Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Emblica officinalis (Amla) Ameliorates High-Fat Diet Induced Alteration of Cardiovascular Pathophysiology

Author(s): Bheemshetty S. Patil, Pallavi S. Kanthe, Chandramouli R. Reddy and Kusal K. Das*

Volume 17, Issue 1, 2019

Page: [52 - 63] Pages: 12

DOI: 10.2174/1871525717666190409120018

Abstract

Background: Dietary high fat possibly causes oxidative stress. Also, it alters the pathophysiology of metabolically active myocardial tissues and vascular architecture. Emblica officinalis contains a potential antioxidant that counteracts oxidative stress and possibly maintains vascular integrity.

Objectives: To assess the effect of ethanolic extract of Emblica officinalis (EEO) on High Fat Diet (HFD) induced changes in vascular chemistry and histopathology of the cardiovascular system in male albino rats.

Materials and Methods: Ethanolic extract of Emblica Officinalis (EEO) was prepared and phytochemical analysis was done. Rats were divided into four groups, having six rats in each group as follows: group 1- Control (20% fat); group 2 (20% fat+ EEO 100 mg/kg/b w); group 3 (30% fat) and group 4 (30% fat + EEO 100 mg/kg/b w). Dietary and EEO supplementation was continued for 21 days. Gravimetric and oxidative stress markers like MDA, NO, antioxidants like Vitamin C and E, and molecular marker (NOS3) were evaluated. Histopathological analysis was done on the myocardium and elastic artery along with measurement of coronary arterial wall thickness and lumen diameter. One way ANOVA was done for analysis of data.

Results: High fat diet showed a significant increase in MDA, decrease of NO with unaltered NOS3 protein in rats fed with high fat diet, which indicate possible alteration of vascular pathophysiology. Supplementation of EEO showed an ameliorating effect on high fat diet induced oxidative stress. These results were further corroborated with findings of a histopathological study on the myocardium, elastic artery and coronary arterial architecture.

Conclusion: Ethanolic extract of Emblica officinalis (EEO) indicates its cardioprotective efficacy against rats fed with high fat diet.

Keywords: Emblica officinalis, high fat diet, histopathology, pathophysiology, oxidative stress, vascular integrity.

Graphical Abstract

[1]
Choudhary, M.I.; Naheed, S.; Jalil, S.; Alam, J.M. Effects of ethanolic extract of Iris germanica on lipid profile of rats fed on a high-fat diet. J. Ethnopharmacol., 2005, 98(1-2), 217-220.
[2]
Jakulj, F.; Zernicke, K.; Bacon, S.L.; Van Wielingen, L.E.; Key, B.L.; West, S.G.; Campbell, T.S. A high-fat meal increases cardiovascular reactivity to psychological stress in healthy young adults. J. Nutr., 2007, 137(4), 935-939.
[3]
Kabiri, N.; Asgary, S.; Madani, H.; Mahzouni, P. Effects of Amaranthuscaudatusl. Extract and lovastatin on atherosclerosis in hypercholesterolemic rabbits. J. Med. Plants Res., 2010, 4(3), 55-61.
[4]
Hopps, E.; Noto, D.; Caimi, G.; Averna, M.R. A novel component of the metabolic syndrome: The oxidative stress. Nutr. Metab. Cardiovasc. Dis., 2010, 20(1), 72-77.
[5]
Galili, O.; Versari, D.; Sattler, K.J.; Olson, M.L.; Mannheim, D.; McConnell, J.P.; Chade, A.R.; Lerman, L.O.; Lerman, A. Early experimental obesity is associated with coronary endothelial dysfunction and oxidative stress. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(2), H904-H911.
[6]
Chakraborti, D.; Verma, R. Ameliorative effect of Emblica officinalis aqueous extract on ochratoxin-induced lipid peroxidation n the kidney and liver of mice. Int. J. Occup. Med. Environ. Health, 2010, 23(1), 63-73.
[7]
Lankin, V.Z.; Tikhaze, A.K.; Kukharchuk, V.V.; Konovalova, G.G.; Pisarenko, O.I.; Kaminnyi, A.I.; Shumaev, K.B.; Belenkov, Y.N. Antioxidants decreases the intensification of low density lipoprotein in vivo peroxidation during therapy with statins. Mol. Cell. Biochem., 2003, 249(1-2), 129-140.
[8]
Kanthe, P.S.; Patil, B.S.; Bagali, S.C.; Reddy, R.C.; Aithala, M.R.; Das, K.K. Protective effects of ethanolic extract of Emblica officinalis (amla) on cardiovascular pathophysiology of rats, fed with high fat diet. J. Clin. Diagn. Res., 2017, 11(9), CC05.
[9]
Antony, B.; Merina, B.; Sheeba, V.; Mukkadan, J. Effcet of standardized Amla extract on atherosclerosis and dyslipidemia. Indian J. Pharm. Sci., 2006, 68(4), 437-441.
[10]
Kanthe, P.S.; Patil, B.S.; Aithala, M.R.; Das, K.K. Effect of ethanolic extract of Emblica officinalis (amla) on glucose homeostasis in rats fed with high fat diet. J. Krishna Inst. Med. Sci. Univ., 2017, 6(3), 31-37.
[11]
Tiwari, P.; Kumar, B.; Kaur, M.; Kaur, G.; Kaur, H. Phytochemical screening and extraction: A review. Int. Pharm. Sci., 2011, 1, 103-104.
[12]
Das, K.K.; Dasgupta, S. Effect of nickel sulfate on testicular steroidogenesis in rats during protein restriction. Environ. Health Perspect., 2002, 110(9), 923-926.
[13]
Pingali, U.; Fatima, N.; Murlidhar, N. Effects of phyllanthus Emblica extract on endothelial dysfunction and biomarkers of oxidative stress in patients with type 2 diabetes mellitus: A randomized, double-blind, controlled study. Diab. Metab. Syndrome Obesity: Target Ther., 2013, 6, 275-284.
[14]
Okhawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[15]
Hayashi, K.; Mani, V.; Nemade, A.; Aguiar, S.; Postley, J.E.; Fuster, V.; Fayad, Z.A. Variations in atherosclerosis and remodeling patterns in aorta and carotids. J. Cardiovasc. Magn. Reson., 2010, 12(1), 10.
[17]
Collins, P. Risk factors for cardiovascular disease and hormone therapy in women. Heart, 2006, 92(3), 24-28.
[18]
Rajak, S.; Banerjee, S.K.; Sood, S.; Dinda, A.K.; Gupta, Y.K.; Gupta, S.K.; Maulik, S.K. Emblica officinalis causes myocardial adaptation and protects against oxidative stress in ischemic‐reperfusion injury in rats. Phytother. Res. Int. J. Pharmacol. Toxicol. Eval. Nat. Prod. Derivatives, 2004, 18(1), 54-60.
[19]
Nascimento, T.B.; Baptista, R.D.; Pereira, P.C.; Campos, D.H.; Leopoldo, A.S.; Leopoldo, A.P.; Oliveira Junior, S.A.; Padovani, C.R.; Cicogna, A.C.; Cordellini, S. Vascular alterations in high fat diet obese rats: Role of endothelial L-arginine/NO pathway. Arq. Bras. Cardiol., 2011, 97(1), 40-45.
[20]
Radomski, M.W.; Palmer, R.M.; Moncada, S. The anti-aggregating properties of vascular endothelium: Interactions between prostacyclin and nitric oxide. Br. J. Pharmacol., 1987, 92, 639-646.
[21]
Nakaki, T.; Nakayama, M.; Kato, R. Inhibition by nitric oxide and nitric oxide producing vasodilators of DNA synthesis in vascular smooth muscle cells. Eur. J. Pharmacol. Mol. Pharmacol., 1990, 189, 347-353.
[22]
Mueller, C.F.; Laude, K.; McNally, J.S.; Harrison, D.G. Redox mechanism in blood vessels. Arterioscler. Thromb. Vasc. Biol., 2005, 25, 274-278.
[23]
Payne, G.A.; Bohlen, H.G.; Dincer, U.D.; Borbouse, L.; Tune, J.D. Periadventitial adipose tissue impairs coronary endothelial function via PKC ß-dependent phosphorylation of nitric oxide synthase. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(1), 460-465.
[24]
Hosogai, N.; Fukuhara, A.; Oshima, K.; Miyata, Y.; Tanaka, S.; Segawa, K.; Furukawa, S.; Tochino, Y.; Komuro, R.; Matsuda, M.; Shimomura, I. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes, 2007, 56(4), 901-911.
[25]
Vásquez, V.J.; Kalyanaraman, B.; Martásek, P.; Hogg, N.; Masters, B.S.; Karoui, H.; Tordo, P.; Pritchard, K.A. Superoxide generation by endothelial nitric oxide synthase: The influence of cofactors. In: Proceedings of the National Academy of Sciences, 1998, 95(16), 9220-9225.
[26]
Das, K.K.; Chadchan, K.S.; Reddy, R.C.; Biradar, M.S.; Kanthe, P.S.; Patil, B.S.; Ambekar, J.G.; Bagoji, I.B.; Das, S.N. Effects of some indigenous plants of North Karnataka (India) on cardiovascular and glucose regulatory systems in alloxan-induced diabetic rats. Cardiovasc. Hematol. Agents Med. Chem., 2017, 15(1), 49-61.
[27]
Sultana, S.; Ahmad, S.; Khan, N.; Jahangir, T. Effects of Emblica officinalis (Gaertn) on CCl4-induced hepatic toxicity and DNA synthesis of Wistar rats. Indian J. Exp. Biol., 2005, 43, 430-436.
[28]
Kaur, J.; Kaur, D.; Singh, H.; Khan, M.U. Emblica officinalis: A meritocratic drug for treating various disorders. Indo Am. J. Pharm. Res., 2013, 3(6)
[29]
Nampoothiri, S.V.; Prathapan, A.; Cherian, O.L.; Raghu, K.G.; Venugopalan, V.V.; Sundaresan, A. In vitro antioxidant and inhibitory potential of Terminalia bellerica and Emblica officinalis fruits against LDL oxidation and key enzymes linked to type 2 diabetes. Food Chem. Toxicol., 2011, 49(1), 125-131.
[30]
Townsend, R.R.; Wilkinson, I.B.; Schiffrin, E.L.; Avolio, A.P.; Chirinos, J.A.; Cockcroft, J.R.; Heffernan, K.S.; Lakatta, E.G.; McEniery, C.M.; Mitchell, G.F.; Najjar, S.S. Recommendations for improving and standardizing vascular research on arterial stiffness: A scientific statement from the American Heart Association. Hypertension, 2015, 66(3), 698-722.
[31]
Sentelices, L.C.; Rutaman, S.J.; Ertart, J.C.; Pranti, R.L.; Hanay, J.N.; Vorp, D.A.; Aharan, J.M. Experimental system for ex vivo measurement of Murine aortic stiffness. Physiol. Meas., 2007, 28(8), 39-49.
[32]
Haurington, J.; Pana, A.S.; Gent, R.; Hirtec, C.J. Aortic intima media thickness is an early marker of atherosclerosis in children with type 1 diabetes mellitus. J. Pedator., 2010, 156, 237-241.
[33]
Deopujari, R.; Dixit, A. The study of age related changes in coronary arteries and its relevance to the atherosclerosis. J. Anat. Soc. India, 2010, 59(2), 192-196.
[34]
Billaud, M.; Johnstone, S.R.; Isakson, B.E. Loss of compliance in small arteries, but not in conduit arteries, after 6 weeks exposure to high fat diet. J. Cardiovasc. Transl. Res., 2012, 5(3), 256-263.
[35]
Rizzoni, D.D.; Ciuceis, C.; Porteri, E.; Semerarao, F.; Rosri, E.A. Structural alterations in small resistance arteries in obesity. Basic Clin. Pharmacol. Toxicol., 2011, 1742-1843.
[36]
Waller, B.F.; Orr, C.M.; Slack, J.D.; Pinkerton, C.A.; Van, T.J.; Peters, T. Anatomy, histology, and pathology of coronary arteries: A review relevant to new interventional and imaging techniques-Part I. Clin. Cardiol., 1992, 15(6), 451-457.
[37]
Benditt, E.P.; Schwartz, S.M. Blood vessels. In:Pathology; (Eds.Rubin E, Farber JL) . JB Lippincott: Philadelphia, 1988, pp. 454-465.
[38]
Waller, B.F. The eccentric coronary atherosclerotic plaque morphologic observations and clinical relevance. Clin. Cardiol., 1989, 12, 14-20.
[39]
Leopold, J.A.; Loscalzo, J. Oxidative mechanisms and athero thrombotic cardiovascular disease. Drug Discov. Today Ther. Strateg., 2008, 5(1), 5-13.
[40]
Ross, R. Atherosclerosis-an inflammatory disease. N. Engl. J. Med., 1999, 340(2), 115-126.
[41]
Oubina, M.P.; De Las Heras, N.; Cediel, E.; Sanz-Rosa, D.; Aragoncillo, P.; D’iaz, C.; Hernandez, G.; Lahera, V.; Cachofeiro, V. Synergetic effect of angiotensin converting enzyme ACE 3 hydroxy 3 mythelyne CoA HMG CoA reductase inhibition on inflammatory in atherosclerosis Rabbits. Clin. Sci., 2003, 105, 655-662.
[42]
Stocker, R.; Keaney, J.F. Role oxidative modifications in atherosclerosis. Physiol. Rev., 2004, 84, 1381-1478.
[43]
Saam, T.; Raya, J.G.; Cyran, C.C.; Bochmann, K.; Meimarakis, G.; Dietrich, O.; Clevert, D.A.; Frey, U.; Yuan, C.; Hatsukami, T.S.; Werf, A. High resolution carotid black-blood 3TMR with parallel imaging and dedicated 4-channel surface coils. J. Cardiovasc. Magn. Reson., 2009, 4(1), 11-41.

© 2025 Bentham Science Publishers | Privacy Policy