Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Organophotoredox Catalysis: Visible-light-induced Multicomponent Synthesis of Chromeno[4, 3-b]chromene and Hexahydro-1H-xanthene Derivatives

Author(s): Amit K. Sharma, Jyoti Tiwari, Deepali Jaiswal, Shailesh Singh, Jaya Singh and Jagdamba Singh*

Volume 6, Issue 3, 2019

Page: [222 - 230] Pages: 9

DOI: 10.2174/2213337206666190306154327

Abstract

Background: In recent years, photoredox catalysis using eosin Y has gained considerable significance in organic chemistry. It is evolving as a powerful approach in modern organic synthesis for the activation of small molecules.

Objective: The use of organic dyes to convert visible light into chemical energy by involving a single-electron transfer with organic substrates has innumerable applications.

Method and Results: The present strategy is the first example of visible light promoted, aerobic, oxidative cyclization of chromeno[4,3-b]chromenes and hexahydro-1H-xanthenes via the formation of C–O and C–C bonds to afford excellent yield of the products in a simple one-pot operation under mild reaction conditions.

Conclusion: The major advantages of the present methodology include short reaction time, cost effectiveness, easy work-up, broad substrate scope and high atom economy.

Keywords: Chromeno[4, 3-b]chromenes, hexahydro-1H-xanthene, multicomponent, photoredox catalysis, visible light, synthesis.

Graphical Abstract

[1]
Zhang, M.; Fu, Q.Y.; Gao, G.; He, H.Y.; Zhang, Y.; Wu, Y.S.; Zhang, Z.H. Catalyst-free, visible-light promoted one-pot synthesis of spirooxindole-pyran derivatives in aqueous ethyl lactate. ACS Sustain. Chem.& Eng., 2017, 5, 6175-6182.
[2]
Hari, D.P.; Konig, B. Eosin Y catalyzed visible light oxidative C_C and C_P bond formation. Org. Lett., 2011, 13, 3852-3855.
[3]
Chen, J.R.; Hu, X.Q.; Lu, L.Q.; Xiao, W.J. Exploration of visible-light photocatalysis in heterocycle synthesis and functionalization: reaction design and beyond. Acc. Chem. Res., 2016, 49, 1911-1923.
[4]
Cao, M.Y.; Ren, X.; Lu, Z. Olefin difunctionalizations via visible light photocatalysis. Tetrahedron Lett., 2015, 56, 3732-3742.
[5]
König, B. Photocatalysis in organic synthesis - past, present, and future. Eur. J. Org. Chem., 2017, 2017, 1979-1981.
[6]
Ghosh, S.; Saikh, F.; Das, J.; Pramanik, A.K. Hantzsch 1,4-dihydropyridine synthesis in aqueous ethanol by visible light. Tetrahedron Lett., 2013, 54, 58-62.
[7]
Cambie, D.; Bottecchia, C.; Straathof, N.J.W.; Hessel, V.; Noe, T. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev., 2016, 116, 10276-10341.
[8]
Tambe, S.D.; Rohokale, R.S.; Kshirsagar, U.A. Visible-light-mediated eosin Y photoredox-catalyzed vicinal thioamination of alkynes: radical cascade annulation strategy for 2-substituted-3-sulfenylindoles. Eur. J. Org. Chem., 2018, 2018, 2117-2121.
[9]
Xi, Y.; Yi, H.; Lei, A. Synthetic applications of photoredox catalysis with visible light. Org. Biomol. Chem., 2013, 11, 2387-2403.
[10]
Mo, F.; Dong, G.; Zhang, Y.; Wang, J. Recent applications of arene diazonium salts in organic synthesis. Org. Biomol. Chem., 2013, 11, 1582-1593.
[11]
Bryan, M.C.; Dunn, P.J.; Entwistle, D.; Gallou, F.; Koenig, S.G.; Hayler, J.D.; Hickey, M.R.; Hughes, S.; Kopach, M.E.; Moine, G.; Richardson, P.; Roschangar, F.; Steven, A.; Weiberth, F.J. Key green chemistry research areas from a pharmaceutical manufacturers’ perspective revisited. Green Chem., 2018, 20, 5082-5103.
[12]
Mishra, A.; Rai, P.; Srivastava, M.; Tripathi, B.P.; Yadav, S.; Singh, J.; Singh, J. A peerless aproach: organophotoredox/Cu(I) catalyzed, regioselective, visible light facilitated, click synthesis of 1,2,3-triazoles via azide-alkyne [3 + 2] cycloaddition. Catal. Lett., 2017, 147, 2600-2611.
[13]
Teo, Y.C.; Pan, Y.; Tan, C.H. Organic dye‐photocatalyzed acylnitroso ene reaction. ChemCatChem, 2013, 5, 235-240.
[14]
Kibriya, G.; Samanta, S.; Jana, S.; Mondal, S.; Hajra, A. Visible light organic photoredox-catalyzed C−H alkoxylation of imidazo-pyridine with alcohol. J. Org. Chem., 2017, 82, 13722-13727.
[15]
Srivastava, V.P.; Yadav, A.K.; Yadav, L.D.S. Visible-light-induced cyanation of aza-Baylis-Hillman adducts: a Michael type addition. Tetrahedron Lett., 2014, 55, 1788-1792.
[16]
Toth, B.L.; Tischler, O.; Novak, Z. Recent advances in dual transition metal-visible light photoredox catalysis. Tetrahedron Lett., 2016, 57, 4505-4513.
[17]
Keshari, T.; Yadav, V.K.; Srivastava, V.P.; Yadav, L.D.S. Visible light organophotoredox catalysis: a general approach to β-keto sulfoxidation of alkenes. Green Chem., 2014, 16, 3986-3992.
[18]
Srivastavaa, V.; Singh, P.P. Eosin Y catalysed photoredox synthesis: a review. RSC Advances, 2017, 7, 31377-31392.
[19]
Goksu, H.; Yıldız, Y.; Celik, B.; Yazıcı, M.; Kılbas, B.; Sen, F. Highly efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. ChemistrySelect, 2016, 5, 953-958.
[20]
Goksua, H.; Zengina, N.; Karaosmana, A.; Senb, F. Highly active and reusable Pd/AlO(OH) nanoparticles for the Suzuki cross-coupling reaction. Curr. Organocatal., 2018, 5, 34-41.
[21]
Akocak, S.; Şen, B.; Lolak, N.; Şavk, A.; Koca, M.; Kuzu, S.; Şen, F. One-pot three-component synthesis of 2-amino-4H-chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Structures & Nano-Objects., 2017, 11, 25-31.
[22]
Demirci, T.; Çelik, B.; Yıldız, Y.; Eris, S.; Arslan, M.; Sen, F.; Kilbas, B. One-pot synthesis of Hantzsch dihydropyridines using a highly efficient and stable PdRuNi@GO catalyst. RSC Advances, 2016, 6, 76948-76956.
[23]
Yıldız, Y.; Esirden, I.; Erken, E.; Demir, E.; Kaya, M.; Sen, F. Microwave (Mw)-assisted synthesis of 5-substituted 1H-tetrazoles via [3+2] cycloaddition catalyzed by Mw-Pd/Co nanoparticles decorated on multi-walled carbon nanotubes. ChemistrySelect, 2016, 1, 1695-1701.
[24]
Şen, B.; Lolak, N.; Paralı, Ö.; Koca, M.; Şavk, A.; Akocak, S.; Şen, F. Bimetallic PdRu/graphene oxide-based catalysts for one-pot three-component synthesis of 2-amino-4H-chromene derivatives. Nano-Structures & Nano-Objects, 2017, 12, 33-40.
[25]
Banfi1, L.; Basso1, A.; Lambruschini1, C.; Moni1, L.; Riva1 R. Synthesis of seven-membered nitrogen heterocycles through the Ugi multicomponent reaction. Chem. Heterocycl. Compd., 2017, 53, 382-408.
[26]
Sena, B.; Akdereb, E.H.; Savka, A.; Gultekinb, E.; Paralıa, O.; Goksub, H.; Sena, F. A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile. Applied Catalysis B: Environmental. , 2018, 225, 148-153.
[27]
Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. Hindawi Publishing Corporation BioMed Research International 2013. Article ID: 963248..
[http://dx.doi.org/10.1155/2013/963248]
[28]
Suzuki, M.; Nakagawa-Goto, K.; Nakamura, S.; Tokuda, H.; Morris-Natschke, S.L.; Kozuka, M.; Nishino, H.; Lee, K.H. Cancer preventive agents. Part 5. Anti-tumor-promoting effects of coumarins and related compounds on epstein-barr virus activation and two-stage mouse skin carcinogenesis. Pharm. Biol., 2006, 44, 178-182.
[29]
Garazd, Y.L.; Kornienko, E.M.; Maloshtan, L.N.; Garazd, M.M.; Khilya, V.P. Synthesis and anticoagulant activity of 3,4-cycloannelated coumarin d-glycopyranosides. Chem. Nat. Prod., 2005, 41, 508-512.
[30]
Hwu, J.R.; Singha, R.; Hong, S.C.; Chang, Y.H.; Das, A.R.; Vliegen, I.; Clercq, E.D. Synthesis of new benzimidazole-coumarin conjugates as anti-hepatitis C virus agents. Neyts. J. Res., 2008, 77, 157-162.
[31]
Zhang, M.Z.; Zhang, Y. Jia-Qun, Wang.; Zhang, W.H. Design, synthesis and antifungal activity of coumarin ring-opening derivatives. Molecules, 2016, 21, 1387.
[32]
Xu, Z.Q.; Hollingshead, M.G.; Borgel, S.; Elder, C.; Khilevich, A.; Flavin, M.T. In Vivo anti-HIV activity of (+)-calanolide a in the hollow fiber mouse model. Bioorg. Med. Chem. Lett., 1999, 9, 133-138.
[33]
Razavi, S.F.; Khoobi, M.; Nadri, H.; Sakhteman, A.; Moradi, A.; Emami, S.; Foroumadi, A.; Shafiee, A. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 64, 252-259.
[34]
Patil, K.T.; Walekar, L.S.; Undare, S.S.; Kolekar, G.B.; Deshmukh, M.B.; Choudhari, P.B.; Anbhule, P.V. An efficient one-pot synthesis of tetrahydro-chromeno [4,3-b] chromene-6,8-dione and tetrahydro-pyrano [4,3-b] chromene-1,9-dione derivatives under solvent-free conditions. Indian J. Chem., 2016, 55B, 1151-1159.
[35]
Emami, S.; Foroumadi, A.; Faramarzi, M.A.; Samadi, N. Synthesis and antibacterial activity of quinolone-based compounds containing a coumarin moiety. Arch Pharm. Chem. Life Sci., 2008, 341, 42-48.
[36]
Al-Majedy, Y.; Al-Amiery, A.; Kadhum, A.A.; Mohamad, A.B. Antioxidant activity of coumarins. Sys Rev. Pharm., 2017, 8, 24-30.
[37]
Kaur, R.; Naaz, F.; Bedi, P.M.S.; Sharma, S.; Nepali, K.; Mehndiratta, S.; Gupta, M.K. Screening of a library of 4-aryl/heteroaryl-4H-fused pyrans for xanthine oxidase inhibition: synthesis, biological evaluation and docking studies. Med. Chem. Res., 2015, 24, 3334-3349.
[38]
Khoobi, M.; Alipour, M.; Sakhteman, A.H.; Moradi, A.; Ghandi, M.; Emami, S.; Nadri, H.; Foroumadi, A.; Shafiee, A. Design, synthesis, biological evaluation and docking study of 5-oxo- 4,5-dihydropyrano[3,2-c]chromene derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 68, 260-269.
[39]
Moreno, B.P.; Fiorucci, L.L.R.; do Carmo, M.R.B.; Sarragiotto, M.H.; Baldoqui, D.C. Terpenoids and a coumarin from aerial parts of Psychotria vellosiana Benth. (Rubiaceae). Biochem. Syst. Ecol., 2014, 56, 80-82.
[40]
S, Jalhan.; S, Singh.; R, Saini.; N.S, Sethi.; U, Jain. Asian J. Pharm. Clin. Res., 2017, 10, 38-43.
[41]
Vajar, S.; Mokhtary, M. Nano-CuFe2O4@SO3H catalyzed efficient one-pot cyclo-dehydration of dimedone and synthesis of chromeno[4,3-b]chromenes. Polycycl. Aromat. Compd., 2017, 39, 111-123.
[http://dx.doi.org/10.1080/10406638.2017.1280516]
[42]
Santos, W.H.; Silva-Filho, L.C. New method for the synthesis of chromeno[4,3-b]chromene derivatives via multicomponent reaction promoted by niobium pentachloride. Tetrahedron Lett., 2017, 58, 894-897.
[43]
Pradhan, K.; Paul, S.; Das, A.R. Fe(DS)3, an efficient Lewis acid-surfactant-combined catalyst (LASC) for the one pot synthesis of chromeno[4,3-b]chromene derivatives by assembling the basic building blocks. Tetrahedron Lett., 2013, 54, 3105-3110.
[44]
Emtiazi, H.; Amrollahi, M.A. An efficient and rapid access to the synthesis of tetrahydrochromeno[4,3-b]chromene-6,8-dione derivatives by magnesium perchlorate. S. Afr. J. Chem., 2014, 67, 175-179.
[45]
Sun, X.J.; Zhou, J.F.; Zhi, S.J. Efficient one-pot synthesis of tetrahydrobenzo[c]xanthene-1,11-dione derivatives under microwave irradiation. Synth. Commun., 2012, 42, 1987-1994.
[46]
Anaraki-Ardakani, H.; Ghanavatian, R.; Akbari, M. An efficient one-pot synthesis of tetrahydro-chromeno [4,3-b] chromene-6,8-dione and tetrahydro-pyrano [4,3-b] chromene-1,9-dione derivatives under solvent-free conditions. World Appl. Sci. J., 2013, 22, 802-808.
[47]
Chen, Z.; Zhu, Q.; Su, W. A novel sulfonic acid functionalized ionic liquid catalyzed multicomponent synthesis of 10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione derivatives in water. Tetrahedron Lett., 2011, 52, 2601-2604.
[48]
Saha, A.; Payra, S.; Banerjee, S. On water synthesis of pyran-chromenes via a multicomponent reaction catalyzed by fluorescent t-ZrO2 nanoparticles. RSC Advances, 2015, 5, 101664-101671.
[49]
Tufail, F.; Saquib, M.; Singh, S.; Tiwari, J.; Singh, M.; Singh, J.; Singh, J. Bioorganopromoted green Friedla¨nder synthesis: a versatile new malic acid promoted solvent free approach to multisubstituted quinolines. New J. Chem., 2017, 41, 1618-1624.
[50]
Tiwari, J.; Saquib, M.; Singh, S.; Tufail, F.; Singh, M.; Singh, J.; Singh, J. Visible light promoted synthesis of dihydropyrano[2,3-c]chromenes via a multicomponent-tandem strategy under solvent and catalyst free conditions. Green Chem., 2016, 18, 3221-3231.
[51]
Fan, X.; Hu, X.; Zhang, X.; Wang, J. InCl3·4H2O-promoted green preparation of xanthenedione derivatives in ionic liquids. Can. J. Chem., 2005, 83, 16-20.
[52]
Jin, T.S.; Zhang, J.S.; Xiao, J.C.; Wang, A.Q.; Li, T.S. Clean synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by p-dodecylbenezenesulfonic acid in aqueous media. Synlett, 866-870 DOI: 10.1055/s-2004-820022 2004.
[53]
Shen, Y.B.; Wang, G.W. Solvent-free synthesis of xanthenediones and acridinediones. Arkivoc, 2008, 16, 1-8.
[54]
Li-Bin, L.; Tong-Shou, J.; Li-Sha, H.; Meng, L.; Na, Q.; Tong-Shuang, L. The reaction of aromatic aldehydes and 1,3-cyclohexanedione in aqueous media. E-J. Chem., 2006, 3, 117-121.
[55]
Singh, M.; Yadav, A.K.; Yadav, L.D.S.; Singh, R.K.P. Synthesis of 6-thiocyanatophenanthridines by visible-light- and air-promoted radical thiocyanation of 2-isocyanobiphenyls. Synlett, 2018, 29, 176-180.
[56]
Liu, X.; Cong, T.; Liu, P.; Sun, P. Synthesis of 1,2-diketones via a metal-free, visiblelight induced aerobic photooxidation of alkynes J. Org. Chem, 2016, 81, 7256-7261.
[57]
Tiwari, J.; Saquib, M.; Singh, S.; Tufail, F.; Singh, M.; Singh, J.; Singh, J. Visible Light Promoted Synthesis of Dihydropyrano[2,3-c]chromenes via a Multicomponent-Tandem Strategy under Solvent and Catalyst Free Conditions. Green Chem., 2016, 18, 3221-3231.
[http://dx.doi.org/10.1039/C5GC02855H]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy