Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Macroalgal Polysaccharides in Biomimetic Nanodelivery Systems

Author(s): Nikola Geskovski, Simona Dimchevska Sazdovska and Katerina Goracinova*

Volume 25, Issue 11, 2019

Page: [1265 - 1289] Pages: 25

DOI: 10.2174/1381612825666190423155116

Price: $65

Abstract

Background: Imitating nature in the design of bio-inspired drug delivery systems resulted in several success stories. However, the practical application of biomimicry is still largely unrealized owing to the fact that we tend to copy the shape more often than the whole biology. Interesting chemistry of polysaccharides provides endless possibilities for drug complex formation and creation of delivery systems with diverse morphological and surface properties. However, the type of biological response, which may be induced by these systems, remains largely unexploited.

Methods: Considering the most current research for the given topic, in this review, we will try to present the integrative approaches for the design of biomimetic DDS’s with improved therapeutic or theranostic effects based on different algal polysaccharides that exert multiple biological functions.

Results: Algal polysaccharides may provide building blocks for bioinspired drug delivery systems capable of supporting the mechanical properties of nanomedicines and mimicking various biological processes by molecular interactions at the nanoscale. Numerous research studies demonstrate the efficacy and safety of multifunctional nanoparticles integrating several functions in one delivery system, composed of alginate, carrageenan, ulvan, fucoidan and their derivatives, intended to be used as bioartificial microenvironment or for diagnosis and therapy of different diseases.

Conclusion: Nanodimensional structure of polysaccharide DDS’s shows substantial influence on the bioactive motifs potential availability for interaction with a variety of biomolecules and cells. Evaluation of the nano dimensional structure-activity relationship is crucial for unlocking the full potential of the future application of polysaccharide bio-mimicking DDS in modern diagnostic and therapeutic procedures.

Keywords: Biomimetic drug delivery systems, algal polysaccharides, alginate, carrageenan, fucoidan, ulvan.

[1]
Mišurcová L, Orsavová J, Ambrožová JV. Algal polysaccharides and health. Polysaccharides 2015; pp. 109-44.
[http://dx.doi.org/10.1007/978-3-319-16298-0_24]
[2]
Ruocco N, Costantini S, Guariniello S, Costantini M. Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules 2016; 21(5): 551-67.
[http://dx.doi.org/10.3390/molecules21050551] [PMID: 27128892]
[3]
Xie P, Horio F, Fujii I, Zhao J, Shinohara M, Matsukura M. A novel polysaccharide derived from algae extract inhibits cancer progression via JNK, not via the p38 MAPK signaling pathway. Int J Oncol 2018; 52: 1380-90.
[PMID: 29512724]
[4]
Garcia-Vaquero M, Rajauria G, O’Doherty JV, Sweeney T. Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification. Food Res Int 2017; 99(Pt 3): 1011-20.
[http://dx.doi.org/10.1016/j.foodres.2016.11.016] [PMID: 28865611]
[5]
Xu SY, Huang X, Cheong KL. Recent advances in marine algae polysaccharides: Isolation, structure, and activities. Mar Drugs 2017; 15(12): 388-404.
[http://dx.doi.org/10.3390/md15120388] [PMID: 29236064]
[6]
Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm 2004; 58(2): 327-41.
[http://dx.doi.org/10.1016/j.ejpb.2004.02.016] [PMID: 15296959]
[7]
Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008; 5(4): 505-15.
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[8]
Silva TH, Alves A, Popa EG, et al. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2012; 2(4): 278-89.
[http://dx.doi.org/10.4161/biom.22947] [PMID: 23507892]
[9]
Bamberger D, Hobernik D, Konhäuser M, Bros M, Wich PR. Surface modification of polysaccharide-based nanoparticles with PEG and dextran and the effects on immune cell binding and stimulatory characteristics. Mol Pharm 2017; 14(12): 4403-16.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00507] [PMID: 29063757]
[10]
Huang Y, Gao X, Chen J. Leukocyte-derived biomimetic nanoparticulate drug delivery systems for cancer therapy. Acta Pharm Sin B 2018; 8(1): 4-13.
[http://dx.doi.org/10.1016/j.apsb.2017.12.001] [PMID: 29872618]
[11]
Ramalingam M, Wang X, Chen G, Ma PX, Cui F-Z, Eds. Biomimetics : Advancing nanobiomaterials and tissue engineering bonded systems 2013. [http://dx.doi.org/10.1002/9781118810408]
[12]
Qin Y, Xiong L, Li M, et al. Preparation of bioactive polysaccharide nanoparticles with enhanced radical scavenging activity and antimicrobial activity. J Agric Food Chem 2018; 66(17): 4373-83.
[http://dx.doi.org/10.1021/acs.jafc.8b00388] [PMID: 29648814]
[13]
Cumashi A, Ushakova NA, Preobrazhenskaya ME, et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007; 17(5): 541-52.
[http://dx.doi.org/10.1093/glycob/cwm014] [PMID: 17296677]
[14]
Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 2011; 9(2): 196-223.
[http://dx.doi.org/10.3390/md9020196] [PMID: 21566795]
[15]
Rioux L-E, Turgeon SL, Beaulieu M. Rheological characterisation of polysaccharides extracted from brown seaweeds. J Sci Food Agric 2007; 87: 1630-8.
[http://dx.doi.org/10.1002/jsfa.2829]
[16]
Kraan S. Algal Polysaccharides, Novel Applications and Outlook. Carbohydrates - Comprehensive Studies on Glycobiology and Glycotechnology 2012; pp. 489-532.
[http://dx.doi.org/10.5772/51572]
[17]
Tako M. Studies on the gelation mechanism of polysaccharides, and development and application of fucoidan from commercially cultured cladosiphon okamuranus. J Appl Glycosci 2009; 56: 17-27.
[http://dx.doi.org/10.5458/jag.56.17]
[18]
Rocha HA, Franco CR, Trindade ES, et al. Fucan inhibits Chinese hamster ovary cell (CHO) adhesion to fibronectin by binding to the extracellular matrix. Planta Med 2005; 71(7): 628-33.
[http://dx.doi.org/10.1055/s-2005-871268] [PMID: 16041648]
[19]
Chiang C-S, Lin Y-J, Lee R, et al. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat Nanotechnol 2018; 13(8): 746-54.
[http://dx.doi.org/10.1038/s41565-018-0146-7] [PMID: 29760523]
[20]
Chevolot L, Foucault A, Chaubet F, et al. Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohydr Res 1999; 319(1-4): 154-65.
[http://dx.doi.org/10.1016/S0008-6215(99)00127-5] [PMID: 10520264]
[21]
Nakamura S, Nambu M, Ishizuka T, et al. Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization. J Biomed Mater Res A 2008; 85(3): 619-27.
[http://dx.doi.org/10.1002/jbm.a.31563] [PMID: 17806115]
[22]
Zhang W, Zhao L, Ma J, Wang X, Wang Y, Ran F, et al. Electrospinning of fucoidan/chitosan/poly(vinyl alcohol) scaffolds for vascular tissue engineering. Fibers Polym 2017; 18: 922-32.
[http://dx.doi.org/10.1007/s12221-017-1197-3]
[23]
Baba M, Snoeck R, Pauwels R, de Clercq E. Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother 1988; 32(11): 1742-5.
[http://dx.doi.org/10.1128/AAC.32.11.1742] [PMID: 2472775]
[24]
Elizondo-Gonzalez R, Cruz-Suarez LE, Ricque-Marie D, Mendoza-Gamboa E, Rodriguez-Padilla C, Trejo-Avila LM. In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus. Virol J 2012; 9: 307-16.
[http://dx.doi.org/10.1186/1743-422X-9-307] [PMID: 23234372]
[25]
Mandal P, Mateu CG, Chattopadhyay K, Pujol CA, Damonte EB, Ray B. Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica. Antivir Chem Chemother 2007; 18(3): 153-62.
[http://dx.doi.org/10.1177/095632020701800305] [PMID: 17626599]
[26]
Tsubura S, Suzuki A. Case Report Using 4% Fucoidan Cream for Recurrent Oral Herpes Labialis: Patient Symptoms Markedly Improved in Terms of Time to Healing and Time to Loss of Discomfort. Open Dent J 2018; 5: 6-10.
[27]
Jin J-O, Zhang W, Du J-Y, Wong K-W, Oda T, Yu Q. Fucoidan can function as an adjuvant in vivo to enhance dendritic cell maturation and function and promote antigen-specific T cell immune responses. PLoS One 2014; 9(6)e99396
[http://dx.doi.org/10.1371/journal.pone.0099396] [PMID: 24911024]
[28]
Makarenkova ID, Logunov DY, Tukhvatulin AI, Semenova IB, Besednova NN, Zvyagintseva TN. Interactions between sulfated polysaccharides from sea brown algae and Toll-like receptors on HEK293 eukaryotic cells in vitro. Bull Exp Biol Med 2012; 154(2): 241-4.
[http://dx.doi.org/10.1007/s10517-012-1922-2] [PMID: 23330135]
[29]
Clément M-J, Tissot B, Chevolot L, et al. NMR characterization and molecular modeling of fucoidan showing the importance of oligosaccharide branching in its anticomplementary activity. Glycobiology 2010; 20(7): 883-94.
[http://dx.doi.org/10.1093/glycob/cwq046] [PMID: 20356826]
[30]
Fitton JH, Stringer DN, Karpiniec SS. Therapies from Fucoidan: An Update. Mar Drugs 2015; 13(9): 5920-46.
[http://dx.doi.org/10.3390/md13095920] [PMID: 26389927]
[31]
Senni K, Gueniche F, Foucault-Bertaud A, et al. Fucoidan a sulfated polysaccharide from brown algae is a potent modulator of connective tissue proteolysis. Arch Biochem Biophys 2006; 445(1): 56-64.
[http://dx.doi.org/10.1016/j.abb.2005.11.001] [PMID: 16364234]
[32]
Wang J, Zhang Q, Zhang Z, Li Z. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int J Biol Macromol 2008; 42(2): 127-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2007.10.003] [PMID: 18023861]
[33]
Huang Y-C, Li R-Y. Preparation and characterization of antioxidant nanoparticles composed of chitosan and fucoidan for antibiotics delivery. Mar Drugs 2014; 12(8): 4379-98.
[http://dx.doi.org/10.3390/md12084379] [PMID: 25089950]
[34]
Lee JS, Jin GH, Yeo MG, Jang CH, Lee H, Kim GH. Fabrication of electrospun biocomposites comprising polycaprolactone/fucoidan for tissue regeneration. Carbohydr Polym 2012; 90(1): 181-8.
[http://dx.doi.org/10.1016/j.carbpol.2012.05.012] [PMID: 24751028]
[35]
Jin G, Kim GH. Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties. J Mater Chem 2011; 21: 17710.
[http://dx.doi.org/10.1039/c1jm12915e]
[36]
Murakami K, Aoki H, Nakamura S, et al. Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 2010; 31(1): 83-90.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.031] [PMID: 19775748]
[37]
Li B, Lu F, Wei X, Zhao R. Fucoidan: structure and bioactivity. Molecules 2008; 13(8): 1671-95.
[http://dx.doi.org/10.3390/molecules13081671] [PMID: 18794778]
[38]
Besednova NN, Zaporozhets TS, Somova LM, Kuznetsova TA. Review: prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori. Helicobacter 2015; 20(2): 89-97.
[http://dx.doi.org/10.1111/hel.12177] [PMID: 25660579]
[39]
Liu M, Liu Y, Cao M-J, et al. Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria japonica. Carbohydr Polym 2017; 172: 294-305.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.060] [PMID: 28606538]
[40]
Wu S-J, Don T-M, Lin C-W, Mi F-L. Delivery of berberine using chitosan/fucoidan-taurine conjugate nanoparticles for treatment of defective intestinal epithelial tight junction barrier. Mar Drugs 2014; 12(11): 5677-97.
[http://dx.doi.org/10.3390/md12115677] [PMID: 25421323]
[41]
Baños FGD, Díez Peña AI, Hernánez Cifre JG, López Martínez MC, Ortega A, García de la Torre J. Influence of ionic strength on the flexibility of alginate studied by size exclusion chromatography. Carbohydr Polym 2014; 102: 223-30.
[http://dx.doi.org/10.1016/j.carbpol.2013.11.023] [PMID: 24507276]
[42]
Stokke B, Smidsroed O. Distribution of uronate residues in alginate chains in relation to alginate gelling properties. Macromolecules 1991; 24: 4637-45.
[http://dx.doi.org/10.1021/ma00016a026]
[43]
Fujihara M, Nagumo T. An influence of the structure of alginate on the chemotactic activity of macrophages and the antitumor activity. Carbohydr Res 1993; 243(1): 211-6.
[http://dx.doi.org/10.1016/0008-6215(93)84094-M] [PMID: 8324764]
[44]
Hori Y. In vivo generation of “vaccination nodes” using injectable alginate hydrogels for cancer immunotherapy 2009.
[45]
Sandvig I, Karstensen K, Rokstad AM, et al. RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications. J Biomed Mater Res A 2015; 103(3): 896-906.
[http://dx.doi.org/10.1002/jbm.a.35230] [PMID: 24826938]
[46]
Wiegand C, Heinze T, Hipler U-C. Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen 2009; 17(4): 511-21.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00503.x] [PMID: 19614916]
[47]
Arlov Ø, Skjåk-Bræk G. Sulfated alginates as heparin analogues: A review of chemical and functional properties. Molecules 2017; 22(5): 778.
[http://dx.doi.org/10.3390/molecules22050778] [PMID: 28492485]
[48]
Ronghua H, Yumin D, Jianhong Y. Preparation and in vitro anticoagulant activities of alginate sulfate and its quaterized derivatives. Carbohydr Polym 2003; 52: 19-24.
[http://dx.doi.org/10.1016/S0144-8617(02)00258-8]
[49]
Li Q, Zeng Y, Wang L, Guan H, Li C, Zhang L. The heparin-like activities of negatively charged derivatives of low-molecular-weight polymannuronate and polyguluronate. Carbohydr Polym 2017; 155: 313-20.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.084] [PMID: 27702517]
[50]
Zhao X, Li B, Xue C, Sun L. Effect of molecular weight on the antioxidant property of low molecular weight alginate from Laminaria japonica. J Appl Phycol 2012; 24: 295-300.
[http://dx.doi.org/10.1007/s10811-011-9679-y]
[51]
Seal CJ, Mathers JC. Comparative gastrointestinal and plasma cholesterol responses of rats fed on cholesterol-free diets supplemented with guar gum and sodium alginate. Br J Nutr 2001; 85(3): 317-24.
[http://dx.doi.org/10.1079/BJN2000250] [PMID: 11299077]
[52]
Arlov Ø, Öztürk E, Steinwachs M, Skjåk-Bræk G, Zenobi-Wong M. Biomimetic sulphated alginate hydrogels suppress IL-1β-induced inflammatory responses in human chondrocytes. Eur Cell Mater 2017; 33: 76-89.
[http://dx.doi.org/10.22203/eCM.v033a06] [PMID: 28170076]
[53]
Praiboon J, Chirapart A, Soisarp N. Principle and biological properties of sulfated polysaccharides from seaweed. Marine glycobiology : principles and applications 1st ed. 2016; 90. [http://dx.doi.org/10.1201/9781315371399-8]
[54]
Peat S, Whelan WJ, Lawley HG. The structure of laminarin. Part I. The main polymeric linkage. J Chem Soc 1958; 724.
[http://dx.doi.org/10.1039/jr9580000724]
[55]
Ren D, Noda H, Amano H, Nishino T, Nishizawa K. Study on antihypertensive and antihyperlipidemic effects of marine algae. Fish Sci 1994; 60: 83-8.
[http://dx.doi.org/10.2331/fishsci.60.83]
[56]
Song K, Xu L, Zhang W, et al. Laminarin promotes anti-cancer immunity by the maturation of dendritic cells. Oncotarget 2017; 8(24): 38554-67.
[http://dx.doi.org/10.18632/oncotarget.16170] [PMID: 28423736]
[57]
Remya RR, Rajasree SRR, Suman TY, Aranganathan L, Gayathri S, Gobalakrishnan M, et al. Laminarin based AgNPs using brown seaweed Turbinaria ornata and its induction of apoptosis in human retinoblastoma Y79 cancer cell lines. Mater Res Express 2018; 5035403
[http://dx.doi.org/10.1088/2053-1591/aab2d8]
[58]
Miao HQ, Elkin M, Aingorn E, Ishai-Michaeli R, Stein CA, Vlodavsky I. Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phosphorothioate oligodeoxynucleotides. Int J Cancer 1999; 83(3): 424-31.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19991029)83:3<424:AID-IJC20>3.0.CO;2-L] [PMID: 10495437]
[59]
Hoffman R, Paper DH, Donaldson J, Alban S, Franz G. Characterisation of a laminarin sulphate which inhibits basic fibroblast growth factor binding and endothelial cell proliferation. J Cell Sci 1995; 108(Pt 11): 3591-8.
[60]
Custódio CA, Reis RL, Mano JF. Photo-Cross-Linked Laminarin-Based Hydrogels for Biomedical Applications. Biomacromolecules 2016; 17(5): 1602-9.
[http://dx.doi.org/10.1021/acs.biomac.5b01736] [PMID: 27017983]
[61]
Sellimi S, Maalej H, Rekik DM, et al. Antioxidant, antibacterial and in vivo wound healing properties of laminaran purified from Cystoseira barbata seaweed. Int J Biol Macromol 2018; 119: 633-44.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.171] [PMID: 30063934]
[62]
Ahmadi A, Zorofchian Moghadamtousi S, Abubakar S, Zandi K. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review. BioMed Res Int 2015; 2015825203
[http://dx.doi.org/10.1155/2015/825203] [PMID: 26484353]
[63]
Muto S, Niimura K, Oohara M, et al. Polysaccharides and antiviral drugs containing the same as active ingredient. US5089481A 1990.
[64]
Shannon E, Abu-Ghannam N. Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications. Mar Drugs 2016; 14(4): 81.
[http://dx.doi.org/10.3390/md14040081] [PMID: 27110798]
[65]
Holdt SL, Kraan S. Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 2011; 23: 543-97.
[http://dx.doi.org/10.1007/s10811-010-9632-5]
[66]
Alban S, Kraus J, Franz G. Synthesis of laminarin sulfates with anticoagulant activity. Arzneimittelforschung 1992; 42(8): 1005-8.
[PMID: 1418069]
[67]
Shanmugam M, Mody KH. Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Curr Sci 2000; 79: 1672-83.
[68]
Albuquerque IR, Cordeiro SL, Gomes DL, et al. Evaluation of anti-nociceptive and anti-inflammatory activities of a heterofucan from Dictyota menstrualis. Mar Drugs 2013; 11(8): 2722-40.
[http://dx.doi.org/10.3390/md11082722] [PMID: 23917068]
[69]
Camara RB, Costa LS, Fidelis GP, et al. Heterofucans from the brown seaweed Canistrocarpus cervicornis with anticoagulant and antioxidant activities. Mar Drugs 2011; 9(1): 124-38.
[http://dx.doi.org/10.3390/md9010124] [PMID: 21339951]
[70]
Costa LS, Fidelis GP, Telles CBS, et al. Antioxidant and antiproliferative activities of heterofucans from the seaweed Sargassum filipendula. Mar Drugs 2011; 9(6): 952-66.
[http://dx.doi.org/10.3390/md9060952] [PMID: 21747741]
[71]
Camara RB, Costa LS, Fidelis GP, et al. Heterofucans from the brown seaweed Canistrocarpus cervicornis with anticoagulant and antioxidant activities. Mar Drugs 2011; 9(1): 124-38.
[http://dx.doi.org/10.3390/md9010124] [PMID: 21339951]
[72]
Silva TMA, Alves LG, de Queiroz KCS, et al. Partial characterization and anticoagulant activity of a heterofucan from the brown seaweed Padina gymnospora. Braz J Med Biol Res 2005; 38(4): 523-33.
[http://dx.doi.org/10.1590/S0100-879X2005000400005] [PMID: 15962177]
[73]
Costa LS, Telles CB, Oliveira RM, et al. Heterofucan from Sargassum filipendula induces apoptosis in HeLa cells. Mar Drugs 2011; 9(4): 603-14.
[http://dx.doi.org/10.3390/md9040603] [PMID: 21731552]
[74]
Lahaye M. Developments on gelling algal galactans, their structure and physico-chemistry. J Appl Phycol 2001; 13: 173-84.
[http://dx.doi.org/10.1023/A:1011142124213]
[75]
Anderson W, Duncan JGC, Harthill JE. The anticoagulant activity of carrageenan. J Pharm Pharmacol 1965; 17(10): 647-54.
[http://dx.doi.org/10.1111/j.2042-7158.1965.tb07577.x] [PMID: 4379688]
[76]
Necas J, Bartosikova L. Carrageenan: A review. Vet Med (Praha) 2013; 58: 187-205.
[http://dx.doi.org/10.17221/6758-VETMED]
[77]
de Araújo CA, Noseda MD, Cipriani TR, Gonçalves AG, Duarte ME, Ducatti DR. Selective sulfation of carrageenans and the influence of sulfate regiochemistry on anticoagulant properties. Carbohydr Polym 2013; 91(2): 483-91.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.034] [PMID: 23121936]
[78]
Opoku G, Qiu X, Doctor V. Effect of oversulfation on the chemical and biological properties of kappa carrageenan. Carbohydr Polym 2006; 65: 134-8.
[http://dx.doi.org/10.1016/j.carbpol.2005.12.033]
[79]
Song X, Wang K, Tang C-Q, Yang W-W, Zhao W-F, Zhao C-S. Design of carrageenan-based heparin-mimetic gel beads as self-anticoagulant hemoperfusion adsorbents. Biomacromolecules 2018; 19(6): 1966-78.
[http://dx.doi.org/10.1021/acs.biomac.7b01724] [PMID: 29425448]
[80]
Buck CB, Thompson CD, Roberts JN, Müller M, Lowy DR, Schiller JT. Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog 2006; 2(7)e69
[http://dx.doi.org/10.1371/journal.ppat.0020069] [PMID: 16839203]
[81]
Grassauer A, Weinmuellner R, Meier C, Pretsch A, Prieschl-Grassauer E, Unger H. Iota-Carrageenan is a potent inhibitor of rhinovirus infection. Virol J 2008; 5: 107.
[http://dx.doi.org/10.1186/1743-422X-5-107] [PMID: 18817582]
[82]
Tang F, Chen F, Li F. Preparation and potential in vivo anti-influenza virus activity of low molecular-weight κ-carrageenans and their derivatives. J Appl Polym Sci 2013; 127: 2110-5.
[http://dx.doi.org/10.1002/app.37502]
[83]
Yamada T, Ogamo A, Saito T, Watanabe J, Uchiyama H, Nakagawa Y. Preparation and anti-HIV activity of low-molecular-weight carrageenans and their sulfated derivatives. Carbohydr Polym 1997; 32: 51-5.
[http://dx.doi.org/10.1016/S0144-8617(96)00128-2]
[84]
Carlucci MJ, Pujol CA, Ciancia M, et al. Antiherpetic and anticoagulant properties of carrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives: correlation between structure and biological activity. Int J Biol Macromol 1997; 20(2): 97-105.
[http://dx.doi.org/10.1016/S0141-8130(96)01145-2] [PMID: 9184941]
[85]
Eccles R, Winther B, Johnston SL, Robinson P, Trampisch M, Koelsch S. Efficacy and safety of iota-carrageenan nasal spray versus placebo in early treatment of the common cold in adults: the ICICC trial. Respir Res 2015; 16: 121.
[http://dx.doi.org/10.1186/s12931-015-0281-8] [PMID: 26438038]
[86]
Diogo JV, Novo SG, González MJ, Ciancia M, Bratanich AC. Antiviral activity of lambda-carrageenan prepared from red seaweed (Gigartina skottsbergii) against BoHV-1 and SuHV-1. Res Vet Sci 2015; 98: 142-4.
[http://dx.doi.org/10.1016/j.rvsc.2014.11.010] [PMID: 25435342]
[87]
Güven KC, Akyüz K, Yurdun T. Selectivity of heavy metal binding by algal polysaccharides. Toxicol Environ Chem 1995; 47: 65-70.
[http://dx.doi.org/10.1080/02772249509358127]
[88]
Ogata M, Matsui T, Kita T, Shigematsu A. Carrageenan primes leukocytes to enhance lipopolysaccharide-induced tumor necrosis factor alpha production. Infect Immun 1999; 67(7): 3284-9.
[PMID: 10377102]
[89]
Yuan H, Song J, Li X, Li N, Dai J. Immunomodulation and antitumor activity of kappa-carrageenan oligosaccharides. Cancer Lett 2006; 243(2): 228-34.
[http://dx.doi.org/dx.doi:10.1016/j.canlet.2005.11.032] [PMID: 16410037]
[90]
Wijesekara I, Pangestuti R, Kim S-K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 2011; 84: 14-21.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.062]
[91]
Thomson AW, Fowler EF. Carrageenan: A review of its effects on the immune system. Agents Actions 1981; 11(3): 265-73.
[http://dx.doi.org/10.1007/BF01967625] [PMID: 7020378]
[92]
Zhou G, Sun Y, Xin H, Zhang Y, Li Z, Xu Z. In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus. Pharmacol Res 2004; 50(1): 47-53.
[http://dx.doi.org/10.1016/j.phrs.2003.12.002] [PMID: 15082028]
[93]
Yermak IM, Barabanova AO, Aminin DL, et al. Effects of structural peculiarities of carrageenans on their immunomodulatory and anticoagulant activities. Carbohydr Polym 2012; 87: 713-20.
[http://dx.doi.org/10.1016/j.carbpol.2011.08.053]
[94]
Rocha PM, Santo VE, Gomes ME, Reis RL, Mano JF. Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering. J Bioact Compat Polym 2011; 26: 493-507.
[http://dx.doi.org/10.1177/0883911511420700]
[95]
Zhang Y, Ye L, Cui J, et al. A Biomimetic Poly(vinyl alcohol)-Carrageenan Composite Scaffold with Oriented Microarchitecture. ACS Biomater Sci Eng 2016; 2: 544-57.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00535]
[96]
Santo VE, Frias AM, Carida M, et al. Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules 2009; 10(6): 1392-401.
[http://dx.doi.org/10.1021/bm8014973] [PMID: 19385660]
[97]
Liu S, Li L. Recoverable and Self-Healing Double Network Hydrogel Based on κ-Carrageenan. ACS Appl Mater Interfaces 2016; 8(43): 29749-58.
[http://dx.doi.org/10.1021/acsami.6b11363] [PMID: 27723297]
[98]
Popa E, Santo V, Rodrigues M, Gomes M. Magnetically-Responsive Hydrogels for Modulation of Chondrogenic Commitment of Human Adipose-Derived Stem Cells. Polymers (Basel) 2016; 8: 28.
[http://dx.doi.org/10.3390/polym8020028]
[99]
Mihaila SM, Gaharwar AK, Reis RL, Marques AP, Gomes ME, Khademhosseini A. Photocrosslinkable kappa-carrageenan hydrogels for tissue engineering applications. Adv Healthc Mater 2013; 2(6): 895-907.
[http://dx.doi.org/10.1002/adhm.201200317] [PMID: 23281344]
[100]
Popa EG, Gomes ME, Reis RL. Cell delivery systems using alginate--carrageenan hydrogel beads and fibers for regenerative medicine applications. Biomacromolecules 2011; 12(11): 3952-61.
[http://dx.doi.org/10.1021/bm200965x] [PMID: 21970513]
[101]
Mihaila SM, Popa EG, Reis RL, Marques AP, Gomes ME. Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications. Biomacromolecules 2014; 15(8): 2849-60.
[http://dx.doi.org/10.1021/bm500036a] [PMID: 24963559]
[102]
Nourmohammadi J, Roshanfar F, Farokhi M, Haghbin Nazarpak M. Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications. Mater Sci Eng C 2017; 76: 951-8.
[http://dx.doi.org/10.1016/j.msec.2017.03.166] [PMID: 28482612]
[103]
Prasedya ES, Miyake M, Kobayashi D, Hazama A. Carrageenan delays cell cycle progression in human cancer cells in vitro demonstrated by FUCCI imaging. BMC Complement Altern Med 2016; 16: 270.
[http://dx.doi.org/10.1186/s12906-016-1199-5] [PMID: 27487950]
[104]
Zhou G, Xin H, Sheng W, Sun Y, Li Z, Xu Z. In vivo growth-inhibition of S180 tumor by mixture of 5-Fu and low molecular lambda-carrageenan from Chondrus ocellatus. Pharmacol Res 2005; 51: 153-7.
[http://dx.doi.org/10.1016/j.phrs.2004.07.003] [PMID: 15629261]
[105]
Paper DH, Vogl H, Franz G, Hoffman R. Defined carrageenan derivatives as angiogenesis inhibitors. Macromol Symp 1995; 99: 219-25.
[http://dx.doi.org/10.1002/masy.19950990123]
[106]
Luo M, Shao B, Nie W, et al. Antitumor and Adjuvant Activity of λ-carrageenan by Stimulating Immune Response in Cancer Immunotherapy. Sci Rep 2015; 5: 11062.
[http://dx.doi.org/10.1038/srep11062] [PMID: 26098663]
[107]
Li J, Aipire A, Li J, et al. λ-Carrageenan improves the antitumor effect of dendritic cellbased vaccine. Oncotarget 2017; 8(18): 29996-30007.
[http://dx.doi.org/10.18632/oncotarget.15610] [PMID: 28404904]
[108]
Zhang Y-Q, Tsai Y-C, Monie A, Hung C-F, Wu T-C. Carrageenan as an adjuvant to enhance peptide-based vaccine potency. Vaccine 2010; 28(32): 5212-9.
[http://dx.doi.org/10.1016/j.vaccine.2010.05.068] [PMID: 20541583]
[109]
Poupard N, Badarou P, Fasani F, et al. Assessment of Heparanase-Mediated Angiogenesis Using Microvascular Endothelial Cells: Identification of λ-Carrageenan Derivative as a Potent Anti Angiogenic Agent. Mar Drugs 2017; 15(5): 15.
[http://dx.doi.org/10.3390/md15050134] [PMID: 28486399]
[110]
Yoshimura T, Tsuge K, Sumi T, et al. Isolation of porphyran-degrading marine microorganisms from the surface of red alga, Porphyra yezoensis. Biosci Biotechnol Biochem 2006; 70(4): 1026-8.
[http://dx.doi.org/10.1271/bbb.70.1026] [PMID: 16636476]
[111]
Zhao T, Zhang Q, Qi H, et al. Degradation of porphyran from Porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weight. Int J Biol Macromol 2006; 38(1): 45-50.
[http://dx.doi.org/10.1016/j.ijbiomac.2005.12.018] [PMID: 16443266]
[112]
Bhatia S, Sharma K, Bera T. Structural characterization and pharmaceutical properties of porphyran. Asian J Pharm 2015; 9: 93.
[http://dx.doi.org/10.4103/0973-8398.154698]
[113]
Pereira L. Biological and therapeutic properties of the seaweed polysaccharides IntBiolRev 2018; 2(2).
[114]
Kwon M-J, Nam T-J. Porphyran induces apoptosis related signal pathway in AGS gastric cancer cell lines. Life Sci 2006; 79(20): 1956-62.
[http://dx.doi.org/10.1016/j.lfs.2006.06.031] [PMID: 16876203]
[115]
Wang X, Li W, Xiao L, Liu C, Qi H, Zhang Z. In vivo antihyperlipidemic and antioxidant activity of porphyran in hyperlipidemic mice. Carbohydr Polym 2017; 174: 417-20.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.040] [PMID: 28821087]
[116]
Inoue N, Yamano N, Sakata K, Nagao K, Hama Y, Yanagita T. The sulfated polysaccharide porphyran reduces apolipoprotein B100 secretion and lipid synthesis in HepG2 cells. Biosci Biotechnol Biochem 2009; 73(2): 447-9.
[http://dx.doi.org/10.1271/bbb.80688] [PMID: 19202270]
[117]
Isaka S, Cho K, Nakazono S, et al. Antioxidant and anti-inflammatory activities of porphyran isolated from discolored nori (Porphyra yezoensis). Int J Biol Macromol 2015; 74: 68-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.11.043] [PMID: 25499893]
[118]
Pomin VH. Structural and functional insights into sulfated galactans: A systematic review. Glycoconj J 2010; 27(1): 1-12.
[http://dx.doi.org/10.1007/s10719-009-9251-z] [PMID: 19568930]
[119]
de Sousa AAS, Benevides NMB, de Freitas Pires A, et al. A report of a galactan from marine alga Gelidium crinale with in vivo anti-inflammatory and antinociceptive effects. Fundam Clin Pharmacol 2013; 27(2): 173-80.
[http://dx.doi.org/10.1111/j.1472-8206.2011.01001.x] [PMID: 22017538]
[120]
Quinderé A-LG, Santos GRC, Oliveira S-NMCG, et al. Is the antithrombotic effect of sulfated galactans independent of serpin? J Thromb Haemost 2014; 12(1): 43-53.
[http://dx.doi.org/10.1111/jth.12448] [PMID: 24261511]
[121]
Coura CO, de Araújo IWF, Vanderlei ESO, et al. Antinociceptive and anti-inflammatory activities of sulphated polysaccharides from the red seaweed Gracilaria cornea. Basic Clin Pharmacol Toxicol 2012; 110(4): 335-41.
[http://dx.doi.org/10.1111/j.1742-7843.2011.00811.x] [PMID: 21985563]
[122]
Cassolato JEF, Noseda MD, Pujol CA, Pellizzari FM, Damonte EB, Duarte MER. Chemical structure and antiviral activity of the sulfated heterorhamnan isolated from the green seaweed Gayralia oxysperma. Carbohydr Res 2008; 343(18): 3085-95.
[http://dx.doi.org/10.1016/j.carres.2008.09.014] [PMID: 18845298]
[123]
Synytsya A, Čopíková J, Kim WJ, Park Y. Il. Cell wall polysaccharides of marine algae. Handbook of Marine Biotechnology 2015; 543-90.
[124]
Synytsya A, Choi DJ, Pohl R, et al. Structural Features and Anti-coagulant Activity of the Sulphated Polysaccharide SPS-CF from a Green Alga Capsosiphon fulvescens. Mar Biotechnol (NY) 2015; 17(6): 718-35.
[http://dx.doi.org/10.1007/s10126-015-9643-y] [PMID: 26337523]
[125]
Neyts J, Snoeck R, Schols D, et al. Sulfated polymers inhibit the interaction of human cytomegalovirus with cell surface heparan sulfate. Virology 1992; 189(1): 48-58.
[http://dx.doi.org/10.1016/0042-6822(92)90680-N] [PMID: 1376540]
[126]
Ivanova V, Rouseva R, Kolarova M, Serkedjieva J, Rachev R, Manolova N. Isolation of a polysaccharide with antiviral effect from Ulva lactuca. Prep Biochem 1994; 24(2): 83-97.
[http://dx.doi.org/10.1080/10826069408010084] [PMID: 8072958]
[127]
Qi H, Zhang Q, Zhao T, et al. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Int J Biol Macromol 2005; 37(4): 195-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2005.10.008] [PMID: 16310843]
[128]
Gadenne V, Lebrun L, Jouenne T, Thebault P. Antiadhesive activity of ulvan polysaccharides covalently immobilized onto titanium surface. Colloids Surf B Biointerfaces 2013; 112: 229-36.
[http://dx.doi.org/10.1016/j.colsurfb.2013.07.061] [PMID: 23994748]
[129]
Junter G-A, Thébault P, Lebrun L. Polysaccharide-based antibiofilm surfaces. Acta Biomater 2016; 30: 13-25.
[http://dx.doi.org/10.1016/j.actbio.2015.11.010] [PMID: 26555378]
[130]
Banerjee I, Pangule RC, Kane RS. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 2011; 23(6): 690-718.
[http://dx.doi.org/10.1002/adma.201001215] [PMID: 20886559]
[131]
Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova EP. Surface topographical factors influencing bacterial attachment. Adv Colloid Interface Sci 2012; 179-182: 142-9.
[http://dx.doi.org/10.1016/j.cis.2012.06.015] [PMID: 22841530]
[132]
Gadenne V, Lebrun L, Jouenne T, Thebault P. Role of molecular properties of ulvans on their ability to elaborate antiadhesive surfaces. J Biomed Mater Res A 2015; 103(3): 1021-8.
[http://dx.doi.org/10.1002/jbm.a.35245] [PMID: 24890284]
[133]
Toskas G, Heinemann S, Heinemann C, et al. Ulvan and ulvan/chitosan polyelectrolyte nanofibrous membranes as a potential substrate material for the cultivation of osteoblasts. Carbohydr Polym 2012; 89(3): 997-1002.
[http://dx.doi.org/10.1016/j.carbpol.2012.04.045] [PMID: 24750891]
[134]
Dash M, Samal SK, Bartoli C, et al. Biofunctionalization of ulvan scaffolds for bone tissue engineering. ACS Appl Mater Interfaces 2014; 6(5): 3211-8.
[http://dx.doi.org/10.1021/am404912c] [PMID: 24494863]
[135]
Alves A, Sousa RA, Reis RL. Processing of degradable ulvan 3D porous structures for biomedical applications. J Biomed Mater Res A 2013; 101(4): 998-1006.
[http://dx.doi.org/10.1002/jbm.a.34403] [PMID: 22965453]
[136]
Kraan S, Martin P, Mair C. Natural and sustainable seaweed formula that replaces synthetic additives in fish feed. EP2453762A1 2012.
[137]
Lahaye M. NMR spectroscopic characterisation of oligosaccharides from two Ulva rigida ulvan samples (Ulvales, Chlorophyta) degraded by a lyase. Carbohydr Res 1998; 314(1-2): 1-12.
[http://dx.doi.org/10.1016/S0008-6215(98)00293-6] [PMID: 10230036]
[138]
Rahimi F, Tabarsa M, Rezaei M. Ulvan from green algae Ulva intestinalis: optimization of ultrasound-assisted extraction and antioxidant activity. J Appl Phycol 2016; 28: 2979-90.
[http://dx.doi.org/10.1007/s10811-016-0824-5]
[139]
Pengzhan Y, Ning L, Xiguang L, Gefei Z, Quanbin Z, Pengcheng L. Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta). Pharmacol Res 2003; 48(6): 543-9.
[http://dx.doi.org/10.1016/S1043-6618(03)00215-9] [PMID: 14527817]
[140]
Qi H, Sun Y. Antioxidant activity of high sulfate content derivative of ulvan in hyperlipidemic rats. Int J Biol Macromol 2015; 76: 326-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.006] [PMID: 25773592]
[141]
Qi H, Huang L, Liu X, Liu D, Zhang Q, Liu S. Antihyperlipidemic activity of high sulfate content derivative of polysaccharide extracted from Ulva pertusa (Chlorophyta). Carbohydr Polym 2012; 87: 1637-40.
[http://dx.doi.org/10.1016/j.carbpol.2011.09.073]
[142]
Qi H, Liu X, Zhang J, Duan Y, Wang X, Zhang Q. Synthesis and antihyperlipidemic activity of acetylated derivative of ulvan from Ulva pertusa. Int J Biol Macromol 2012; 50(1): 270-2.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.11.006] [PMID: 22115715]
[143]
Qi H, Zhao T, Zhang Q, Li Z, Zhao Z, Xing R. Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). J Appl Phycol 2005; 17: 527-34.
[http://dx.doi.org/10.1007/s10811-005-9003-9]
[144]
Qi H, Zhang Q, Zhao T, Hu R, Zhang K, Li Z. In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorg Med Chem Lett 2006; 16(9): 2441-5.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.076] [PMID: 16481163]
[145]
Ropellato J, Carvalho MM, Ferreira LG, et al. Sulfated heterorhamnans from the green seaweed Gayralia oxysperma: partial depolymerization, chemical structure and antitumor activity. Carbohydr Polym 2015; 117: 476-85.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.089] [PMID: 25498661]
[146]
Gurikov P, Smirnova I. Non-Conventional Methods for Gelation of Alginate. Gels 2018; 4(1): 14.
[http://dx.doi.org/10.3390/gels4010014] [PMID: 30674790]
[147]
Kumar A, Ed. Supermacroporous Cryogels: Biomedical and Biotechnological Applications 1st ed. 2016. [http://dx.doi.org/10.1201/b19676]
[148]
Petrenko YA, Ivanov RV, Lozinsky VI, Petrenko AY. Comparison of the methods for seeding human bone marrow mesenchymal stem cells to macroporous alginate cryogel carriers. Bull Exp Biol Med 2011; 150(4): 543-6.
[http://dx.doi.org/10.1007/s10517-011-1185-3] [PMID: 22268060]
[149]
Tripathi A, Kumar A. Multi-featured macroporous agarose-alginate cryogel: synthesis and characterization for bioengineering applications. Macromol Biosci 2011; 11(1): 22-35.
[http://dx.doi.org/10.1002/mabi.201000286] [PMID: 21077225]
[150]
Li HF, Qiu KJ, Zhou FY, Li L, Zheng YF. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application. Sci Rep 2016; 6: 37475.
[http://dx.doi.org/10.1038/srep37475] [PMID: 27897182]
[151]
Bencherif SA, Sands RW, Bhatta D, et al. Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci USA 2012; 109(48): 19590-5.
[http://dx.doi.org/10.1073/pnas.1211516109] [PMID: 23150549]
[152]
Koshy ST, Ferrante TC, Lewin SA, Mooney DJ. Injectable, porous, and cell-responsive gelatin cryogels. Biomaterials 2014; 35(8): 2477-87.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.044] [PMID: 24345735]
[153]
Hori Y, Winans AM, Huang CC, Horrigan EM, Irvine DJ. Injectable dendritic cell-carrying alginate gels for immunization and immunotherapy. Biomaterials 2008; 29(27): 3671-82.
[http://dx.doi.org/10.1016/j.biomaterials.2008.05.033] [PMID: 18565578]
[154]
Wang Y, Wang X, Shi J, et al. A biomimetic silk fibroin/sodium alginate composite scaffold for soft tissue engineering. Sci Rep 2016; 6: 39477.
[http://dx.doi.org/10.1038/srep39477] [PMID: 27996001]
[155]
Joddar B, Garcia E, Casas A, Stewart CM. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies. Sci Rep 2016; 6: 32456.
[http://dx.doi.org/10.1038/srep32456] [PMID: 27578567]
[156]
Algul D, Gokce A, Onal A, Servet E, Dogan Ekici AI, Yener FG. In vitro release and In vivo biocompatibility studies of biomimetic multilayered alginate-chitosan/β-TCP scaffold for osteochondral tissue. J Biomater Sci Polym Ed 2016; 27(5): 431-40.
[http://dx.doi.org/10.1080/09205063.2016.1140501] [PMID: 26764607]
[157]
Guo P, Yuan Y, Chi F. Biomimetic alginate/polyacrylamide porous scaffold supports human mesenchymal stem cell proliferation and chondrogenesis. Mater Sci Eng C 2014; 42: 622-8.
[http://dx.doi.org/10.1016/j.msec.2014.06.013] [PMID: 25063162]
[158]
Prang P, Müller R, Eljaouhari A, et al. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 2006; 27(19): 3560-9.
[PMID: 16500703]
[159]
Shih T-Y, Blacklow SO, Li AW, et al. Injectable, Tough Alginate Cryogels as Cancer Vaccines. Adv Healthc Mater 2018; 7(10)e1701469
[http://dx.doi.org/10.1002/adhm.201701469] [PMID: 29441705]
[160]
Pei M, Jia X, Zhao X, Li J, Liu P. Alginate-based cancer-associated, stimuli-driven and turn-on theranostic prodrug nanogel for cancer detection and treatment. Carbohydr Polym 2018; 183: 131-9.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.013] [PMID: 29352868]
[161]
Chejara DR, Mabrouk M, Kumar P, et al. Synthesis and Evaluation of a Sodium Alginate-4-Aminosalicylic Acid Based Microporous Hydrogel for Potential Viscosupplementation for Joint Injuries and Arthritis-Induced Conditions. Mar Drugs 2017; 15(8)e257
[http://dx.doi.org/10.3390/md15080257] [PMID: 28812999]
[162]
Freeman I, Cohen S. The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials 2009; 30(11): 2122-31.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.057] [PMID: 19152972]
[163]
Yu J, Gu Y, Du KT, Mihardja S, Sievers RE, Lee RJ. The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 2009; 30(5): 751-6.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.059] [PMID: 19010528]
[164]
Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond) 2010; 5(3): 469-84.
[http://dx.doi.org/10.2217/nnm.10.12] [PMID: 20394538]
[165]
Marchioli G, van Gurp L, van Krieken PP, et al. Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication 2015; 7(2)025009
[http://dx.doi.org/10.1088/1758-5090/7/2/025009] [PMID: 26019140]
[166]
Zhang Y, Wang C, Jiang W, Zuo W, Han G. Influence of Stage Cooling Method on Pore Architecture of Biomimetic Alginate Scaffolds. Sci Rep 2017; 7(1): 16150.
[http://dx.doi.org/10.1038/s41598-017-16024-x] [PMID: 29170388]
[167]
Cheng X, Li K, Xu S, et al. Applying chlorogenic acid in an alginate scaffold of chondrocytes can improve the repair of damaged articular cartilage. PLoS One 2018; 13(4)e0195326
[http://dx.doi.org/10.1371/journal.pone.0195326] [PMID: 29621359]
[168]
Hori Y, Stern PJ, Hynes RO, Irvine DJ. Engulfing tumors with synthetic extracellular matrices for cancer immunotherapy. Biomaterials 2009; 30(35): 6757-67.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.037] [PMID: 19766305]
[169]
Hori Y, Winans AM, Irvine DJ. Modular injectable matrices based on alginate solution/microsphere mixtures that gel in situ and co-deliver immunomodulatory factors. Acta Biomater 2009; 5(4): 969-82.
[http://dx.doi.org/10.1016/j.actbio.2008.11.019] [PMID: 19117820]
[170]
Lengert E, Saveleva M, Abalymov A, et al. Silver alginate hydrogel micro- and nanocontainers for theranostics: synthesis, encapsulation, remote release, and detection. ACS Appl Mater Interfaces 2017; 9(26): 21949-58.
[http://dx.doi.org/10.1021/acsami.7b08147] [PMID: 28603966]
[171]
Mhanna R, Becher J, Schnabelrauch M, Reis RL, Pashkuleva I. Sulfated Alginate as a Mimic of Sulfated Glycosaminoglycans: Binding of Growth Factors and Effect on Stem Cell Behavior. Adv Biosyst 2017; 11700043
[http://dx.doi.org/10.1002/adbi.201700043]
[172]
Arlov Ø, Skjåk-Braek G, Öztürk E, Zenobi-Wong M. Sulfated alginates as biomaterials. eCM Meeting,vol Collection 2017. ScSB 2017; p. 1.
[173]
Ruvinov E, Freeman I, Fredo R, Cohen S. Spontaneous Coassembly of Biologically Active Nanoparticles via Affinity Binding of Heparin-Binding Proteins to Alginate-Sulfate. Nano Lett 2016; 16(2): 883-8.
[http://dx.doi.org/10.1021/acs.nanolett.5b03598] [PMID: 26745552]
[174]
Xu X, Bi D, Wan M. Characterization and Immunological Evaluation of Low-Molecular- Weight Alginate Derivatives. Curr Top Med Chem 2016; 16(8): 874-87.
[http://dx.doi.org/10.2174/1568026615666150827101239] [PMID: 26311423]
[175]
Arlov Ø, Öztürk E, Steinwachs M, Skjåk-Bræk G, Zenobi-Wong M, Zenobi-Wong M. Biomimetic sulphated alginate hydrogels suppress IL-1β-induced inflammatory responses in human chondrocytes. Eur Cell Mater 2017; 33: 76-89.
[http://dx.doi.org/10.22203/eCM.v033a06] [PMID: 28170076]
[176]
van de Velde F, Knutsen SH, Usov AI, Rollema HS, Cerezo AS. 1H and 13C high resolution NMR spectroscopy of carrageenans: Application in research and industry. Trends Food Sci Technol 2002; 13: 73-92.
[http://dx.doi.org/10.1016/S0924-2244(02)00066-3]
[177]
Campo VL, Kawano DF, da Silva DB, Carvalho I. Carrageenans: Biological properties, chemical modifications and structural analysis - A review. Carbohydr Polym 2009; 77: 167-80.
[http://dx.doi.org/10.1016/j.carbpol.2009.01.020]
[178]
Du L, Brenner T, Xie J, Liu Z, Wang S, Matsukawa S. Gelation of Iota/Kappa Carrageenan Mixtures.Gums and Stabilisers for the Food Industry 18: Hydrocolloid Functionality for Affordable and Sustainable Global Food Solutions 2016; 47-55. [http://dx.doi.org/10.1039/9781782623830-00047]
[179]
Guan J, Li L, Mao S. Applications of Carrageenan in Advanced Drug Delivery. Seaweed Polysaccharides 2017; pp. 283-303.
[http://dx.doi.org/10.1016/B978-0-12-809816-5.00015-3]
[180]
Matricardi P, Alhaique F, Coviello T, Eds. Polysaccharide hydrogels : characterization and biomedical applications. 2015.
[http://dx.doi.org/10.1201/b19751]
[181]
Gulrez SKH, Al-Assaf S, Phillips GO. Hydrogels: Methods of preparation, characterisation and applications. Progress in Molecular and Environmental Bioengineering 2010; pp. 117-50.
[182]
Popa EG, Carvalho PP, Dias AF, et al. Evaluation of the in vitro and in vivo biocompatibility of carrageenan-based hydrogels. J Biomed Mater Res A 2014; 102(11): 4087-97.
[http://dx.doi.org/10.1002/jbm.a.35081] [PMID: 24443370]
[183]
Salbach J, Rachner TD, Rauner M, et al. Regenerative potential of glycosaminoglycans for skin and bone. J Mol Med (Berl) 2012; 90(6): 625-35.
[http://dx.doi.org/10.1007/s00109-011-0843-2] [PMID: 22187113]
[184]
Popa EG, Reis RL, Gomes ME. Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage. Crit Rev Biotechnol 2015; 35(3): 410-24.
[http://dx.doi.org/10.3109/07388551.2014.889079] [PMID: 24646368]
[185]
Bhattacharyya S, Liu H, Zhang Z, et al. Carrageenan-induced innate immune response is modified by enzymes that hydrolyze distinct galactosidic bonds. J Nutr Biochem 2010; 21(10): 906-13.
[http://dx.doi.org/10.1016/j.jnutbio.2009.07.002] [PMID: 19864123]
[186]
Kim IL, Mauck RL, Burdick JA. Hydrogel design for cartilage tissue engineering: A case study with hyaluronic acid. Biomaterials 2011; 32(34): 8771-82.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.073] [PMID: 21903262]
[187]
Wen C, Lu L, Li X. Enzymatic and ionic crosslinked gelatin/K-carrageenan IPN hydrogels as potential biomaterials. J Appl Polym Sci 2014; 131: 40975.
[http://dx.doi.org/10.1002/app.40975]
[188]
Liu H, Cheng J, Chen F, et al. Biomimetic and cell-mediated mineralization of hydroxyapatite by carrageenan functionalized graphene oxide. ACS Appl Mater Interfaces 2014; 6(5): 3132-40.
[http://dx.doi.org/10.1021/am4057826] [PMID: 24527702]
[189]
Dul M, Paluch KJ, Kelly H, Healy AM, Sasse A, Tajber L. Self-assembled carrageenan/protamine polyelectrolyte nanoplexes-Investigation of critical parameters governing their formation and characteristics. Carbohydr Polym 2015; 123: 339-49.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.066] [PMID: 25843867]
[190]
Cheow WS, Kiew TY, Hadinoto K. Amorphous nanodrugs prepared by complexation with polysaccharides: carrageenan versus dextran sulfate. Carbohydr Polym 2015; 117: 549-58.
[http://dx.doi.org/10.1016/j.carbpol.2014.10.015] [PMID: 25498670]
[191]
Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 2014; 64: 353-67.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.12.017] [PMID: 24360899]
[192]
Bulmer C, Margaritis A, Xenocostas A. Encapsulation and controlled release of recombinant human erythropoietin from chitosan-carrageenan nanoparticles. Curr Drug Deliv 2012; 9(5): 527-37.
[http://dx.doi.org/10.2174/156720112802650680] [PMID: 22812393]
[193]
Liu Y, Yang J, Zhao Z, Li J, Zhang R, Yao F. Formation and characterization of natural polysaccharide hollow nanocapsules via template layer-by-layer self-assembly. J Colloid Interface Sci 2012; 379(1): 130-40.
[http://dx.doi.org/10.1016/j.jcis.2012.04.058] [PMID: 22609188]
[194]
Fedorov SN, Ermakova SP, Zvyagintseva TN, Stonik VA. Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects. Mar Drugs 2013; 11(12): 4876-901.
[http://dx.doi.org/10.3390/md11124876] [PMID: 24317475]
[195]
Chen H, Yan X, Lin J, Wang F, Xu W. Depolymerized products of λ-carrageenan as a potent angiogenesis inhibitor. J Agric Food Chem 2007; 55(17): 6910-7.
[http://dx.doi.org/10.1021/jf070183+] [PMID: 17661479]
[196]
Ebos JML, Lee CR, Kerbel RS. Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin Cancer Res 2009; 15(16): 5020-5.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0095] [PMID: 19671869]
[197]
Goracinova K, Geskovski N, Dimchevska S, Li X, Gref R. Multifunctional core-shell polymeric and hybrid nanoparticles as anticancer nanomedicines. Des Nanostruc Theran App 2018; pp. 109-60.
[http://dx.doi.org/10.1016/B978-0-12-813669-0.00004-X]
[198]
Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 2002; 416(6878): 279-80.
[http://dx.doi.org/10.1038/416279b] [PMID: 11907566]
[199]
Abdalla AME, Xiao L, Ullah MW, Yu M, Ouyang C, Yang G. Current Challenges of Cancer Anti-angiogenic Therapy and the Promise of Nanotherapeutics. Theranostics 2018; 8(2): 533-48.
[http://dx.doi.org/10.7150/thno.21674] [PMID: 29290825]
[200]
Araujo JV, Davidenko N, Danner M, Cameron RE, Best SM. Novel porous scaffolds of pH responsive chitosan/carrageenan-based polyelectrolyte complexes for tissue engineering. J Biomed Mater Res A 2014; 102(12): 4415-26.
[PMID: 24677767]
[201]
Kim J, Lee K-Y, Lee C-M. Selenium Nanoparticles Formed by Modulation of Carrageenan Enhance Osteogenic Differentiation of Mesenchymal Stem Cells. J Nanosci Nanotechnol 2016; 16(3): 2482-7.
[http://dx.doi.org/10.1166/jnn.2016.10764] [PMID: 27455658]
[202]
Thakur A, Jaiswal MK, Peak CW, et al. Injectable shear-thinning nanoengineered hydrogels for stem cell delivery. Nanoscale 2016; 8(24): 12362-72.
[http://dx.doi.org/10.1039/C6NR02299E] [PMID: 27270567]
[203]
Fundueanu G, Esposito E, Mihai D, et al. Preparation and characterization of Ca-alginate microspheres by a new emulsification method. Int J Pharm 1998; 170: 11-21.
[http://dx.doi.org/10.1016/S0378-5173(98)00063-5]
[204]
Bonnard T, Serfaty J-M, Journé C, et al. Leukocyte mimetic polysaccharide microparticles tracked in vivo on activated endothelium and in abdominal aortic aneurysm. Acta Biomater 2014; 10(8): 3535-45.
[http://dx.doi.org/10.1016/j.actbio.2014.04.015] [PMID: 24769117]
[205]
Bonnard T, Yang G, Petiet A, et al. Abdominal aortic aneurysms targeted by functionalized polysaccharide microparticles: A new tool for SPECT imaging. Theranostics 2014; 4(6): 592-603.
[http://dx.doi.org/10.7150/thno.7757] [PMID: 24723981]
[206]
Juenet M, Aid-Launais R, Li B, et al. Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials 2018; 156: 204-16.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.047] [PMID: 29216534]
[207]
Huang Y-C, Liu T-J. Mobilization of mesenchymal stem cells by stromal cell-derived factor-1 released from chitosan/tripolyphosphate/fucoidan nanoparticles. Acta Biomater 2012; 8(3): 1048-56.
[http://dx.doi.org/10.1016/j.actbio.2011.12.009] [PMID: 22200609]
[208]
Lee KW, Jeong D, Na K. Doxorubicin loading fucoidan acetate nanoparticles for immune and chemotherapy in cancer treatment. Carbohydr Polym 2013; 94(2): 850-6.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.018] [PMID: 23544642]
[209]
Reys LL, Silva SS, Soares da Costa D, et al. Fucoidan Hydrogels Photo-Cross-Linked with Visible Radiation As Matrices for Cell Culture. ACS Biomater Sci Eng 2016; 2: 1151-61.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00180]
[210]
Han YS, Lee JH, Lee SH. Antitumor Effects of Fucoidan on Human Colon Cancer Cells via Activation of Akt Signaling. Biomol Ther (Seoul) 2015; 23(3): 225-32.
[http://dx.doi.org/10.4062/biomolther.2014.136] [PMID: 25995820]
[211]
Han YS, Lee JH, Lee SH. Fucoidan inhibits the migration and proliferation of HT-29 human colon cancer cells via the phosphoinositide-3 kinase/Akt/mechanistic target of rapamycin pathways. Mol Med Rep 2015; 12(3): 3446-52.
[http://dx.doi.org/10.3892/mmr.2015.3804] [PMID: 25998232]
[212]
Cho TM, Kim WJ, Moon SK. AKT signaling is involved in fucoidan-induced inhibition of growth and migration of human bladder cancer cells. Food Chem Toxicol 2014; 64: 344-52.
[http://dx.doi.org/10.1016/j.fct.2013.12.009] [PMID: 24333868]
[213]
Wu L, Sun J, Su X, Yu Q, Yu Q, Zhang P. A review about the development of fucoidan in antitumor activity: Progress and challenges. Carbohydr Polym 2016; 154: 96-111.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.005] [PMID: 27577901]
[214]
Lee H, Kim J-S, Kim E. Fucoidan from seaweed Fucus vesiculosus inhibits migration and invasion of human lung cancer cell via PI3K-Akt-mTOR pathways. PLoS One 2012; 7(11)e50624
[http://dx.doi.org/10.1371/journal.pone.0050624] [PMID: 23226337]
[215]
Teng H, Yang Y, Wei H, et al. Fucoidan Suppresses Hypoxia-Induced Lymphangiogenesis and Lymphatic Metastasis in Mouse Hepatocarcinoma. Mar Drugs 2015; 13(6): 3514-30.
[http://dx.doi.org/10.3390/md13063514] [PMID: 26047481]
[216]
Yan M-D, Yao C-J, Chow J-M, et al. Fucoidan Elevates MicroRNA-29b to Regulate DNMT3B-MTSS1 Axis and Inhibit EMT in Human Hepatocellular Carcinoma Cells. Mar Drugs 2015; 13(10): 6099-116.
[http://dx.doi.org/10.3390/md13106099] [PMID: 26404322]
[217]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[218]
Ostroumov D, Fekete-Drimusz N, Saborowski M, Kühnel F, Woller N. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci 2018; 75(4): 689-713.
[http://dx.doi.org/10.1007/s00018-017-2686-7] [PMID: 29032503]
[219]
Choi E-M, Kim A-J, Kim Y-O, Hwang J-K. Immunomodulating activity of arabinogalactan and fucoidan in vitro. J Med Food 2005; 8(4): 446-53.
[http://dx.doi.org/10.1089/jmf.2005.8.446] [PMID: 16379554]
[220]
Maruyama H, Tamauchi H, Iizuka M, Nakano T. The role of NK cells in antitumor activity of dietary fucoidan from Undaria pinnatifida sporophylls (Mekabu). Planta Med 2006; 72(15): 1415-7.
[http://dx.doi.org/10.1055/s-2006-951703] [PMID: 17054048]
[221]
Doria G, Conde J, Veigas B, et al. Noble metal nanoparticles for biosensing applications. Sensors (Basel) 2012; 12(2): 1657-87.
[http://dx.doi.org/10.3390/s120201657] [PMID: 22438731]
[222]
Pietro PD, Strano G, Zuccarello L, Satriano C. Gold and Silver Nanoparticles for Applications in Theranostics. Curr Top Med Chem 2016; 16(27): 3069-102.
[http://dx.doi.org/10.2174/1568026616666160715163346] [PMID: 27426869]
[223]
Lu K-Y, Li R, Hsu C-H, et al. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydr Polym 2017; 165: 410-20.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.065] [PMID: 28363567]
[224]
Bonnard T, Serfaty JM, Journé C, et al. Leukocyte mimetic polysaccharide microparticles tracked in vivo on activated endothelium and in abdominal aortic aneurysm. Acta Biomater 2014; 10(8): 3535-45.
[http://dx.doi.org/10.1016/j.actbio.2014.04.015] [PMID: 24769117]
[225]
Choudhury RP, Fisher EA. Molecular imaging in atherosclerosis, thrombosis, and vascular inflammation. Arterioscler Thromb Vasc Biol 2009; 29(7): 983-91.
[http://dx.doi.org/10.1161/ATVBAHA.108.165498] [PMID: 19213945]
[226]
Bachelet-Violette L, Silva AKA, Maire M, et al. Strong and specific interaction of ultra small superparamagnetic iron oxide nanoparticles and human activated platelets mediated by fucoidan coating. RSC Advances 2014; 4: 4864.
[http://dx.doi.org/10.1039/c3ra46757k]
[227]
Robic A, Gaillard C, Sassi J-F, Lerat Y, Lahaye M. Ultrastructure of ulvan: A polysaccharide from green seaweeds. Biopolymers 2009; 91(8): 652-64.
[http://dx.doi.org/10.1002/bip.21195] [PMID: 19353644]
[228]
Paradossi G, Cavalieri F, Pizzoferrato L, Liquori AM. A physico-chemical study on the polysaccharide ulvan from hot water extraction of the macroalga Ulva. Int J Biol Macromol 1999; 25(4): 309-15.
[http://dx.doi.org/10.1016/S0141-8130(99)00049-5] [PMID: 10456771]
[229]
Paradossi G, Cavalieri F, Chiessi E. A Conformational Study on the Algal Polysaccharide Ulvan. Macromolecules 2002; 35: 6404-11.
[http://dx.doi.org/10.1021/ma020134s]
[230]
Chiellini F, Morelli A. Ulvan: A Versatile Platform of Biomaterials from Renewable Resources. Biomaterials - Physics and Chemistry 2011; pp. 75-98.
[http://dx.doi.org/10.5772/24901]
[231]
Morelli A, Chiellini F. Ulvan as a new type of biomaterial from renewable resources: Functionalization and hydrogel preparation. Macromol Chem Phys 2010; 211: 821-32.
[http://dx.doi.org/10.1002/macp.200900562]
[232]
Morelli A, Betti M, Puppi D, Chiellini F. Design, preparation and characterization of ulvan based thermosensitive hydrogels. Carbohydr Polym 2016; 136: 1108-17.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.068] [PMID: 26572453]
[233]
Morelli A, Puppi D, Cheptene V, Disgraziati D, Ruggeri G, Chiellini F. Design, preparation, and characterization of thermoresponsive hybrid nanogels using a novel ulvan-acrylate crosslinker as potential carriers for protein encapsulation. Macromol Chem Phys 2018; 2191700631
[http://dx.doi.org/10.1002/macp.201700631]
[234]
Oliveira SM, Silva TH, Reis RL, Mano JF. Nanocoatings containing sulfated polysaccharides prepared by layer-by-layer assembly as models to study cell-material interactions. J Mater Chem B Mater Biol Med 2013; 1: 4406.
[http://dx.doi.org/10.1039/c3tb20624f]
[235]
Dash M, Samal SK, Morelli A, et al. Ulvan-chitosan polyelectrolyte complexes as matrices for enzyme induced biomimetic mineralization. Carbohydr Polym 2018; 182: 254-64.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.016] [PMID: 29279122]
[236]
Alves A, Pinho ED, Neves NM, Sousa RA, Reis RL. Processing ulvan into 2D structures: cross-linked ulvan membranes as new biomaterials for drug delivery applications. Int J Pharm 2012; 426(1-2): 76-81.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.021] [PMID: 22281048]
[237]
Andrès E, Molinari J, Péterszegi G, et al. Pharmacological properties of rhamnose-rich polysaccharides, potential interest in age-dependent alterations of connectives tissues. Pathol Biol (Paris) 2006; 54(7): 420-5.
[http://dx.doi.org/10.1016/j.patbio.2006.07.004] [PMID: 16919895]
[238]
Kikionis S, Ioannou E, Toskas G, Roussis V. Electrospun biocomposite nanofibers of ulvan/PCL and ulvan/PEO. J Appl Polym Sci 2015; 132: 42153.
[http://dx.doi.org/10.1002/app.42153]
[239]
Morelli A, Betti M, Puppi D, Bartoli C, Gazzarri M, Chiellini F. Enzymatically Crosslinked Ulvan Hydrogels as Injectable Systems for Cell Delivery. Macromol Chem Phys 2016; 217: 581-90.
[http://dx.doi.org/10.1002/macp.201500353]
[240]
Berte N, Lemelle J-L. Urothelium Tissue Engineering Using Biopsies From Transurethral Resection of Prostate (IMOPU) ClinicalTrialsgov. 2018. Internet
[241]
Dheansa B. Study Assessing the Safety and Performance of Smart Matrix® ClinicalTrialsgov. [Internet] Bethesda (MD): National Library of Medicine(US) 2018.2018.
[242]
Dufrane D. Dufrane D Safety and Efficacy Study of Encapsulated Human Islets Allotransplantation to Treat Type 1 Diabetes linicalTrialsgov. [Internet] Bethesda (MD): National Library of Medicine (US) 2008.
[243]
Carlsson P-O, Espes D, Sedigh A, et al. Transplantation of macroencapsulated human islets within the bioartificial pancreas βAir to patients with type 1 diabetes mellitus. Am J Transplant 2018; 18(7): 1735-44.
[http://dx.doi.org/10.1111/ajt.14642] [PMID: 29288549]
[244]
Ndesendo VMK, Pillay V, Choonara YE, Buchmann E, Bayever DN, Meyer LCR. A review of current intravaginal drug delivery approaches employed for the prophylaxis of HIV/AIDS and prevention of sexually transmitted infections. AAPS PharmSciTech 2008; 9(2): 505-20.
[http://dx.doi.org/10.1208/s12249-008-9073-5] [PMID: 18431651]
[245]
Lee K-Y, Lai G-M, Shiah H-S. To Evaluate the QoL Improvement of Oral Oligo Fucoidan in Subjects Receiving Platinum-based Chemotherapy With NSCLC linicalTrialsgov. [Internet] Bethesda (MD): National Library of Medicine (US) 2017.
[246]
Le Guludec D. Study of Tolerance, Biodistribution and Dosimetry of Fucoidan Radiolabeled by Technetium-99m (NANO-ATHERO) ClinicalTrialsgov. [Internet] Bethesda (MD): National Library of Medicine (US) 2018.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy