Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

PEG1000 as a Low Melting and Ecofriendly Solvent for Air Oxidative and Catalyst Free 2,4-Disubstitute Quinazoline Synthesis

Author(s): Ebrahim Saeedian Moghadam, Shahrzad Ghafary and Mohsen Amini*

Volume 17, Issue 9, 2020

Page: [709 - 716] Pages: 8

DOI: 10.2174/1570178616666190417122005

Price: $65

Abstract

With regard to the importance of quinazoline as a privileged scaffold, herein we report the synthesis of twenty seven 2,4-disubstitute quinazoline derivatives in a new catalyst free condition. In the current work, poly ethylene glycol (PEG1000) as an inexpensive, very simple commercially available, ecofriendly and low melting point solvent was used. Air bubbling, a green oxidant, for oxidation purpose was also used. This is the first report about using PEG1000 as a solvent simultaneously with air bubbling as oxidant in quinazoline synthesis. All of the compounds 1-27 were synthesized in high yield with very simple work up and purification process without using column chromatography. All the structures were confirmed using 1H NMR, 13C NMR, IR, MS and elemental analysis.

Keywords: Air oxidation, catalyst free, ecofriendly solvent, PEG1000, quinazoline, synthesis.

Graphical Abstract

[1]
Kumar Panja, S.; Saha, S. RSC Adv., 2013, 3, 14495.
[2]
Baumann, M.; Baxendale, I.R. Beilstein J. Org. Chem., 2013, 9, 2265.
[3]
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. Beilstein J. Org. Chem., 2011, 7, 442.
[4]
Gurram, V.; Garlapati, R.; Thulluri, C.; Madala, N.; Kasani, K.S.; Machiraju, P.K.; Doddapalla, R.; Addepally, U.; Gundla, R.; Patro, B.; Pottabathini, N. Med. Chem. Res., 2015, 24, 2227.
[5]
Nara, H.; Sato, K.; Naito, T.; Mototani, H.; Oki, H.; Yamamoto, Y.; Kuno, H.; Santou, T.; Kanzaki, N.; Terauchi, J.; Uchikawa, O.; Kori, M. J. Med. Chem., 2014, 57, 8886.
[6]
Herget, T.; Freitag, M.; Morbitzer, M.; Kupfer, R.; Stamminger, T.; Marschall, M. Antimicrob. Agents Chemother., 2004, 48, 4154.
[7]
Roecker, A.J.; Mercer, S.P.; Bergman, J.M.; Gilbert, K.F.; Kuduk, S.D.; Harrell, C.M.; Garson, S.L.; Fox, S.V.; Gotter, A.L.; Tannenbaum, P.L.; Prueksaritanont, T.; Cabalu, T.D.; Cui, D.; Lemaire, W.; Winrow, C.J.; Renger, J.J.; Coleman, P.J. Bioorganic Med. Chem. Lett., 2015, 25, 4992.
[8]
Lim, C.J.; Oh, K.S.; Ha, J.D.; Lee, J.H.; Seo, H.W.; Chae, C.H.; Kim, D.G.; Lee, M.J.; Lee, B.H. Bioorganic Med. Chem. Lett., 2014, 24, 4080.
[9]
Xiao, H.; Li, P.; Hu, D.; Song, B-A. Bioorganic Med. Chem. Lett., 2014, 24, 3452.
[10]
Hamed, M.M.; Abou El Ella, D.A.; Keeton, A.B.; Piazza, G.A.; Abadi, A.H.; Hartmann, R.W. Engel. M. Chem. Med. Chem., 2013, 8, 1495.
[11]
Schwan, G.; Barbar Asskar, G.; Höfgen, N.; Kubicova, L.; Funke, U.; Egerland, U.; Zahn, M.; Nieber, K.; Scheunemann, M.; Sträter, N.; Brust, P.; Briel, D. Chem. Med. Chem., 2014, 9, 1476.
[12]
Kassab, A.E.; Gedawy, E.M.; El-Nassan, H.B.J. Het. Chem., 2017, 54, 624.
[13]
Marugan, J.J.; Zheng, W.; Motabar, O.; Southall, N.; Goldin, E.; Westbroek, W.; Stubblefield, B.K.; Sidransky, E.; Aungst, R.A.; Lea, W.A.; Simeonov, A.; Leister, W.; Austin, C.P. J. Med. Chem., 2011, 54, 1033.
[14]
Yang, Z.; Wang, T.; Wang, F.; Niu, T.; Liu, Z.; Chen, X.; Long, C.; Tang, M.; Cao, D.; Wang, X.; Xiang, W.; Yi, Y.; Ma, L.; You, J.; Chen, L. J. Med. Chem., 2016, 59, 1455.
[15]
Hoegenauer, K.; Soldermann, N.; Stauffer, F.; Furet, P.; Graveleau, N.; Smith, A.B.; Hebach, C.; Hollingworth, G.J.; Lewis, I.; Gutmann, S.; Rummel, G.; Knapp, M.; Wolf, R.M.; Blanz, J.; Feifel, R.; Burkhart, C.; Zécri, F. ACS Med. Chem. Lett., 2016, 7, 762.
[16]
Zhu, X.; Van Horn, K.S.; Barber, M.; Yang, S.; Wang, M.Z.; Manetsch, R.; Werbovetz, K.A. Bioorganic Med. Chem., 2015, 23, 5182.
[17]
Cai, J.; Li, L.; Hong, K.H.; Wu, X.; Chen, J.; Wang, P.; Cao, M.; Zong, X.; Ji, M. Bioorganic Med. Chem., 2014, 22, 5813.
[18]
Newton, R.; Bowler, K.A.; Burns, E.M.; Chapman, P.J.; Fairweather, E.E.; Fritzl, S.J.; Goldberg, K.M.; Hamilton, N.M.; Holt, S.V.; Hopkins, G.V.; Jones, S.D.; Jordan, A.M.; Lyons, A.J.; Nikki March, H.; McDonald, N.Q.; Maguire, L.A.; Mould, D.P.; Purkiss, A.G.; Small, H.F.; Stowell, A.I.; Thomson, G.J.; Waddell, I.D.; Waszkowycz, B.; Watson, A.J.; Ogilvie, D.J. Eur. J. Med. Chem., 2016, 112, 20-32.
[19]
Zhang, J.; Zhu, D.; Yu, C.; Wan, C.; Wang, Z. Org. Lett., 2010, 12, 2841.
[20]
Zhang, J.; Yu, C.; Wang, S.; Wan, C. Wang. Z. Chem. Commun., 2010, 46, 5244.
[21]
Karnakar, K.; Shangkar, J.; Murthy, S.N.; Ramesch, K.; Nageshwar, Y.V.D. Synlett, 2011, 8, 1089.
[22]
Rachakonda, S.; Pratap, P.S.; Basaveswara Rao, M.V. SYNTHESIS, 2012, 44, 2065.
[23]
Han, B.; Wang, C.; Han, R.F.; Yu, W.; Duan, X.Y.; Fang, R.; Yang, X.L. Chem. Commun., 2011, 47, 7818.
[24]
Deshmukh, D.S.; Bhanage, B.M. Synlett, 2018, 29.A-G.
[25]
Karnakar, K.; Vijay Kumar, A.; Narayana Murthy, S.; Ramesh, K.; Nageswar, Y.V.D. Tetrahedron Lett., 2012, 53, 4613.
[26]
Truong, T.; Hoang, T.M.; Nguyen, C.K.; Huynh, Q.T.N.; Phan, N.T.S. RSC Adv., 2015, 5, 24769.
[27]
Khaksar, S.; Gholami, M. Res. Chem. Intermed., 2015, 41, 3709.
[28]
Panja, S.K.; Dwivedi, N.; Saha, S. Tetrahedron Lett., 2012, 53, 6167.
[29]
Dabiri, M.; Salehi, P.; Bahramnejad, M. Synth. Commun., 2010, 40, 3214.
[30]
Sarma, R.; Prajapati, D. Green Chem., 2011, 13, 718.
[31]
Yang, G.P.; He, X.; Yu, B.; Hu, C.W. Appl. Organomet. Chem., 2018, 32e4532
[32]
Liu, K.J.; Jiang, S.; Lu, L.H.; Tang, L.L.; Tang, S.S.; Tang, H.S.; Tang, Z.; He, W.M.; Xu, X. Green Chem., 2018, 20, 3038.
[33]
Yu, B.; Zou, B.; Hu, C.W. J. CO2 Util., 2018, 26, 314.
[34]
Zhang, Z.H.; Zhang, X.N.; Mo, L.P.; Li, Y.X.; Ma, F.P. Green Chem., 2012, 14, 1502-06.
[35]
Lin, J.P.; Zhang, F.H.; Long, Y.Q. Org. Lett., 2014, 16, 2822-2825.
[36]
Saad, S.M.; Khan, K.M.; Perveen, S.; Voelter, W.; Taha, M. Monatsh. Chem., 2015, 146, 1877-80.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy