Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Functional Polysilanes and their Optical, Chiroptical and Photoluminescence Properties

Author(s): Km. Meenu*, Dibyendu S. Bag, Rekha Lagarkha, Radha Tomar and Arvind K. Gupta

Volume 6, Issue 3, 2019

Page: [193 - 221] Pages: 29

DOI: 10.2174/2213337206666190415124549

Abstract

‘Polysilanes’ is an important class of inorganic polymers having Si-Si σ-conjugation along the backbone. They exhibit extraordinary electronic and photophysical properties and find suitable optoelectronics applications. They are typically synthesized by Wurtz coupling reaction of dichlorodialkylsilane or dichlorodiphenylsilane or dichloroalkylphenylsilane and their combinations under drastic reaction conditions by using sodium dispersion in boiling toluene. In such a drastic condition, no functional groups sustain with polysilane polymer. In order to achieve such functional materials, researchers have been interested in synthesizing functional polysilane with a different functional group like a chiral group, azobenzene containing chromophore and other heteroatoms in their main chain or side chain. Therefore, it is a very challenging task to synthesize polysilanes having effective functionality integrated with their structures. However, the modern technological demand of materials leads to efforts to obtain polymers having functional and multifunctional activity in a single material. In this review article, we cover the synthesis of polysilane with functional activity via pre-polymerization and post-polymerization with a functional group.

Keywords: Chiral polymers, functional polysilane, optically active, photoactive properties, photo irradiation, silyl radical.

Graphical Abstract

[1]
Hayase, S. Polysilanes for semiconductor fabrication. Prog. Polym. Sci., 2003, 28, 359-381.
[2]
Michl, J.; West, R. In Silicon Containing Polymers; the science and technology of their synthesis and applications; Jones, R.G.; Ando, W.; Chojnowski, J., Eds.; Kluwer: Dordrecht, The Netherlands, 2000, pp. 499-529.
[3]
Suzuki, H. Temperature dependence of the electroluminescent characteristics of light-emitting diodes made from poly(methylphenylsilane). Adv. Mater., 1996, 8, 657-659.
[4]
Suzuki, H. Behavior of charge carriers and excitons in poly(methylphenylsilane) as investigated by electroluminescence from single-layer-light-emitting diodes. J. Lumin., 1997, 72-74, 1005-1006.
[5]
Suzuki, H.; Mayer, J.; Slimmerer, J.; Yang, J.; Haarer, D. Electroluminescent devices based on poly(methylphenylsilane). Adv. Mater., 1993, 5, 743-746.
[6]
Fujiki, A.; Yoshimoto, K.; Yoshida, M.; Ohmori, Y.; Yoshino, K. Ultraviolet electroluminescent diode utilizing poly(methylphenylsilane). Jpn. J. Appl. Phys., 1995, 34, L1365-L1367.
[7]
Hattori, R.; Sugano, T.; Shirafuji, J.; Fujiki, T. Room temperature ultraviolet electroluminescence from evaporated poly(dimethylsilane) film. Jpn. J. Appl. Phys., 1996, 35, L1509-L1511.
[8]
Miller, R.D.; Hofer, D.; Sooriyakumaran, R.; Willson, C.G.; Fiskes, G.N.; Guiller, J.E.; Moore, J. Soluble polysilanes for lithography. J. Polym. Mater. Sci. Eng., 1986, 55, 599-603.
[9]
Miller, R.D.; Hofer, D.; Fickes, G.N.; Willson, C.G.; Marinero, E.; Trefonas, P. III West, R. Soluble polysilanes: An interesting new class of radiation sensitive materials. Polym. Eng. Sci., 1986, 26, 1129-1134.
[10]
Kanemitsu, Y.; Suzuki, K.; Masumoto, T.; Komatsu, K.; Sato, K.; Kyushin, Y.; Matsumoto, H. Optical properties of small Si-skeleton sheets: Ladder polysilanes. Solid State Commun., 1993, 86, 545-548.
[11]
Kajzar, F.; Messier, J.; Rosilio, C. Nonlinear optical properties of thin films of polysilane. J. Appl. Phys., 1986, 60, 3040-3044.
[12]
Wallroff, G.M.; Miller, R.D.; Baier, M.; Ginsburg, E.J.; Kunj, R.R. Polysilane photoresists for 193 And 248 Nm lithography. J. Photopolym. Sci. Technol., 1992, 5, 111-121.
[13]
Yamagauchi, A.; Ogawa, T.; Tachibana, H.; Qizumi, H.; Soga, T.; Matsumoto, M.; Matsuzaka, T.; Takeda, E. Self-developing characteristics of Si containing polymers and their application to X-Ray lithography. J. Electrochem. Soc., 1996, 143, 657-665.
[14]
Nespurek, S.; Zakrevskyy, Y.; Stumpe, J.; Sapich, B.; Kadashchuk, A. Alignment liquid crystal on poly[methyl(phynel))silylene films treated with polarized uv light. Macromolecules, 2006, 39, 690-696.
[15]
Azinovi, D.; Bravo-Zhivotovskii, D.; Bendikov, M.; Apeloig, Y.; Tumanskii, B.; Veprek, S. Spectroscopic studies of the role of silyl radicals in photolysis of polysilanes. Chem. Phys. Lett., 2003, 374, 257-263.
[16]
Corrales, T.; Catalina, F.; Peinado, C.; Allen, N.S. Free radical macrophotoinitiators: an overview on recent advances. J. Photochem. Photobiol. A: Chem., 2003, 159, 103-114.
[17]
Huang, C.J.; Wang, Z.H.; Wang, M.C. Polysilane as SiC precursor: preparation. Catalytic Cure and Pyrolysis. Eng. Mat., 2016, 697, 148-152.
[18]
Jamshidi, H.; Rahimi, A. Applications of inorganic polymeric materials II: polysilanes. Phosphorus Sulfur Silicon Relat. Elem., 2006, 181(11), 2565-2576.
[19]
Jiang, X.Y.; Terao, K.; Chung, W.; Naito, M. Chain dimensions and intermolecular interactions of polysilanes bearing alkyl side groups over the UV thermochromic temperature. Polymer , 2015, 68, 221-226.
[20]
Oka, K.; Fujiue, N.; Dohmaru, T. An abrupt solvatochromic transition in a polar polysilane. J. Am. Chem. Soc., 1997, 119, 4074-4075.
[21]
Miller, R.D.; Michl, J. Polysilane high polymers. Chem. Rev., 1989, 89, 1359-1410.
[22]
West, R. The polysilane high polymers. J. Organomet. Chem., 1986, 300, 327-346.
[23]
Gahimer, T.; Welsh, W.J. Theoretical investigation of the origins of abrupt thermochromism in the polysilanes. Polymer , 1996, 37, 1815-1823.
[24]
Oka, K.; Fujiue, N.; Nakanishi, S.; Takata, T.; West, R.; Dohmaru, T. Thermochromism and solvatochromism of non-ionic polar polysilanes. J. Organomet. Chem., 2000, 611, 45-51.
[25]
Schauer, F.; Tkacova, M.; Nadazdy, V.; Gmucova, K.; Ozvoldova, M.; Tkac, L.; Chlpik, J. Electronic structure of UV degradation defects in polysilanes studied by energy resolved-electrochemical impedance spectroscopy. Polym. Degrad. Stabil., 2016, 126, 204-208.
[26]
Urbanek, P.; Ku-ritka, I. Thickness dependent structural ordering, degradation and metastability in polysilane thin films: A photoluminescence study on representative σ-conjugated polymers. J. Lumin., 2015, 168, 261-268.
[27]
Schauer, F.; Nespurek, S.; Horváth, P.; Zemek, J.; Fidler, V. Luminescence as a tool for crosslinking determination in plasma polysilylenes prepared from organosilanes. Synth. Met., 2000, 109, 321-325.
[28]
Ding, L.M.; Wong, W.Y.; Xiang, H.Q.; Poon, S.Y.; Karasz, F.E. Photoluminescence and electroluminescence of oligoacetylenic silanes and ermanes. Synth. Met., 2006, 156, 110-116.
[29]
Ding, Y.Q.; Feng, S.Y.; Li, T.D.; Wang, Y.K.; Liu, Y.T.; Xue, L.; Wang, Y.; Wang, H.; Yue, Y.Z. Theoretical study on a new kind of thienyl-functionalized polysilane. Struct. Chem., 2010, 21, 1263-1271.
[30]
West, R.; Menescal, R.; Asuke, T.; Eveland, J. Some recent developments in polysilane chemistry. J. Inorg. Organomet. Polym., 1992, 2, 29-45.
[31]
Vakifahmetoglua, C.; Zeydanlib, D.; Colomboc, P. Porous polymer derived ceramics. Mater. Sci. Eng. Rep., 2016, 106, 1-30.
[32]
Kipping, F.S.; Sands, J.E. Organic derivatives of silicon. Part XXV. Saturated and unsaturated silicohydrocarbons. Si4Ph8. J. Chem. Soc., 1921, 119, 830-847.
[33]
Kipping, F.S. Organic derivatives of silicon. Part XXX. Complex silicohydrocarbons [SiPh2]n. J. Chem. Soc., 1924, 125, 2291-2297.
[34]
Mark, J.E.; Allcock, H.R.; West, R. Inorganic Polymers; Prentice-Hall: New Jersey, 1992.
[35]
Sakamoto, K.; Obata, K.; Hirata, H.; Nakajima, M.; Sakurai, H. Chemistry of organosilicon compounds. 257. Novel anionic polymerization of masked disilenes to polysilylene high polymers and block copolymers. J. Am. Chem. Soc., 1989, 111, 7641-7643.
[36]
H, Sakurai.; K, Sakamoto.; Y, Funada.; and M, Yoshida. Anionic Polymerization of Masked Disilenes to Polysilanes Mechanism and Applications. Inorganic and Organometallic Polymers II ACS Symposium Series, Vol. 572Chapter 2. , pp. 8-17.1994,
[37]
Went M.J., Sakurai H., Sanji T. Modification and Functionalisation of Polysilanes. In: Jones R.G., Ando W., Chojnowski J. (eds) Silicon-Containing Polymers. Springer, Dordrecht,pp.419-437. , 2000.
[38]
Fossum, E.; Matyjaszewski, K. Ring-Opening Polymerization of Cyclotetrasilanes: Microstructure and Mechanism. Macromolecules, 1995, 28(5), 1618-1625.
[39]
Aitken, C.; Harrod, J.F.; Samuel, E. Polymerization of primary silanes to linear polysilanes catalyzed by titanocene derivatives. J. Organomet. Chem., 1985, 279, C11-C13.
[40]
Jones, R.G.; Ando, W.; Chojnowski, J. Silicon-based polymers: the science and technology of their synthesis and applications. kluwer academic publishers. Dordrecht, 2000. (Chapter 12).
[41]
Cragg, R.H.; Jones, R.G.; Swain, A.C.; Webb, S.J. Low-temperature syntheses of polysilanes and polygermanes in diethyl ether. J. Chem. Soc. Chem. Commun., 1990, 1147-1148.
[42]
Kim, H.K.; Matyjaszewski, K. Preparation of polysilanes in the presence of ultrasound. J. Am. Chem. Soc., 1988, 110, 3321-3323.
[43]
Matyjaszewski, K.; Greszta, D.; Hrkach, I.S.; Kim, H.K. Sonochemical synthesis of polysilylenes by reductive coupling of disubstituted dichlorosilanes with alkali metals. Macromolecules, 1995, 28, 59-72.
[44]
Holder, S.J.; Jones, R.G. in Silicon Based Polymers: Advances in Synthesis and Supramolecular Organization, Eds. Ganachaud, F.; Boileau, S.; Boury, B, 2008, pp. 249-277.
[45]
West, R.; David, L.D.; Djurovich, P.I.; Yu, H.; Sinclair, R. Polysilastyrene: phenylmethylsilane-dimethylsilane copolymers as precursors to silicon carbide. Am. Ceram. Soc. Bull., 1983, 62, 899-903.
[46]
Fujiki, M. Optically active polysilylenes: state-of-the-art chiroptical polymers. Macromol. Rapid Commun., 2001, 22, 539-563.
[47]
Fujiki, M.; Koe, J. In Jones, R.G.; Ando, W.; Chojnowski, J. Silicon-based polymers: the science and technology of their synthesis and applications; Kluwer Academic Publishers: Dordrecht, 2000.
[48]
Sakamoto, K.; Yoshida, M.; Sakurai, H. Highly ordered high-molecular weight alternating polysilylene copolymer prepared by anionic polymerization of masked disilene. Macromolecules, 1990, 23, 4494-4496.
[49]
Matsumoto, N.; Suzuki, H.; Miyazaki, H. Electronic and Optical Properties in Device Applications of Polysilanes. In: Jones, R.G.; Ando, W.; Chojnowski, J.; (eds) Silicon-Containing Polymers. Chapter 19,Springer, Dordrecht; , 2000.
[50]
Mimura, S.; Naito, H.; Kanemitsu, Y.; Matsukawa, K.; Inoue, H. Optical properties of organic-inorganic hybrid thin films containing polysilane segments prepared from polysilane-methacrylate copolymers. J. Organomet. Chem., 2000, 611, 40-44.
[51]
V.S, Reuss.; Frey, H. Multihydroxy-functional polysilanes via an acetal protecting group strategy. Macromolecules, 2010, 43, 8462-8467.
[52]
Hea, L.; Chenb, B.; Isoa, M. A novel photobleachable polysilane copolymer for optical waveguide fabrication. Polym. Adv. Technol., 2011, 22, 1056-1059.
[53]
Mimura, S.; Naito, H.; Kanemitsu, Y.; Matsukawa, K. Inoue. H. Optical properties of (organic polysilane)-(inorganic matrix) hybrid thin films. J. Luminescence., 2000, 87-89, 715-717.
[54]
Matsukawa, K.; Fukui, S.; Higashi, N.; Niwa, M.; Inoue, H. Preparation and properties of organic-inorganic hybrid thin films containing polysilane segments from polysilane-methacrylate copolymers. Chem. Lett., 1999, 28, 1073-1074.
[55]
Matsuura, Y.; Matsukawa, K.; Inoue, H. Fabrication of polysilane-silica hybrid thin films with controlled refractive index. Chem. Lett., 2001, 30, 244-245.
[56]
Matsuura, Y.; Matsukawa, K.; Kawabata, R.; Higashi, N.; Niwa, M.; Inoue, H. Synthesis of polysilane-acrylamide copolymers by photopolymerization and their application to polysilane-silica hybrid thin films. Polymer , 2002, 43, 1549-1553.
[57]
Naito, H.; Mimura, S.; Kobayashi, A.; Matsuura, Y.; Matsukawa, K.; Inoue, H.; Nihonyanagi, S.; Kanemitsu, Y. Energy transfer in (organic polysilane) (silica matrix) hybrid thin films. Thin Solid Films, 2001, 393, 199-203.
[58]
Hayase, S.; Horigauchi, R.; Onishi, Y.; Ushirogouchi, T. Syntheses of polysilanes with functional groups. 2. Polysilanes with carboxylic acids. Macromolecules, 1989, 22(7), 2933-2938.
[59]
Tang, H.D.; Liu, Y.Y.; Huang, B.; Qin, J.G. Fuentes-Hernandez, C.; Kippelen, B.; Li, S.J.; Ye, C.; Synthesis and optical properties of a series of chromophore functionalized polysilanes. J. Mater. Chem., 2005, 15, 778-784.
[60]
Shankar, R.; Joshi, A. Synthesis, characterization, and photoluminescence properties of asymmetrically substituted functional polysilanes bearing carbosilyl side chains, -[R(Me)Si]n- and -[R(Ph)Si]n-[R = (CH2)xSiR‘3; x = 2 or 3]. Macromolecules, 2005, 38, 4176-4182.
[61]
Liu, Y.B.; Wang, C.Y.; Li, M.J.; Lai, G.Q.; Shen, Y.J. Synthesis and properties of polysilanes with tetrathiafulvalene as pendant group. New J. Chem., 2008, 32, 505-510.
[62]
Wang, Q.H.; Lu, H.; Gai, L.Z.; Chen, W.F.; Lai, G.Q.; Li, Z.F. Emission of boron dipyrromethane dyes through energy transfer to their S2 state from polysilane S1 state. Dyes Pigm., 2012, 94, 183-186.
[63]
He, J.; Tse, J.S.; Klug, D.D.; Preston, K.F. Layered polysilane: thermolysis and photoluminescence. J. Mater. Chem., 1998, 8, 705-710.
[64]
Sacarescu, L.; Kostromin, S.; Bronnikov, S. Synthesis and properties of polydiphenylsilane/fullerene C60 nanocomposites. Mater. Chem. Phys., 2015, 149-150, 430-436.
[65]
Wang, Y.; West, R.; Yuan, C.H. Fullerene-doped polysilane photoconductor. J. Am. Chem. Soc., 1993, 115, 3844-3845.
[66]
Kepler, R.G.; Cahill, P.A. Photoinduced charge transfer and charge carrier generation in polysilane films containing C60 molecules. Appl. Phys. Lett., 1993, 63, 1552-1554.
[67]
Suzuki, H.; Hoshino, S.; Furukawa, K.; Ebata, K.; Yuan, C.H.; Bleyl, I. Polysilane light-emitting diodes. Polym. Adv. Technol., 2000, 11, 460-467.
[68]
Watanabe, A.; Nanjo, M.; Sunaga, T.; Sekiguchi, A. Dynamics of the excited state of polysilane dendrimers: origin of the broad visible emission of branched silicon chains. J. Phys. Chem. A, 2001, 105, 6436-6442.
[69]
Watanabe, A.; Miike, H.; Tsutsumi, Y.; Matsuda, M. Photochemical properties of network and branched polysilanes. Macromolecules, 1993, 26, 2111-2116.
[70]
Seki, S.; Yoshida, Y.; Tagawa, S. Electronic structure of radical anions and cations of polysilanes with structural defects. Macromolecules, 1999, 32, 1080-1086.
[71]
Fujiki, M. A correlation between global conformation of polysilane and UV absorption characteristics. J. Am. Chem. Soc., 1996, 118, 7424-7425.
[72]
Fujiki, M. Ideal exciton spectra in single- and double-screw-sense helical polysilanes. J. Am. Chem. Soc., 1994, 116, 6017-6018.
[73]
Fujiki, M.; Koe, J.R.; Terao, K.; Sato, T.; Teramoto, A.; Watenabe, J. Optically active polysilanes. ten years of progress and new polymer twist for nanoscience and nanotechnology. Polym. J., 2003, 35(4), 297-344.
[74]
Damewood, J.R.; West, R. Structure calculations for silane polymers: polysilane and poly(dimethylsilylene). Macromolecules, 1985, 18(2), 159-164.
[75]
Weglikowska, U.D.; Ho¨nle, W.; Dohms, A.M.; Finkbeiner, S.; Weber, J. Structure and optical properties of the planar silicon compounds polysilane and Wöhler siloxene. Phys. Rev. B , 1997, 56(20), 13132-13140.
[76]
Meenu, Km.; Bag, D.S.; Saxena, A.K. Synthesis of organic-inorganic chiral block poly(methylphenylsilane) functional polymers, and study of their optical and chiroptical properties. J. Polym. Sci. Part A: Polym. Chem., 2016, 54, 3626-3634.
[77]
Sukla, S.K.; Tiwari, R.K.; Ranjan, A.; Saxena, A.K.; Mathur, G.N. Some thermal studies of polysilanes and polycarbosilanes. Thermochim. Acta, 2004, 424, 209-217.
[78]
Meenu, Km.; Bag, D.S. Synthesis and characterization of functional photoactive organic-inorganic block copolymers of poly(methylphenylsilane) and disperse red 1 methacrylate and study of their optical and photophysical properties. J. Macromol. Sci. Part A Pure Appl. Chem., 2017, 54, 418-425.
[79]
Takeda, K.; Matsumoto, N.; Fukuchi, M. Energy-band structure of chainlike polysilane (SiH2)n alloys. Phys. Rev. B , 1984, 30, 5871-5876.
[80]
Tachibana, H.; Matsumoto, M.; Tokura, Y.; Morimoto, Y.; Yamagauchi, A.; Koshihara, S.; Miller, R.D.; Abe, S. Spectra of one-dimensional excitons in polysilanes with various backbone conformations. Phys. Rev. B , 1993, 47, 4363-4371.
[81]
Matsumoto, N.; Takeda, K.; Teramae, H.; Fujino, M. In silicon-based polymer science: a comprehensive resource. Zeigler, J.M; Fearson, F.W.G., Ed.; American Chemical Society: Washington DC , 1990, p. 515.
[82]
Kagawa, T.; Fujino, M.; Takeda, K.; Matsumoto, N. Photoluminescence of organo-polysilane. Solid State Commun., 1986, 97, 635-637.
[83]
Harrah, L.A.; Zeigler, I.M. Photoluminescence growth from photolysed poly(phenyl methyl silane). J. Polym. Sci. C. Polym. Lett., 1987, 25, 205-207.
[84]
Ito, M.; Terasima, T.; Azumi, N.; Matsumoto, K. Takeda, Fujino, M. The photoluminescence of poly(methylphenylsilylene): the origin of the long-wavelength broad band. Macromolecules, 1989, 22, 1718-1722.
[85]
Fujiki, M. Structural defects in poly(methylphenylsilylene). Chem. Phys. Lett., 1992, 198, 177-182.
[86]
Toyoda, S.; Fujiki, M. Origin of broad visible photoluminescence from poly(alkylarylsilylene) derivatives. Macromolecules, 2001, 34, 2630-2634.
[87]
Hoshino, S.; Suzuki, H.; Fujiki, M.; Morita, M.; Matsumoto, N. Electroluminescent characteristics of one-dimensional silicon chains in dialkyl polysilanes. Synth. Met., 1997, 89, 221-225.
[88]
Hiraoka, T.; Majima, Y.; Murai, S.; Nakano, Y.; Hayase, S. Oxygen-crosslinked polysilane: the new class of Si-related material for electroluminescent devices. Polym. Adv. Technol., 1997, 8, 465-470.
[89]
Xu, Y.; Fujino, T.; Naito, H.; Oka, K.; Dohmaru, T. room temperature ultraviolet electroluminescence from poly(methylphenylsilane). Chem. Lett., 1998, 4, 299-300.
[90]
Yuan, C.H.; Hoshino, S.; Toyoda, S.; Suzuki, H.; Fujiki, M.; Matsumoto, N. Room-temperature near-ultraviolet electroluminescence from a linear silicon chain. Appl. Phys. Lett., 1997, 71, 3326.
[91]
Fujino, K. Photoconductivity in organopolysilanes. Chem. Phys. Lett., 1987, 136, 451-453.
[92]
Furukawa, K.; Yuan, C.H.; Hoshino, S.; Suzuki, H.; Matsumoto, N. bipolar carrier behavior in a near ultraviolet electroluminescent silicon polymer: Poly[Bis (p-n-butylphenyl)silane]. Mol. Cryst. Liq. Cryst., 1999, 327, 181-184.
[93]
Nespurek, S.; Kadashchuk, A.; Skryshevski, Yu.; Fujii, A.; Yoshino, K. Origin of broad visible luminescence in poly[methyl(phenyl)silylene] thin films. J. Lumin., 2002, 99, 131-140.
[94]
Toyoda, S.; Fujiki, M. Photoluminescence and absorption spectra of poly(pentylphenylsilylene). absence of broad photoluminescence of poly(alkylarylsilylene) around 2.7 eV. Chem. Phys. Lett., 1998, 293, 38-42.
[95]
Kishida, H.; Tachibana, H.; Tokura, Y. Visible luminescence from branched silicon polymers. J. Appl. Phys., 1995, 78, 3362-3366.
[96]
Cleij, T.J.; King, J.K.; Jenneskens, L.W. Band gap modifications in functionalized poly(methylphenylsilanes). Macromolecules, 2000, 33, 89-96.
[97]
Nespurek, S.; Herde, V.; Kunst, M.; Schnabel, W. Microwave photoconductivity and polaron formation in poly[methyl(phenyl)silylene]. Synth. Met., 2000, 109, 309-313.
[98]
Nespurek, S.; Schauer, F.; Kadashchuk, A. Visible photoluminescence in polysilanes. Monatsh. Chem., 2001, 132, 159-168.
[99]
Akcelrud, L. Photophysical study of a conjugated-non-conjugated PPV type electroluminescent copolymer. Polymer, 2005, 46, 2452-2460.
[100]
Chen, Y.; Liao, C.; Wu, T. Synthesis and characterization of luminescent copolyethers with alternate stilbene derivatives and aromatic 1,3,4-oxadiazoles. Polymer, 2002, 43, 4545-4555.
[101]
Bhowmik, P.K.; Burchett, R.A.; Han, H.; Cebe, J.J. Synthesis and characterization of poly (pyridinium salt) s with organic counterion exhibiting both lyotropic liquid- crystalline and light-emitting properties. Polymer, 2002, 43, 1953-1958.
[102]
Yamashita, H.; Leon, De. M.S.; Channasanon, S.; Suzuki, Y.; Uchimaru, Y.; Takeuchi. K. Palladium-catalyzed hydrosilylation polymerization of dihydrosilanes with diynes affording silylene-divinylene polymers. Polymer, 2003, 44, 7089-7093.
[103]
Boileau, S.; Bouteiller, L.; Kowalewska, A. Telechelic polydimethylsiloxanes with terminal acetylenic groups prepared by phase-transfer catalysis. Polymer, 2003, 44, 6449-6455.
[104]
Cai, G.; Weber, W.P. Synthesis and chemical modification of poly(divinylsiloxane). Polymer, 2002, 43, 1753-1759.
[105]
Lakowicz, J.R. Principles of fluorescence spectroscopy, 2nd ed; Kluwer Academic/Plenum Publishers: New York, 1999.
[106]
Meszaros, O.; Schmidt, P.; Pospisil, J. Photooxidation of poly[methyl(phenyl)silylene] and effect of photostabilizers. Polym. Degrad. Stabil., 2006, 91, 573-578.
[107]
Schauer, F.; Schauer, P.; Kuritka, I.; Bao, H. Conjugated silicon-based polymer resists for nanotechnologies: eb and uv meditated degradation processes in polysilanes. Mater. Trans., 2010, 51, 197-201.
[108]
Nakashima, H.; Fujiki, M. Precise control of optical properties and global conformations by marked substituent effects in poly(alkyl(methoxyphenyl)silane) homo- and copolymers. Macromolecules, 2001, 34, 7558-7564.
[109]
Trefonas, P.; West, R.; Miller, R.D. Polysilane high polymers: mechanism of photodegradation. J. Am. Chem. Soc., 1985, 107, 2737-2742.
[110]
Wolff, A.W.; West, R. Photoinitiation of vinyl polymerization by polysilanes. Appl. Organomet. Chem., 1987, 1, 7-14.
[111]
Yucesan, D.; Hostygar, H.; Denizligil, S.; Yagci, Y. Synthesis of block copolymers by using polysilanes. Angew. Makromol. Chem., 1994, 221, 207-216.
[112]
Alonso, A.; Penido, C.; Lozano, A.E.; Catalina, F.; Zimmermann, C.; Schnabel, W. Rate contants of the reaction of silyl macroradicals generated by chain cleavage of poly(dihexyl silylene) with olefinic monomers J. Macromole. Sci A, 1999, 36, 605-619.
[113]
Nespurek, S.; Herden, V.; Schnabel, W.; Eckhardt, A. Photoinduced charge transfer in poly(methylphenylsilene). Czech. J. Phys., 1998, 48, 477-485.
[114]
Irie, S.; Irie, M. Radical ions of polysilanes with alkyl and aryl side groups. Macromolecules, 1992, 25, 1766-1770.
[115]
Ohsako, Y.; Philips, J.R.C.H.M.; Zeigler, J.M.; Hochstrasser, R.M. Picosecond transient absorption spectroscopy of polysilanes. J. Phys. Chem., 1989, 93, 4408-4411.
[116]
Watanabe, A.; Matsuda, M. Photodegradation of alkyl- and aryl-substituted polysilanes studied by flash photolysis. Macromolecules, 1992, 25, 484-488.
[117]
Karatsu, T.; Miller, R.D.; Sooriyakumaran, R.; Michl, J. The mechanism of the photochemical degradation of poly(di-n-alkylsilanes) in solution. J. Am. Chem. Soc., 1989, 111, 1140-1141.
[118]
Itsuno, S. Chiral polymer synthesis by means of repeated asymmetric reaction. Prog. Polym. Sci., 2005, 30, 540-558.
[119]
Bag, D.S.; Shami, T.C.; Bhasker Rao, K.U. Synthesis and characterization of a chiral monomer and its polymer, poly[D-(+)-alpha-Methyl benzyl methacryloylamine]. J. Polym. Mater., 2008, 25, 51-62.
[120]
Bag, D.S.; Shami, T.C.; Bhasker Rao, K.U. Chiral Nanoscience and Nanotechnology. Def. Sci. J., 2008, 58, 626-635.
[121]
Dutta, D.; Bag, D.S.; Shami, T.C.; Bhasker Rao, K.U. Chiroptical properties of copolymers of D-(+)-N-methyl benzyl methacryloylamine (D-MBMA) and methylmethacrylate (MMA). J. Polym. Mater., 2008, 25, 320-321.
[122]
Bag, D.S.; Dutta, D.; Shami, T.C.; Bhasker Rao, K.U. Synthesis and characterization of L-leucine containing chiral vinyl monomer and its polymer, poly(2-(methacryloyloxyamino)-4-methyl pentanoic acid). J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 2228-2242.
[123]
Bag, D.S. Bhasker Rao, K.U. Chiral copolymers of (R)-N-(1-phenylethyl) methacrylamide and 2-hydroxyethyl methacrylate: copolymerization characteristics and chiroptical properties. Polym. Int., 2010, 59, 501-509.
[124]
Bag, D.S.; Alam, S. Synthesis and characterization of photoactive chiral copolymers of (S)-N-(1-phenyl ethyl) methacrylamide and disperse red 1 methacrylate. J. Appl. Polym. Sci., 2012, 125, 2595-2603.
[125]
Bag, D.S.; Alam, S. Chiral chemical absorption property of a cross-linked poly(N-isopropyl acrylamide-co-sodium acrylate) thermoresponsive smart gel. Chirality, 2012, 24, 506-511.
[126]
Berova, N.; Nakanishi, K.; Woody, R.W. (Eds.), Wiley. Circular Dichroism: Principles and Applications.New York,; , 2000. (Chapter 12).
[127]
Sato, T.; Terao, K.; Teramoto, A.; Fujiki, M. Molecular properties of helical polysilylenes in solution. Polymer, 2003, 44, 5477-5495.
[128]
Farina, M.; Peraldo, M.; Natta, G. Cyclic compounds as configurational models for stereoregular polymers. Angew. Chem. Int. Ed. ., 1965, 4, 107-112.
[129]
Natta, G.; Farina, M.; Donati, M. Anionic catalytic systems for asymmetric synthesis of polymers. Makromol. Chem., 1961, 43, 251-254.
[130]
Yoshio, O.; Koji, O.; Heimei, Y. Highly asymmetric selective polymerization of (RS)-A-methylbenzyl methacrylate by grignard reagent-(-)-sparteine catalyst systems. Chem. Lett., 1977, 6, 617-620.
[131]
Okamoto, Y.; Ohta, K.; Yuki, H. Asymmetric-selective polymerization of (RS)-α-methylbenzyl methacrylate with the cyclohexylmagnesium chloride-(-)- sparteine system in toluene at -78°C. Macromolecules, 1978, 11, 724-727.
[132]
Okamoto, Y.; Urakawa, K.; Yuki, H. Asymmetric selective polymerization of racemic methacrylates with the cyclohexylmagnesium bromide-(-)-sparteine system. J. Polym. Sci. Polym. Chem. Ed., 1981, 19, 1385-1395.
[133]
Okamoto, Y.; Suzuki, K.; Kitayama, T.; Yuki, H.; Kageyama, H.; Miki, K.; Tanaka, N.; Kasai, N. Kinetic resolution of racemic. alpha.-methylbenzyl methacrylate: asymmetric selective polymerization catalyzed by Grignard reagent-(-)-sparteine derivative complexes. J. Am. Chem. Soc., 1982, 104, 4618-4624.
[134]
Okamoto, Y.; Yashima, E.; Hatada, K.; Yuki, H.; Kageyama, H.; Miki, K.; Kasai, N. Asymmetric selective polymerization of racemic 1,2-diphenylethyl methacrylate with the ethylmagnesium bromide‐(-)‐sparteine complex. J. Polym. Sci. Polym. Chem. Ed., 1984, 22, 1831-1837.
[135]
Wulff, G.; Dhal, P.K. Can polystyrene be optically active? Angew. Chem. Int. Ed. ., 1989, 28, 196-198.
[136]
Yokota, K.; Kakuchi, T.; Sakurai, K.; Iwata, Y.; Kawai, H. Chirality induction arising from the twist of template on the cyclocopolymerization of 2,3-O-isopropylidene-1,4-di-O-methacryloyl-L-threitol with styrene. Makromolekulare. Chem., Rapid. Commun., 1992, 13, 343-349.
[137]
Kakuchi, T.; Kawai, H.; Katoh, S.; Haba, O.; Yokota, K. Synthesis of optically active poly(methyl methacrylate) by cyclopolymerization of 1,4-di-O-methacryloyl-L-threitol. Macromolecules, 1992, 25, 5545-5546.
[138]
Wulff, G.; Zabrocki, K. Hohn, Optically active polyvinylverbindungen mit chiralität in der hauptkette. J. Angew. Chem., 1978, 90, 567-568.
[139]
Wulff, G.; Hohn, J. Chirality of polyvinyl compounds. 2. an asymmetric copolymerization. Macromolecules, 1982, 15, 1255-1261.
[140]
Wulff, G.; Kemmerer, R.; Vogt, B. Chirality of polyvinyl compounds. 5. Optically active polymers with structural chirality in the main chain prepared through an asymmetric cyclocopolymerization. J. Am. Chem. Soc., 1987, 109, 7449-7457.
[141]
Wulff, G.; Dhal, P.K. Chirality of polyvinyl compounds. 6. Unusual influences of the comonomer structures on the chiroptical properties of optically active vinyl copolymers with chirality arising from configurational relationships in the main chain. Macromolecules, 1988, 21, 571-578.
[142]
Okamoto, Y.; Nakano, T. Asymmetric polymerization. Chem. Rev., 1994, 94, 349-372.
[143]
Nakano, T.; Okamoto, Y. Synthetic helical polymers: conformation and function. Chem. Rev., 2001, 101, 4013-4038.
[144]
Hu, Q.S.; Vitharana, D.; Liu, G.; Jain, V.; Pu, L. Conjugated polymers with main chain chirality. 2. synthesis of optically active polyarylenes. Macromolecules, 1996, 29, 5075-5082.
[145]
Kovacic, P.; Jones, M.B. Dehydro coupling of aromatic nuclei by catalyst-oxidant systems: poly(p-phenylene). Chem. Rev., 1987, 87, 357-379.
[146]
Wegner, G. Polymers with metal-like conductivity- A review of their synthesis, structure and properties. Angew. Chem. Int. Ed. Engl., 1981, 20, 361.
[147]
Iida, H.; Yashima, E. Synthesis and Application of Helical Polymers with Macromolecular Helicity Memory, John Wiley & Sons, Inc. by John Wiley & Sons, Inc Chapter 7, 2011.
[148]
Nolte, R.J.M.; Van Beijnen, A.J.M.; Drenth, W. Chirality in polyisocyanides. J. Am. Chem. Soc., 1974, 96, 5932-5933.
[149]
Nowacki, B.; Oh, H.; Zanlorenzi, C.; Jee, H.; Baev, A.; Prasad, P.N.; Akcelrud, L. Design and Synthesis of Polymers for Chiral Photonics. Macromolecules, 2013, 46(18), 7158-7165.
[http://dx.doi.org/10.1021/ma401731x]
[150]
Babudri, F.; Colangiuli, D.; Bari, L.D.; Farinola, G.M.; Omar, O.H.; Naso, F.; Pescitelli, G. Synthesis and chiroptical characterization of an amino acid functionalized dialkoxypoly(p-phenyleneethynylene). Macromolecules, 2006, 39, 5206-5212.
[151]
Maeda, K.; Mochizuki, H.; Watanabe, M.; Yashima, E. Switching of macromolecular helicity of optically active poly(phenylacetylene)s bearing cyclodextrin pendants induced by various external stimuli. J. Am. Chem. Soc., 2006, 128, 7639-7650.
[152]
Liu, Y.; Shi, Q.; Dong, H.; Tan, J.; Hu, W.; Zhan, X. Solvent-vapor induced self-assembly of a conjugated polymer: A correlation between solvent nature and transistor performance. Org. Electron., 2012, 13, 2372-2378.
[153]
Lakhwani, G.; Meskers, S.C.J. β Phase in chiral polyfluorene forms via a precursor. Macromolecules, 2009, 42, 4220-4223.
[154]
Islam, M.R.; Ahamed, P.; Haraguchi, N.; Itsuno, S. Synthesis of chiral polymers containing thioetherified cinchonidinium repeating units and their application to asymmetric catalysis. Tetrahedron Asymmetry, 2014, 25, 1309-1315.
[155]
Suzuki, N.; Fujiki, M.; Kimpan-Kalunga, R.; Koe, J.R. Chiroptical inversion in helical Si-Si bond polymer aggregates. J. Am. Chem. Soc., 2013, 135, 13073-13079.
[156]
Okoshi, K.; Fujiki, M.; Watenabe, J. Asymmetrically tilted alignment of rigid-rod helical polysilanes on a rubbed polyimide surface. Langmuir, 2012, 28, 4811-4814.
[157]
Drenth, W.; Nolte, R.J.M. Poly(iminomethylenes): rigid rod helical polymers. Acc. Chem. Res., 1979, 12, 30-35.
[158]
Green, M.M.; Gross, R.A. Macromolecular stereochemistry: effect of pendant group structure on the conformational properties of polyisocyanides. Macromolecule, 1988, 21, 1839-1846.
[159]
Deming, T.J.; Novak, B.M. Polyisocyanides using [(η3-C3H5)Ni(OC(O)CF3)]2: rational design and implementation of a living polymerization catalyst. Macromolecules, 1991, 24, 6043-6045.
[160]
Ziegler, J.M.; Fearson, F.W.G. (Eds.). Silicon-based Polymer Science. advances in chemistry series,American Chemical Society, Washington, DC,; 224. , 1990.
[161]
West, R. in Abel, E.W.; Stone, F.G.A.; Wilkinson, G. (Eds.). Comprehensive organometallic chemistry II. A.G. Davies, Chapter Ed,Pergamon Press, Oxford; , 1995. pp. 77/110.
[162]
Michl, J.; West, R. Silicon-containing polymers: The science and technology of their synthesis and applications., Kluwer academic publishers, dordrecht, for reviews and books of polysilanes Chapter 18, 2000.
[163]
Yamaguchi, S.; Tamao, K. Silicon-containing Polymers: The science and technology of their synthesis and applications. Kluwer Academic Publishers, Dordrecht,; Chapter 17. , 2000.
[164]
Koe, J.R.; Fujiki, M.; Nakashima, H.; Motonaga, M. in I. Khan (Ed.)Synthetic macromolecules with higher structural order. ACS, Advance in Chemistry Series No. 812; Khan, I., Ed.; Oxford, 2002.
[165]
Watanabe, J.; Kamee, H.; Fujiki, M. First observation of thermotropic cholesteric liquid crystal in helical polysilane. Polym. J., 2001, 33, 495-497.
[166]
Fujiki, M.; Toyoda, S.; Yuan, C.H.; Takigawa, H. Near-UV, circular dichroism, and fluorescence spectra of a rigid rodlike helical polysilane bearing trietheral moiety in ethanol/water. Chirality, 1998, 10, 667-675.
[167]
Harada, N.; Nakanishi, K. Circular Dichroic Spectroscopy: Exciton Coupling in Organic Chemistry; University Science Books: Oxford, 1983.
[168]
Frey, H.; Moeller, M.; Matyjaszewski, K. Chiral Poly(dipentylsilylene) Copolymers. Macromolecules, 1994, 27, 1814-1818.
[169]
Frey, H.; Moeller, M.; Turetskii, A.; Lots, B.; Matyjaszewski, K. Structure and chiroptical properties of Bis[(S)-methylbutyl]silylene-dipentylsilylene copolymers. Macromolecules, 1995, 28, 5498-5506.
[170]
Matyjaszewski, K. Preparation of inorganic and organometallic polymers with controlled structures. J. Inorg. Organomet. Polym., 1992, 2, 5-27.
[171]
Li, Z.; Chen, W.; Lu, H.; Wang, Q.; Lai, G. Chiral diamine catalyzed induction of helical chirality in polysilanes. J. Organomet. Chem., 2014, 772-773, 143-146.
[172]
Allcock, H.R. Heteroatom ring system, and polymers; Academic Press: New York, 1967.
[173]
Mzeldin, K.; Wynne, J.; Allcock, H.R., Eds.; Inorganic and organometallic polymers; ACS SympSer 360Am. Chem. Soc.: Washington, DC, 1968.
[174]
Allcock, H.R.; and Lampe, F.W. Contemporary polymer chemistry. Academic Press, 2nd ed; Chapter 9. , 1990.
[175]
Laine, R.M. Inorganic and organometallic polymes with special properties. (NATI ASI Ser. Applied Science), 206 (Kluwer Dordrecht, 1992.
[176]
Kickelbick, G. Hybrid materials-past, present and future. Hybrid Mater., 2014, 1, 39-51.
[177]
Sakurai, H. Amphiphilic polysilane-methacrylate block copolymers. Proc. Jpn. Acad., Ser. B, ., 2006, 82, 257-269.
[178]
Marusaki, M.; Naito, H.; Matsuura, Y.; Matsukawa, K. Optical properties of poly(di-nn-hexylsilane)-zirconia hybrid thin films: suppression of thermochromism and large thermo-optic coefficients. Appl. Phys. Lett., 2005, 86, 191907-1-191907-3.
[179]
Matsuura, Y.; Inoue, H.; Matsukawa, K. Preparation of polysilane/gold bilayer using polysilane/2-(methylthio)ethyl methacrylate block copolymer. Polym. J., 2004, 36, 560-562.
[180]
Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem., 2005, 15, 3559-3592.
[181]
Souza, F.L.; Bueno, P.R.; Longo, E.; Leite, E.R. Sol-gel nonhydrolytic synthesis of a hybrid organic-inorganic electrolyte for application in lithium-ion devices. Solid State Ion., 2004, 166, 83-88.
[182]
Singh, A.; Singh, N.P.; Singh, R.A. Biomimetic synthesis and characterization of semiconducting hybrid organic-inorganic composite materials based on polyaniline-polyethylene glycol-CdS system. Bull. Mater. Sci., 2011, 34, 1017-1026.
[183]
Raj, G.; Swalus, C.; Guillet, A.; Devillers, M.; Nysten, B.; Gaigneaux, E.M. Supramolecular organization in organic-inorganic heterogeneous hybrid catalysts formed from polyoxometalate and poly(ampholyte) polymer. Langmuir, 2013, 29, 4388-4395.
[184]
Fu, G.; Yue, X.; Dai, Z. Glucose biosensor based on covalent immobilization of enzyme in sol-gel composite film combined with Prussian blue/carbon nanotubes hybrid. Biosens. Bioelectron., 2011, 26, 3973-3976.
[185]
Gwak, G.H.; Paek, S.M.; Oh, J.M. Electrophoretic preparation of an organic-inorganic hybrid of layered metal hydroxide and hydrogel for a potential drug-delivery system. Eur. J. Inorg. Chem., 2012, 2012, 5269-5275.
[186]
Chou, T.P.; Chandrasekaran, C.; Cao, G.Z. Sol-gel-derived hybrid coatings for corrosion protection. JSST, 2003, 26, 321-327.
[187]
Bourbigot, S.; Duquesne, S. Fire retardant polymers: recent developments and opportunities. J. Mater. Chem., 2007, 17, 2283-2300.
[188]
Wang, L.; Wu, X.L.; Xu, W.H.; Huang, X.J.; Liu, J.H.; Xu, A.W. Stable organic-inorganic hybrid of polyaniline/α-zirconium phosphate for efficient removal of organic pollutants in water environment. Appl. Mater. Interfaces, 2012, 4, 2686-2692.
[189]
Gao, B.; Gao, Y.; Li, Y. Preparation and chelation adsorption property of composite chelating material poly(amidoxime)/SiO2 towards heavy metal ions. Chem. Eng. J., 2010, 158, 542-549.
[190]
Zaitseva, N.; Zaitsev, V.; Walcarius, A. Chromium (VI) removal via reduction-sorption on bi-functional silica adsorbents. J. Hazard. Mater., 2013, 250-251, 454-461.
[191]
Simsek, E.B.; Duranoglu, D.; Beker, U. Heavy metal adsorption by magnetic hybrid-sorbent: An experimental and theoretical approach. Sep. Sci. Technol., 2012, 47, 1334-1340.
[192]
Suchithra, P.S.; Vazhayal, L.; Mohamed, A.P.; Ananthakumar, S. Mesoporous organic-inorganic hybrid aerogels through ultrasonic assisted sol-gel intercalation of silica-PEG in bentonite for effective removal of dyes, volatile organic pollutants and petroleum products from aqueous solution. Chem. Eng. J., 2012, 200-202, 589-600.
[193]
Repo, E.; Warchoł, J.K.; Bhatnagar, A.; Sillanpaa, M. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials. J. Colloid Interface Sci., 2011, 358, 261-267.
[194]
Ge, P.; Li, F.; Zhang, B. Synthesis of modified mesoporous materials and comparative studies of removal of heavy metal from aqueous solutions. Pol. J. Environ. Stud., 2010, 19, 301-308.
[195]
Pang, Y.; Zeng, G.; Tang, L.; Zhang, Y.; Liu, Y.; Lei, X.; Li, Z.; Zhang, J.; Xie, G. PEI-grafted magnetic porous powder for highly effective adsorption of heavy metal ions. Desalination, 2011, 281, 278-284.
[196]
Wang, L.; Zhang, J.; Wang, A. Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly (acrylic acid)/attapulgite composite. Desalination, 2011, 266, 33-39.
[197]
Kwon, Y.K.; Han, J.K.; Lee, J.M.; Ko, Y.S.; Oh, J.H.; Leeb, H.S.; Lee, E.H. Organic-inorganic hybrid materials for flexible optical waveguide applications. J. Mater. Chem., 2008, 18, 579-585.
[198]
Priimagi, A.; Kaivola, M. Enhanced photoinduced birefringence in polymer-dye complexes: Hydrogen bonding makes a difference. Appl. Phys. Lett., 2007, 90, 121103-1-121103-3.
[199]
Yaroshchuk, O.; Reznikov, Y. Photoalignment of liquid crystals: basics and current trends. J. Mater. Chem., 2012, 22, 286-300.
[200]
Koskela, J.E.; Vapaavuori, J.; Hautala, J.; Priimagi, A.; Faul, C.F.J.; Kaivola, M.; Ras, R.H.A. Surface-relief gratings and stable birefringence inscribed using light of broad spectral range in supramolecular polymer-bisazobenzene complexes. J. Phys. Chem. C, 2012, 116, 2363-2370.
[201]
Priimagi, A. Polymer-azobenzene complexes: from supramolecular concepts to efficient photoresponsive polymers; HSE: Helsinki, 2009.
[202]
Wu, S.; Duan, S.; Lei, Z.; Su, W.; Zhang, Z.; Wang, K.; Zhang, Q. Supramolecular bisazopolymers exhibiting enhanced photoinduced birefringence and enhanced stability of birefringence for four-dimensional optical recording. J. Mater. Chem., 2010, 20, 5202-5209.
[203]
Schab-Balcerzak, E.; Sobolewska, A.; Stumpe, J.; Hamryszak, L.; Bujak, P. Surface relief gratings in azobenzene supramolecular systems based on polyimides. Opt. Mater., 2012, 35, 155-167.
[204]
Schab-Balcerzak, E.; Konieczkowska, J.; Siwy, M.; Sobolewska, A.; Wojtowicz, M.; Wiacek, M. Comparative studies of polyimides with covalently bonded azo-dyes with their supramolecular analoges: Thermo-optical and photoinduced properties. Opt. Mater., 2014, 36, 892-902.
[205]
Papagiannouli, I.; Iliopoulos, K.; Gindre, D.; Sahraoui, B.; Krupka, O.; Smokal, V.; Kolendo, A.; Couris, S. Third-order nonlinear optical response of push-pull azobenzene polymers. Chem. Phys. Lett., 2012, 554, 107-112.
[206]
Lemouchi, C.; Iliopoulos, K.; Zorina, L.; Simonov, S.; Wzietek, P.; Cauchy, T. Crystalline arrays of pairs of molecular rotors: correlated motion, rotational barriers, and space-inversion symmetry breaking due to conformational mutations. J. Am. Chem. Soc., 2013, 135, 9366-9376.
[207]
Iliopoulos, K.; El-Ghayoury, A.; Derkowska, B.; Ranganathan, A.; Batail, P.; Gindre, D. Effect of the counter cation on the third order nonlinearity in anionic Au dithiolene complexes. Appl. Phys. Lett., 2012, 101, 261105-261114.
[208]
Iliopoulos, K.; El-Ghayoury, A.; El, Ouazzani. H.; Pranaitis, M.; Belhadj, E.; Ripaud, E. Nonlinear absorption reversing between an electroactive ligand and its metal complexes. Opt. Express, 2012, 20, 25311-25316.
[209]
Liu, Z.; Lu, G.Y.; Ma, J. Tuning the absorption spectra and nonlinear optical properties of D-π-A azobenzene derivatives by changing the dipole moment and conjugation length: a theoretical study. J. Phys. Org. Chem., 2011, 24, 568-577.
[210]
Gindre, D.; Boeglin, A.; Fort, A.; Mager, L.; Dorkenoo, K.D. Rewritable optical data storage in azobenzene copolymers. Opt. Express, 2006, 14, 9896-9901.
[211]
Wang, D.; Wang, X. Amphiphilic azo polymers: Molecular engineering, self-assembly and photo responsive properties. Prog. Polym. Sci., 2013, 38, 271-301.
[212]
Huang, T.; Wagner, K.H. Diffraction analysis of photoanisotropic holography: an anisotropic saturation model. J. Opt. Soc. Am. B, 1996, 13, 282-299.
[213]
Rau, H. Photochemistry and photophysics, in J.F. Rabek (Ed.), 2, CRC, Boca Raton, FL, Chapter 4, 1990, p. 119.
[214]
Delaire, J.A.; Nakatani, K. Linear and nonlinear optical properties of photochromic molecules and materials. Chem. Rev., 2000, 100, 1817-1846.
[215]
Emoto, A.; Uchida, E.; Fukuda, T. Optical and physical applications of photocontrollable materials: azobenzene-containing and liquid crystalline polymers. Polymers , 2012, 4(1), 150-186.
[216]
Ban, H.; Sukegawa, K.; Tagawa, S. Pulse radiolysis study on organopolysilane radical anions. Macromolecules, 1987, 20, 1775-1778.
[217]
Yamamoto, K.; Okinoshima, H.; Kumada, M. Disproportionation of pentamethyldisilane and sym-tetramethyldisilane catalysed by platinum complexes. J. Organomet. Chem., 1970, 23, C1-C15.
[218]
Li, J.; Ren, P.; Zhan, C.; Qin, J. Synthesis and structural characterization of novel multifunctional polysiloxanes having photo‐refractive properties. Polym. Int., 1999, 48, 491-494.
[219]
Gauvin, F.; Harrod, J.F.; Woo, H.G. Catalytic Dehydrocoupling: A General Strategy for the Formation of Eelement-Element Bonds. Adv. Organomet. Chem., 1998, 42, 363-405.
[220]
Herzog, U.; Roewer, G. Preparation of oligosilanes containing perhalogenated silyl groups (-SiX3, -SiX2-, -SiX-, X= Cl, Br) and their hydrogenation by stannanes. J. Organomet. Chem., 1997, 544, 217-223.
[221]
Wang, X.; Balasubramanian, S.; Kumar, J.; Tripathy, S.K. Azo Chromophore-Functionalized Polyelectrolytes. 1. Synthesis, Characterization, and Photoprocessing. Chem. Mater., 1998, 10, 1546-1553.
[222]
Casson, J.L.; Wang, H.L.; Roberts, J.B.; Parikh, A.N.; Robinson, J.M.; Johal, M.S. Kinetics and interpenetration of ionically self-assembled dendrimer and PAZO multilayers. J. Phys. Chem. B, 2002, 106, 1697-1702.
[223]
Santos, D.S. dos. Cardoso, M.R.; Leite, F.L.; Aroca, R.F.; Mattosa, L.H.C.; Oliveira, O.N.; Mendoca, C.R. The role of azopolymer/dendrimer layer-by-layer film architecture in photoinduced birefringence and the formation of surface-relief gratings. Langmuir, 2006, 22, 6177-6180.
[224]
Lee, S.H.; Balasubramanian, S.; Kim, D.Y.; Viswanathan, N.K.; Bian, S.; Kumar, J.; Tripathy, S.K. Azo polymer multilayer films by electrostatic self-assembly and layer-by-layer post azo functionalization. Macromolecules, 2000, 33, 6534-6540.
[225]
Kang, E.H.; Jin, P.; Yang, Y.; Sun, J.; Shen, J. A facile room temperature layer-by-layer deposition process for the fabrication of ultrathin films with non-centro symmetrically oriented azobenzene chromophores. Chem. Commun. , 2006, 41, 4332-4334.
[226]
Wang, G.J.; He, Y.N.; Wang, X.G.; Jiang, L. Self-assembly and optical properties of poly(acrylic acid)-based azo polyelectrolyte. Thin Solid Films, 2004, 458, 143-148.
[227]
Breit, M.; Gao, M.; von Plessen, G.; Lemmer, U.; Feldmann, J.; Cundiff, S.T. Formation dynamics of layer-by-layer self-assembled films probed by second harmonic generation. J. Chem. Phys., 2002, 117, 3956-3960.
[228]
Mao, G.; Wang, J.; Clingman, S.R.; Ober, C.K.; Chen, J.T.; Thomas, E.L. Molecular design, synthesis, and characterization of liquid crystal-coil diblock copolymers with azobenzene side groups. Macromolecules, 1997, 30, 2556-2567.
[229]
Zhao, Y.; Bai, S.; Dumont, D.; Galstian, T.V. Mechanically tunable diffraction gratings recorded on an azobenzene elastomer. Adv. Mater., 2002, 14, 512-514.
[230]
Yu, H.; Iyoda, T.; Ikeda, T. Photoinduced alignment of nanocylinders by supramolecular cooperative motions. J. Am. Chem. Soc., 2006, 128, 11010-11011.
[231]
Ruzette, A.V.; Leibler, L. Block copolymers in tomorrow’s plastics. Nat. Mater., 2005, 4, 19-31.
[232]
Lazzari, M.; Lopez-Quintela, M.A. Block copolymers as a tool for nanomaterial fabrication. Adv. Mater., 2003, 15, 1583-1594.
[233]
Morikawa, Y.; Nagano, S.; Watanabe, K.; Kamata, K.; Iyoda, T.; Seki, T. Optical alignment and patterning of nanoscale microdomains in a block copolymer thin film. Adv. Mater., 2006, 18, 883-886.
[234]
Kadota, S.; Aoki, K.; Nagano, S.; Seki, T. Photocontrolled microphase separation of block copolymers in two dimensions. J. Am. Chem. Soc., 2005, 127, 8266-8267.
[235]
Angiolini, L.; Benelli, T.; Giorgini, L.; Salatelli, E.; Bozio, R.; Dauru, A. Improvement of photoinduced birefringence properties of optically active methacrylic polymers through copolymerization of monomers bearing azoaromatic moieties. Macromolecules, 2006, 39, 489-497.
[236]
Tian, Y.; Watanabe, K.; Kong, X.; Abe, J.; Iyoda, T. Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties. Macromolecules, 2002, 35, 3739-3747.
[237]
Frenz, C.; Fuchs, A.; Schmidt, H.W.; Theissen, U.; Haarer, D. Diblock copolymers with azobenzene side-groups and polystyrene matrix: synthesis, characterization and photo addressing. Macromol. Chem. Phys., 2004, 205, 1246-1258.
[238]
Angiolini, L.; Benelli, T.; Giorgini, L.; Salatelli, E. Optically active photochromic methacrylic polymers with controlled average molecular weight and defined end-groups by atom transfer radical polymerization. Polymer, 2005, 46, 2424-2432.
[239]
Force’n, P.; Oriol, L.; Sa’nchez, C.; Alcala, R.; Hvilsted, S.; Jankova, K. Synthesis, characterization and photoinduction of optical anisotropy in liquid crystalline diblock azo-copolymers. J. Polym. Sci.Part A Polym. Chem., 2007, 45, 1899-1910.
[240]
Force’n, P.; Oriol, L.; Sa’nchez, C.; Rodrı’guez, F.J.; Alcala, R.; Hvilsted, S. Methacrylic azopolymers for holographic storage: A comparison among different polymer types. Eur. Polym. J., 2007, 43, 3292-3300.
[241]
Ichimura, K. Photoalignment of liquid-crystal systems. Chem. Rev., 2000, 100, 1847-1874.
[242]
Viswanathan, N.; Kim, D.Y.; Bian, S.; Williams, J.; Liu, W.; Li, L.; Samuelson, L.; Kumar, J.; Tripathy, S.K. Surface relief structures on azo polymer films. J. Mater. Chem., 1999, 9, 1941-1955.
[243]
Natansohn, A.; Rochon, P. Photoinduced motions in azo-containing polymers. Chem. Rev., 2002, 102, 4139-4176.
[244]
Ikeda, T. Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem., 2003, 13, 2037-2057.
[245]
Eich, M.; Wendorff, J.H. Reversible digital and holographic optical storage in polymeric liquid crystals. Makromol. Chem., Rapid. Commun., 1987, 8, 59-63.
[246]
Fischer, T.; Lasker, L.; Rutloh, M.; Czapla, S.; Stumpe, J. Competition of self-organization and photo-orientation in liquid crystalline polymers. Mol. Cryst. Liq. Cryst. , 1997, 299, 293-299.
[247]
Hvilsted, S.; Andruzzi, F.; Fulinna, C.; Siesler, H.W.; Ramanujam, P.S. Novel side-chain liquid crystalline polyester architecture for reversible optical storage. Macromolecules, 1995, 28, 2172-2183.
[248]
Liang, X.; Asanuma, H.; Komiyama, M. Photoregulation of DNA triplex formation by azobenzene. J. Am. Chem. Soc., 2002, 124, 1877-1883.
[249]
Chaumel, F.; Jiang, H.; Kakkar, A. Sol-Gel Materials for Second-Order Nonlinear Optics. Chem. Mater., 2001, 13, 3389-3395.
[250]
Orihara, Y.; Matsumura, A.; Saito, Y.; Ogawa, N.; Saji, T.; Yamaguchi, A.; Sakai, H.; Abe, M. Reversible release control of an oily substance using photoresponsive micelles. Langmuir, 2001, 17, 6072-6076.
[251]
Junge, D.M.; McGrath, D.V. Photoresponsive azobenzene-containing dendrimers with multiple discrete states. J. Am. Chem. Soc., 1999, 121, 4912-4913.
[252]
Li, J.; Li, Z.; Tang, H.; Zeng, H.; Qin, J. Polysilanes with NLO chromophores as pendant groups by utilizing different synthetic strategies. J. Organomet. Chem., 2003, 685, 258-268.
[253]
Yi, S.H.; Maeda, N.; Suzuki, T.; Sato, H. Preparation and characterization of polysilanes with electron donating substituent. Polym. J., 1992, 24, 865-870.
[254]
Harrah, L.A.; Zeigler, J.M. Electronic spectra of hindered silyl and organo-substituted polysilylenes. Macromolecules, 1987, 20, 2037-2039.
[255]
Kminek, I.; Brynda, E.; Schnabel, W. Modification of poly(methyl phenylsilane) by the attachment of π-conjugated substituents. Synthesis and photochemical studies. Eur. Polym. J., 1991, 27, 1073-1080.
[256]
Jones, R.G.; Benfield, R.E.; Swain, A.C.; Webb, S.J.; Went, M.J. Chloromethylation of poly(methylphenylsilane). Polymer, 1995, 36, 393-398.
[257]
Zhang, Y.; Burzynski, R.; Ghosal, S.; Cossteyens, M.K. Photorefractive polymers and composites. Adv. Mater., 1996, 8, 111-125.
[258]
Peng, Z.; Bao, Z.; Chen, Y.M.; Yu, L. Large photorefractivity in an exceptionally thermostable multifunctional polyimide. J. Am. Chem. Soc., 1994, 116, 6003-6004.
[259]
Peng, Z.; Gharavi, A.R.; Yu, L. Hybridized approach to new polymers exhibiting large photorefractivity. Appl. Phys. Lett., 1996, 69, 4002-4004.
[260]
Herjog, U.; Roewer, G. Preparation of oligosilanes containing perhalogenated silyl groups (-SiX3, -SiX2-, =SiX-, X=Cl, Br) and their hydrogenation by stannanes. J. Organomet. Chem., 1997, 544, 217-223.
[261]
Herzog, U.; West, R. Heterosubstituted Polysilanes. Macromolecular, 1999, 32, 2210-2214.
[262]
Tang, H.; Li, J.; Qin, J. Synthesis of multifunctional polysilanes via Si-Cl containing intermediate. React. Funct. Polym., 2001, 48, 193-199.
[263]
Fujiki, M. Switching handedness in optically active polysilanes. J. Organomet. Chem., 2003, 685, 15-34.
[264]
Oh, H.S.; Imae, I.; Kawakami, Y.; Raj, S.S.S.; Yamane, T. Synthesis, stereochemistry and chiroptical properties of naphthylphenyl-substituted optically active oligosilanes with α,ω-chiral silicon centers. J. Organomet. Chem., 2003, 685, 35-43.
[265]
Motonaga, M.; Nakashima, H.; Katz, S.; Berry, D.H.; Imase, T.; Kawauchi, S.; Watanabe, J.; Fujiki, M.; Koe, J.R. The first optically active polygermanes: preferential screw sense helicity of enantiopure chiral-substituted aryl polygermanes and comparison with analogous polysilanes. J. Organomet. Chem., 2003, 685, 44-50.
[266]
Sanji, T.; Isozaki, S.; Yoshida, M.; Sakamoto, K.; Sakurai, H. Functional transformation of poly(dialkylaminotrimethyldisilene) prepared by anionic polymerization of the masked disilenes. The preparation of a true polysilastyrene. J. Organomet. Chem., 2003, 685, 65-69.
[267]
Uhlig, W. Tailor-made synthesis of functional substituted oligo- and polysilanes from silyl triflates and (aminosilyl)lithium compounds. J. Organomet. Chem., 2003, 685, 70-78.
[268]
Kim, B.H.; Cho, M.S.; Kim, M.A.; Woo, H.G. One-pot synthesis of poly(alkoxysilane)s by Si-Si/Si-O dehydrocoupling of silanes with alcohols using Group IV and VIII metallocene complexes. J. Organomet. Chem., 2003, 685, 93-98.
[269]
Rosenberg, L.; Kobus, D.N. Dehydrogenative coupling of primary alkyl silanes using Wilkinson’s catalyst. J. Organomet. Chem., 2003, 685, 107-112.
[270]
Watanabe, A. Optical properties of polysilanes with various silicon skeletons. J. Organomet. Chem., 2003, 685, 122-133.
[271]
Wakahara, T.; Maeda, Y.; Kako, M.; Akasaka, T.; Kobayashi, K.; Nagase, S. Silylation of fullerenes with active species in photolysis of polysilane. J. Organomet. Chem., 2003, 685, 177-188.
[272]
Villegas, A.; Olayo, R.; Cervantes, J.; Pannell, K.H. Photoreaction of poly(ferrocenylmethylsilane-co-phenylmethylsilane) in solution. J. Organomet. Chem., 2003, 685, 196-201.
[273]
Sacarescu, G. Ardeleanu, R.; Sacarescu, L.; Simionescu, M. Synthesis of polysilane-bis(salicyliden)ethylenediamine Ni(II) complex. J. Organomet. Chem., 2003, 685, 202-206.
[274]
Hatanaka, Y. Unusual behavior of silicon oligomers and polymers having functional groups. J. Organomet. Chem., 2003, 685, 207-217.
[275]
Matsuura, Y.; Miura, S.; Naito, H.; Inoue, H.; Matsukawa, K. Nanostructured polysilane-titania hybrids and their application to porous titania thin films. J. Organomet. Chem., 2003, 685, 230-234.
[276]
Kamata, N.; Terunuma, D.; Ishii, R.; Satoh, H.; Aihara, S.; Yaoita, Y.; Tonsyo, S. Efficient energy transfer from polysilane molecules and its application to electroluminescence. J. Organomet. Chem., 2003, 685, 235-242.
[277]
Sanji, T.; Takase, K.; Sakurai, H. The induction of a helical conformation in polysilanes with an optically active terminal group. Bull. Chem. Soc. Jpn., 2004, 77, 1607-1611.
[278]
Sacarescu, L.; Ardeleanu, R.; Sacarescu, G.; Simionescu, M. Synthesis and characterization of polysilane-organometallic complexes. High Perform. Polym., 2007, 19, 510-519.
[279]
Shankar, R.; Shahi, V. Synthesis and characterization of functional polysilanes [RMe2Si(CH2)x(Me)Si]n (R = 2-Fu, 5-Me-2-Fu, 2-Th, 4-Me-2-Th; x = 2, 3) with appended furyl/thienyl groups on the carbosilyl side chains and their application in the generation and stabilization of palladium nanoparticles. J. Polym. Sci. Part A Polym. Chem., 2008, 46, 7816-7826.
[280]
Kim, M.H.; Lee, J.; Mo, S.Y.; Kim, J.H.; Woo, H.G. Dehydrogenative Polymerization of Hydrosilanes to Silicon Polymers. J. Chosun Natural Science, 2010, 3(2), 61-71.
[281]
Ishifune, M. Electroreductive synthesis of polysilanes with ordered sequences. new polymers for special applications., 2012. Chapter 11.
[http://dx.doi.org/10.5772/46243]
[282]
Shankar, R.; Sahoo, U.; Shahi, V.; Chaudhary, M. Linear, branched and network polysilanes with thienyl/furyl substituted sila-alkyl side chains and their applications for the synthesis of fluorescent silver nanoparticles/clusters. J. Chem. Sci., 2012, 124(6), 1239-1244.
[283]
Simionescu, M.; Sacarescu, L.; Sacarescu, G. Microwave-assisted synthesis of functional polysilanes. Des. Monomers Polym., 2012, 15, 127-136.
[284]
Lee, P.T.K.; Skjel, M.K.; Rosenberg, L. Borane-catalyzed Si-H activation routes to polysilanes containing thiolato side chains. Organomet., 2013, 32, 1575-1578.
[285]
Shankar, R.; Sahoo, U. Functional polysilanes of relevance for the synthesis of Au and Au-Pd nanoparticle assemblies—A study on the role of polymer-supported thioether side chains. J. Polym. Sci. Part A Polym. Chem., 2013, 51(5), 1129-1136.
[286]
Liang, Q.; Zhang, L.; Xiong, Y.; Wu, Q.; Tang, H. A facile method to prepare a polyethylene glycol modified polysilane as a waterborne photoinitiator. J. Photochem. Photobiol. A: Chem., 2015, 299, 9-17.
[287]
Ekhorutomwen, S.A.; Sawan, S.P. “Critical review on photoresists”, Proc. SPIE 10285, Polymers in Optics: Physics, Chemistry, and Applications. Crit. Rev., 2015, 214-238.
[288]
Lee, P.T.K.; Rosenberg, L. Borane-catalysed postpolymerisation modification of the Si-H bonds in poly(phenylsilane) Dalton Trans., (RSC), 2017, 46, 8818- 8826.
[289]
Okamura, H.; Iseki, M.; Degawa, K.; Matsumoto, A.; Minokami, K.; Miyauchi, S. Fabrication of photocrosslinked polysilane/ diarylfluorene blended films with tunable refractive indices. J. Photopolym. Sci. and Tech, 2017, 30(6), 683- 688. 2017SPST.
[290]
Nakagawa, J.; Oku, T.; Suzuki, A.; Akiyama, T.; Yamada, M.; Fukunishi, S.; Kohno, K. Effects of PBr<sub>3</sub> Addition to Polysilane Thin Films on Structures and Photovoltaic Properties. Green and Sustain. Chem., 2017, 7, 20-34.
[291]
Sanji, T. Materials containing homocatenated polysilanes. Main Group Strategies towards Functional. Hybrid Mater., 2018, •••, 197-208.
[292]
Folster, C.P.; Klausen, R.S. Metallocene influence on poly(cyclosilane) structure and properties. Polym. Chem., 2018, 9(15), 1938-1941.
[293]
Miyamura, H.; Suzuki, A.; Yasukawa, T.; Kobayashi, S. Polysilane-immobilized Rh-Pt bimetallic nanoparticles as powerful arene hydrogenation catalysts: synthesis, reactions under batch and flow conditions and reaction mechanism. J. Am. Chem. Soc., 2018, 140(36), 11325-11334.

© 2024 Bentham Science Publishers | Privacy Policy