio.2011.06.030] [PMID: 21745606]
[69]
Sobral JM, Caridade SG, Sousa RA, Mano JF, Reis RL. Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater 2011; 7(3): 1009-18.
[http://dx.doi.org/10.1016/j.actbio.2010.11.003] [PMID: 21056125]
[70]
Skardal A, Zhang J, Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 2010; 31(24): 6173-81.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.045] [PMID: 20546891]
[71]
Hoch E, Hirth T, Tovar GEM, Borchers K. Chemical tailoring of gelatin to adjust its chemical and physical properties for functional bioprinting. J Mater Chem B Mater Biol Med 2013; 1: 5675-85.
[http://dx.doi.org/10.1039/c3tb20745e]
[72]
Moon S, Hasan SK, Song YS, et al. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C Methods 2010; 16(1): 157-66.
[http://dx.doi.org/10.1089/ten.tec.2009.0179] [PMID: 19586367]
[73]
Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009; 30(30): 5910-7.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.034] [PMID: 19664819]
[74]
Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 2009; 30(31): 6221-7.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.056] [PMID: 19695697]
[75]
Rees A, Powell LC, Chinga-Carrasco G, et al. 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. BioMed Res Int 2015; 2015925757
[http://dx.doi.org/10.1155/2015/925757] [PMID: 26090461]
[76]
Ahn S, Lee H, Bonassar LJ, Kim G. Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying. Biomacromolecules 2012; 13(9): 2997-3003.
[http://dx.doi.org/10.1021/bm3011352] [PMID: 22913233]
[77]
Kesti M, Eberhardt C, Pagliccia G, et al. Bioprinting Complex Cartilaginous Structures with Clinically Compliant Biomaterials. Adv Funct Mater 2015; 25: 7406-17.
[http://dx.doi.org/10.1002/adfm.201503423]
[78]
Lee D-Y, Lee H, Kim Y, Yoo SY, Chung W-J, Kim G. Phage as versatile nanoink for printing 3-D cell-laden scaffolds. Acta Biomater 2016; 29: 112-24.
[http://dx.doi.org/10.1016/j.actbio.2015.10.004] [PMID: 26441128]
[79]
Gu Q, Tomaskovic-Crook E, Lozano R, et al. Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells. Adv Healthc Mater 2016; 5(12): 1429-38.
[http://dx.doi.org/10.1002/adhm.201600095] [PMID: 27028356]
[80]
Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules 2015; 16(5): 1489-96.
[http://dx.doi.org/10.1021/acs.biomac.5b00188] [PMID: 25806996]
[81]
Wüst S, Godla ME, Müller R, Hofmann S. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater 2014; 10(2): 630-40.
[http://dx.doi.org/10.1016/j.actbio.2013.10.016] [PMID: 24157694]
[82]
Jia J, Richards DJ, Pollard S, et al. Engineering alginate as bioink for bioprinting. Acta Biomater 2014; 10(10): 4323-31.
[http://dx.doi.org/10.1016/j.actbio.2014.06.034] [PMID: 24998183]
[83]
Colosi C, Shin SR, Manoharan V, et al. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink. Adv Mater 2016; 28(4): 677-84.
[http://dx.doi.org/10.1002/adma.201503310] [PMID: 26606883]
[84]
Daly AC, Cunniffe GM, Sathy BN, Jeon O, Alsberg E, Kelly DJ. 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering. Adv Healthc Mater 2016; 5(18): 2353-62.
[http://dx.doi.org/10.1002/adhm.201600182] [PMID: 27281607]
[85]
Zhao Y, Li Y, Mao S, Sun W, Yao R. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication 2015; 7(4)045002
[http://dx.doi.org/10.1088/1758-5090/7/4/045002] [PMID: 26523399]
[86]
Liu X, Zhao K, Gong T, et al. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules 2014; 15(3): 1019-30.
[http://dx.doi.org/10.1021/bm401911p] [PMID: 24467335]
[87]
Ahn SH, Lee HJ, Lee J-S, Yoon H, Chun W, Kim GH. A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures. Sci Rep 2015; 5: 13427.
[http://dx.doi.org/10.1038/srep13427] [PMID: 26293341]
[88]
Skardal A, Devarasetty M, Kang H-W, et al. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomater 2015; 25: 24-34.
[http://dx.doi.org/10.1016/j.actbio.2015.07.030] [PMID: 26210285]
[89]
Melchels FPW, Dhert WJA, Hutmacher DW, Malda J. Development and characterisation of a new bioink for additive tissue manufacturing. J Mater Chem B Mater Biol Med 2014; 2: 2282-9.
[http://dx.doi.org/10.1039/c3tb21280g]
[90]
Lee JW, Choi Y-J, Yong W-J, et al. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication 2016; 8(1)015007
[http://dx.doi.org/10.1088/1758-5090/8/1/015007] [PMID: 26756962]
[91]
Levato R, Visser J, Planell JA, Engel E, Malda J, Mateos-Timoneda MA. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 2014; 6(3)035020
[http://dx.doi.org/10.1088/1758-5082/6/3/035020] [PMID: 25048797]
[92]
Merceron TK, Burt M, Seol Y-J, et al. A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication 2015; 7(3)035003
[http://dx.doi.org/10.1088/1758-5090/7/3/035003] [PMID: 26081669]
[93]
Yeo M, Lee J-S, Chun W, Kim GH. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering. Biomacromolecules 2016; 17(4): 1365-75.
[http://dx.doi.org/10.1021/acs.biomac.5b01764] [PMID: 26998966]
[94]
Lee HJ, Kim YB, Ahn SH, et al. A New Approach for Fabricating Collagen/ECM-Based Bioinks Using Preosteoblasts and Human Adipose Stem Cells. Adv Healthc Mater 2015; 4(9): 1359-68.
[http://dx.doi.org/10.1002/adhm.201500193] [PMID: 25874573]
[95]
Schacht K, Jüngst T, Schweinlin M, Ewald A, Groll J, Scheibel T. Biofabrication of cell-loaded 3D spider silk constructs. Angew Chem Int Ed Engl 2015; 54(9): 2816-20.
[http://dx.doi.org/10.1002/anie.201409846] [PMID: 25640578]
[96]
Ouyang L, Highley CB, Rodell CB, Sun W, Burdick JA. 3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking. ACS Biomater Sci Eng 2016; 2: 1743-51.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00158]
[97]
Irvine SA, Agrawal A, Lee BH, et al. Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking. Biomed Microdevices 2015; 17(1): 16.
[http://dx.doi.org/10.1007/s10544-014-9915-8] [PMID: 25653062]
[98]
Müller M, Becher J, Schnabelrauch M, Zenobi-Wong M. Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting. Biofabrication 2015; 7(3)035006
[http://dx.doi.org/10.1088/1758-5090/7/3/035006] [PMID: 26260872]
[99]
Pati F, Jang J, Ha D-H, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 2014; 5: 3935.
[http://dx.doi.org/10.1038/ncomms4935] [PMID: 24887553]
[100]
Pati F, Ha D-H, Jang J, Han HH, Rhie J-W, Cho D-W. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 2015; 62: 164-75.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.043] [PMID: 26056727]
[101]
Gou M, Qu X, Zhu W, et al. Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nat Commun 2014; 5: 3774.
[http://dx.doi.org/10.1038/ncomms4774] [PMID: 24805923]
[102]
Schiele NR, Corr DT, Huang Y, Raof NA, Xie Y, Chrisey DB. Laser-based direct-write techniques for cell printing. Biofabrication 2010; 2(3)032001
[http://dx.doi.org/10.1088/1758-5082/2/3/032001] [PMID: 20814088]
[103]
Schiele NR, Chrisey DB, Corr DT. Gelatin-based laser direct-write technique for the precise spatial patterning of cells. Tissue Eng Part C Methods 2011; 17(3): 289-98.
[http://dx.doi.org/10.1089/ten.tec.2010.0442] [PMID: 20849381]
[104]
Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 2013; 60(3): 691-9.
[http://dx.doi.org/10.1109/TBME.2013.2243912] [PMID: 23372076]
[105]
Zongjie W, Abdulla R, Parker B. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication, 7 (4): 045009. In: ed., 2015.
[106]
Xu T, Baicu C, Aho M, Zile M, Boland T. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 2009; 1(3)035001
[http://dx.doi.org/10.1088/1758-5082/1/3/035001] [PMID: 20811105]
[107]
Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication 2016; 8(3)032002
[http://dx.doi.org/10.1088/1758-5090/8/3/032002] [PMID: 27658612]
[108]
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014; 32(8): 773-85.
[http://dx.doi.org/10.1038/nbt.2958] [PMID: 25093879]
[109]
Karande TS, Ong JL, Agrawal CM. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 2004; 32(12): 1728-43.
[http://dx.doi.org/10.1007/s10439-004-7825-2] [PMID: 15675684]
[110]
Ozawa F, Ino K, Takahashi Y, Shiku H, Matsue T. Electrodeposition of alginate gels for construction of vascular-like structures. J Biosci Bioeng 2013; 115(4): 459-61.
[http://dx.doi.org/10.1016/j.jbiosc.2012.10.014] [PMID: 23219023]
[111]
Saunders RE, Derby B. Inkjet printing biomaterials for tissue engineering: bioprinting. Int Mater Rev 2014; 59: 430-48.
[http://dx.doi.org/10.1179/1743280414Y.0000000040]
[112]
Gao G, Yonezawa T, Hubbell K, Dai G, Cui X. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J 2015; 10(10): 1568-77.
[http://dx.doi.org/10.1002/biot.201400635] [PMID: 25641582]
[113]
Dai X, Liu L, Ouyang J, et al. Coaxial 3D bioprinting of self-assembled multicellular heterogeneous tumor fibers. Sci Rep 2017; 7(1): 1457.
[http://dx.doi.org/10.1038/s41598-017-01581-y] [PMID: 28469183]
[114]
Chopra K, Mummery PM, Derby B, Gough JE. Gel-cast glass-ceramic tissue scaffolds of controlled architecture produced via stereolithography of moulds. Biofabrication 2012; 4(4)045002
[http://dx.doi.org/10.1088/1758-5082/4/4/045002] [PMID: 23013914]
[115]
Zheng Y, Wang Y, Chen RK, et al. Tissue transformation mold design and stereolithography fabrication. Rapid Prototyping J 2017; 23: 162-8.
[http://dx.doi.org/10.1108/RPJ-10-2015-0133]
[116]
Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep 2016; 6: 24474.
[http://dx.doi.org/10.1038/srep24474] [PMID: 27091175]
[117]
Smidsrød O, Skjåk-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol 1990; 8(3): 71-8.
[http://dx.doi.org/10.1016/0167-7799(90)90139-O] [PMID: 1366500]
[118]
Sutherland IW. Novel Materials from Biological Sources: New York: Stockton, 1991; pp. 309-331.
[119]
Kuo CK, Ma PX. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 2001; 22(6): 511-21.
[http://dx.doi.org/10.1016/S0142-9612(00)00201-5] [PMID: 11219714]
[120]
Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm 2002; 28(6): 621-30.
[http://dx.doi.org/10.1081/DDC-120003853] [PMID: 12149954]
[121]
Wee S, Gombotz WR. Protein release from alginate matrices. Adv Drug Deliv Rev 1998; 31(3): 267-85.
[http://dx.doi.org/10.1016/S0169-409X(97)00124-5] [PMID: 10837629]
[122]
George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan--a review. J Control Release 2006; 114(1): 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.017] [PMID: 16828914]
[123]
Malda J, Visser J, Melchels FP, et al. 25th anniversary article: Engineering hydrogels for biofabrication. Adv Mater 2013; 25(36): 5011-28.
[http://dx.doi.org/10.1002/adma.201302042] [PMID: 24038336]
[124]
Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 2005; 26(15): 2455-65.
[http://dx.doi.org/10.1016/j.biomaterials.2004.06.044] [PMID: 15585248]
[125]
Kong HJ, Kaigler D, Kim K, Mooney DJ. Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules 2004; 5(5): 1720-7.
[http://dx.doi.org/10.1021/bm049879r] [PMID: 15360280]
[126]
Rouillard AD, Berglund CM, Lee JY, et al. Methods for photocrosslinking alginate hydrogel scaffolds with high cell viability. Tissue Eng Part C Methods 2011; 17(2): 173-9.
[http://dx.doi.org/10.1089/ten.tec.2009.0582] [PMID: 20704471]
[127]
Smidsrød O, Skjåk-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol 1990; 8(3): 71-8.
[http://dx.doi.org/10.1016/0167-7799(90)90139-O] [PMID: 1366500]
[128]
Grigore A, Sarker B, Fabry B, Boccaccini AR, Detsch R. Behavior of encapsulated MG-63 cells in RGD and gelatine-modified alginate hydrogels. Tissue Eng Part A 2014; 20(15-16): 2140-50.
[http://dx.doi.org/10.1089/ten.tea.2013.0416] [PMID: 24813329]
[129]
Annabi N, Nichol JW, Zhong X, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 2010; 16(4): 371-83.
[http://dx.doi.org/10.1089/ten.teb.2009.0639] [PMID: 20121414]
[130]
Pinhas MD, Peled HB. A quantitative analysis of alginate swelling. Carbohydr Polym 2010; 79: 1020-7.
[http://dx.doi.org/10.1016/j.carbpol.2009.10.036]
[131]
Ifkovits JL, Burdick JA. Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 2007; 13(10): 2369-85.
[http://dx.doi.org/10.1089/ten.2007.0093] [PMID: 17658993]
[132]
Fisher JP, Dean D, Engel PS, Mikos AG. Photoinitiated polymerization of biomaterials. Annu Rev Mater Res 2001; 31: 171-81.
[http://dx.doi.org/10.1146/annurev.matsci.31.1.171]
[133]
Fedorovich NE, Oudshoorn MH, van Geemen D, Hennink WE, Alblas J, Dhert WJ. The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 2009; 30(3): 344-53.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.037] [PMID: 18930540]
[134]
Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 2005; 26(11): 1211-8.
[http://dx.doi.org/10.1016/j.biomaterials.2004.04.024] [PMID: 15475050]
[135]
Javvaji V, Baradwaj AG, Payne GF, Raghavan SR. Light-activated ionic gelation of common biopolymers. Langmuir 2011; 27(20): 12591-6.
[http://dx.doi.org/10.1021/la201860s] [PMID: 21800827]
[136]
Stowers RS, Allen SC, Suggs LJ. Dynamic phototuning of 3D hydrogel stiffness. Proc Natl Acad Sci USA 2015; 112(7): 1953-8.
[http://dx.doi.org/10.1073/pnas.1421897112] [PMID: 25646417]
[137]
Dahle J, Kvam E, Stokke T. Bystander effects in UV-induced genomic instability: Antioxidants inhibit delayed mutagenesis induced by ultraviolet A and B radiation. J Carcinog 2005; 4: 11.
[http://dx.doi.org/10.1186/1477-3163-4-11] [PMID: 16091149]
[138]
Sakai S, Kamei H, Mori T, et al. Visible light-induced hydrogelation of an alginate derivative and application to stereolithographic bioprinting using a visible light projector and acid red. Biomacromolecules 2018; 19(2): 672-9.
[http://dx.doi.org/10.1021/acs.biomac.7b01827] [PMID: 29393630]
[139]
Wells LA, Sheardown H. Photosensitive controlled release with polyethylene glycol-anthracene modified alginate. Eur J Pharm Biopharm 2011; 79(2): 304-13.
[http://dx.doi.org/10.1016/j.ejpb.2011.03.023] [PMID: 21458565]
[140]
Kattamis NT, Purnick PE, Weiss R, Arnold CB. Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Appl Phys Lett 2007; 91171120
[http://dx.doi.org/10.1063/1.2799877]
[141]
Riggs BC, Dias AD, Schiele NR, et al. Matrix-assisted pulsed laser methods for biofabrication. MRS Bull 2011; 36: 1043-50.
[http://dx.doi.org/10.1557/mrs.2011.276]
[142]
Piqué A. Laser-based micro–additive manufacturing technologies. In: Baldacchini T, ed.Three-Dimensional Microfabrication Using Two-photon Polymerization- Micro and Nano Technologies William Andrew. Elsevier: USA 2016; pp. 1-19.
[http://dx.doi.org/10.1016/B978-0-323-35321-2.00001-7]
[143]
Ovsianikov A, Gruene M, Pflaum M, et al. Laser printing of cells into 3D scaffolds. Biofabrication 2010; 2(1)014104
[http://dx.doi.org/10.1088/1758-5082/2/1/014104] [PMID: 20811119]
[144]
Yan J, Gudapati H, Huang Y, Xu C. Effect of sodium alginate concentration during laser-assisted printing of alginate tubes. Proceedings of the ASME/ISCIE 2012 International Symposium on Flexible Automation St Louis Missouri. USA. 2012. 2012. [http://dx.doi.org/10.1115/ISFA2012-7253]
[145]
Yan J, Huang Y, Chrisey DB. Laser-assisted printing of alginate long tubes and annular constructs. Biofabrication 2013; 5(1)015002
[http://dx.doi.org/10.1088/1758-5082/5/1/015002] [PMID: 23172571]
[146]
Kingsley DM, Dias AD, Chrisey DB, Corr DT. Single-step laser-based fabrication and patterning of cell-encapsulated alginate microbeads. Biofabrication 2013; 5(4)045006
[http://dx.doi.org/10.1088/1758-5082/5/4/045006] [PMID: 24192221]
[147]
Lin Y, Huang Y. Laser-assisted fabrication of highly viscous alginate microsphere. J Appl Phys 2011; 109083107
[http://dx.doi.org/10.1063/1.3569863]
[148]
Dias AD, Kingsley DM, Chrisey DB, Corr DT. Fabrication of hybrid cell-microbead constructs using laser directwrite of alginate microbeads and adherent breast cancer cells. Proceedings of the ASME 2013 Summer Bioengineering Conference Sunriver. Oregon, USA. 2013. 2013. [http://dx.doi.org/10.1115/SBC2013-14521]
[149]
Xiong R, Zhang Z, Chai W, Huang Y, Chrisey DB. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs. Biofabrication 2015; 7(4)045011
[http://dx.doi.org/10.1088/1758-5090/7/4/045011] [PMID: 26693735]
[150]
Ino K, Ozawa F, Shiku H, Matsue T. Electrodeposited alginate hydrogels for fabrication of cell sheets. The proceedings of the 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences (Texas, USA), 2014: 509-511.
[151]
Ozawa F, Ino K, Shiku H, Matsue T. Cell sheet fabrication using RGD peptide-coupled alginate hydrogels fabricated by an electrodeposition method. Chem Lett 2017; 46: 605-8.
[http://dx.doi.org/10.1246/cl.170003]
[152]
Kaji H, Tsukidate K, Matsue T, Nishizawa M. In situ control of cellular growth and migration on substrates using microelectrodes. J Am Chem Soc 2004; 126(46): 15026-7.
[http://dx.doi.org/10.1021/ja045702t] [PMID: 15547989]
[153]
Ozawa F, Ino K, Shiku H, Matsue T. Electrochemical hydrogel lithography of calcium-alginate hydrogels for cell culture. Materials (Basel) 2016; 9(9): 744-50.
[http://dx.doi.org/10.3390/ma9090744] [PMID: 28773863]
[154]
Shang W, Liu Y, Wan W, et al. Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation. Biofabrication 2017; 9(2)025032
[http://dx.doi.org/10.1088/1758-5090/aa6ed8] [PMID: 28436920]
[155]
Liu Y, Wu C, Lai HSS, Liu YT, Jung W, Shen YJ. Three-dimensional calcium alginate hydrogel assembly via TiOPc-based light-induced controllable electrodeposition. Micromachines (Basel) 2017; 8: 192-203.
[http://dx.doi.org/10.3390/mi8060192]
[156]
Taira N, Ino K, Robert J, Shiku H. Electrochemical printing of calcium alginate/gelatin hydrogel. Electrochim Acta 2018; 281: 429-36.
[http://dx.doi.org/10.1016/j.electacta.2018.05.124]
[157]
Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnol J 2006; 1(9): 910-7.
[http://dx.doi.org/10.1002/biot.200600081] [PMID: 16941443]
[158]
Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang Y. Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng 2015; 112(5): 1047-55.
[http://dx.doi.org/10.1002/bit.25501] [PMID: 25421556]
[159]
Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 2013; 34(1): 130-9.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.035] [PMID: 23063369]
[160]
Rajaram A, Schreyer DJ, Chen DX. Use of the polycation polyethyleneimine to improve the physical properties of alginate-hyaluronic acid hydrogel during fabrication of tissue repair scaffolds. J Biomater Sci Polym Ed 2015; 26(7): 433-45.
[http://dx.doi.org/10.1080/09205063.2015.1016383] [PMID: 25661399]
[161]
Fonseca KB, Maia FR, Cruz FA, et al. Enzymatic, physicochemical and biological properties of MMP-sensitive alginate hydrogels. Soft Matter 2013; 9: 3283-92.
[http://dx.doi.org/10.1039/c3sm27560d]
[162]
Bidarra SJ, Barrias CC, Fonseca KB, Barbosa MA, Soares RA, Granja PL. Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery. Biomaterials 2011; 32(31): 7897-904.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.013] [PMID: 21784515]
[163]
Aljohani W, Ullah MW, Li W, Shi L, Zhang X, Yang G. Three-dimensional printing of alginate-gelatin-agar scaffolds using free-form motor assisted microsyringe extrusion system. J Polym Res 2018; 25: 62.
[http://dx.doi.org/10.1007/s10965-018-1455-0]
[164]
You F, Wu X, Chen X. 3D printing of porous alginate/gelatin hydrogel scaffolds and their mechanical property characterization. International Journal of Polymeric Materials and Polymeric Biomaterials 2017; 66: 299-306.
[http://dx.doi.org/10.1080/00914037.2016.1201830]
[165]
Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 2005; 109(1-3): 256-74.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.023] [PMID: 16266768]
[167]
NovaMatrix Alginate http://www.novamatrix.biz/#home Accessed on 05/03/2019.
[168]
Vanacker J, Luyckx V, Dolmans MM, et al. Transplantation of an alginate-matrigel matrix containing isolated ovarian cells: first step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells. Biomaterials 2012; 33(26): 6079-85.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.015] [PMID: 22658800]
[169]
McCanless JD, Jennings LK, Bumgardner JD, Cole JA, Haggard WO. Hematoma-inspired alginate/platelet releasate/CaPO4 composite: initiation of the inflammatory-mediated response associated with fracture repair in vitro and ex vivo injection delivery. J Mater Sci Mater Med 2012; 23(8): 1971-81.
[http://dx.doi.org/10.1007/s10856-012-4672-9] [PMID: 22588505]
[170]
de Vos P, Spasojevic M, de Haan BJ, Faas MM. The association between in vivo physicochemical changes and inflammatory responses against alginate based microcapsules. Biomaterials 2012; 33(22): 5552-9.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.039] [PMID: 22560199]
[171]
Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Materials (Basel) 2013; 6(4): 1285-309.
[http://dx.doi.org/10.3390/ma6041285] [PMID: 28809210]
[172]
Generally Recognized as Safe. US Food and Drug Administration http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/SCOGS/ucm260857.htm2019
[173]
Park J, Lee SJ, Lee H, Park SA, Lee JY. Three dimensional cell printing with sulfated alginate for improved bone morphogenetic protein-2 delivery and osteogenesis in bone tissue engineering. Carbohydr Polym 2018; 196: 217-24.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.048] [PMID: 29891290]
[174]
Arlov Ø, Aachmann FL, Sundan A, Espevik T, Skjåk-Bræk G. Heparin-like properties of sulfated alginates with defined sequences and sulfation degrees. Biomacromolecules 2014; 15(7): 2744-50.
[http://dx.doi.org/10.1021/bm500602w] [PMID: 24844124]
[175]
Freeman I, Kedem A, Cohen S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 2008; 29(22): 3260-8.
[http://dx.doi.org/10.1016/j.biomaterials.2008.04.025] [PMID: 18462788]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy