[1]
Sohn, E.J.; Jung, D.B.; Lee, H.; Han, I.; Lee, J.; Lee, H.; Kim, S.H. CNOT2 promotes proliferation and angiogenesis via VEGF signaling in MDA-MB-231 breast cancer cells. Cancer Lett., 2018, 412, 88-98.
[2]
Bharti, J.N.; Rani, P.; Kamal, V.; Agarwal, P.N. Angiogenesis in breast cancer and its correlation with estrogen, progesterone receptors and other prognostic factors. J. Clin. Diagn. Res., 2015, 9(1), EC05-EC07.
[3]
Kopec, M.; Abramczyk, H. Angiogenesis - a crucial step in breast cancer growth, progression and dissemination by Raman imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 198, 338-345.
[4]
Mafu, T.S.; September, A.V.; Shamley, D. The potential role of angiogenesis in the development of shoulder pain, shoulder dysfunction, and lymphedema after breast cancer treatment. Cancer Manag. Res., 2018, 10, 81-90.
[5]
Tredan, O.; Lacroix-Triki, M.; Guiu, S.; Mouret-Reynier, M.A.; Barriere, J.; Bidard, F.C.; Braccini, A.L.; Mir, O.; Villanueva, C.; Barthelemy, P. Angiogenesis and tumor microenvironment: Bevacizumab in the breast cancer model. Target. Oncol., 2015, 10(2), 189-198.
[6]
Wehland, M.; Bauer, J.; Infanger, M.; Grimm, D. Target-based anti-angiogenic therapy in breast cancer. Curr. Pharm. Des., 2012, 18(27), 4244-4257.
[7]
Labanca, V.; Bertolini, F. A combinatorial investigation of the response to anti-angiogenic therapy in breast cancer: New strategies for patient selection and opportunities for reconsidering anti-VEGF, anti-PI3K and checkpoint inhibition. EBioMedicine, 2016, 10, 13-14.
[8]
Sairam, V.K.; Gurupadayya, B.M.; Chandan, R.S.; Nagesha, D.K.; Vishwanathan, B. A review on chemical profile of coumarins and their therapeutic role in the treatment of cancer. Curr. Drug Deliv., 2016, 13(2), 186-201.
[9]
Basanagouda, M.; Jambagi, V.B.; Barigidad, N.N.; Laxmeshwar, S.S.; Devaru, V. Narayanachar. Synthesis, structure-activity relationship of iodinated-4-aryloxymethyl-coumarins as potential anti-cancer and anti-mycobacterial agents. Eur. J. Med. Chem., 2014, 74, 225-233.
[10]
Kasaian, J.; Mosaffa, F.; Behravan, J.; Masullo, M.; Piacente, S.; Ghandadi, M.; Iranshahi, M. Reversal of P-glycoprotein-mediated multidrug resistance in MCF-7/Adr cancer cells by sesquiterpene coumarins. Fitoterapia, 2015, 103, 149-154.
[11]
Chen, W.; Li, J.; Sun, Z.; Wu, C.; Ma, J.; Wang, J.; Liu, S.; Han, X. Comparative pharmacokinetics of six coumarins in normal and breast cancer bone-metastatic mice after oral administration of Wenshen Zhuanggu Formula. J. Ethnopharmacol., 2018, 224, 36-44.
[12]
Iranshahi, M.; Barthomeuf, C.; Bayet-Robert, M.; Chollet, P.; Davoodi, D.; Piacente, S.; Rezaee, R.; Sahebkar, A. Drimane-type sesquiterpene coumarins from ferula gummosa fruits enhance doxorubicin uptake in doxorubicin-resistant human breast cancer cell line. J. Tradit. Complement. Med., 2014, 4(2), 118-125.
[13]
Chen, H.; Li, S.; Yao, Y.; Zhou, L.; Zhao, J.; Gu, Y.; Wang, K.; Li, X. Design, synthesis, and anti-tumor activities of novel triphenylethylene-coumarin hybrids, and their interactions with Ct-DNA. Bioorg. Med. Chem. Lett., 2013, 23(17), 4785-4789.
[14]
Shi, J.H.; Cui, N.P.; Wang, S.; Zhao, M.Z.; Wang, B.; Wang, Y.N.; Chen, B.P. Overexpression of YB1 C-terminal domain inhibits proliferation, angiogenesis and tumorigenicity in a SK-BR-3 breast cancer xenograft mouse model. FEBS Open Bio, 2016, 6(1), 33-42.
[15]
Rashid, O.M.; Nagahashi, M.; Ramachandran, S.; Dumur, C.; Schaum, J.; Yamada, A.; Terracina, K.P.; Milstien, S.; Spiegel, S.; Takabe, K. An improved syngeneic orthotopic murine model of human breast cancer progression. Breast Cancer Res. Treat., 2014, 147(3), 501-512.
[16]
Li, T.; Kang, G.; Wang, T.; Huang, H. Tumor angiogenesis and anti-angiogenic gene therapy for cancer. Oncol. Lett., 2018, 16(1), 687-702.
[17]
Albini, A.; Bruno, A.; Noonan, D.M.; Mortara, L. Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: Implications for immunotherapy. Front. Immunol., 2018, 9, 527.
[18]
Okamoto, T.; Usuda, H.; Tanaka, T.; Wada, K.; Shimaoka, M. The functional implications of endothelial gap junctions and cellular mechanics in vascular angiogenesis. Cancers, 2019, 11(2), 237.
[19]
Mawalla, B.; Yuan, X.; Luo, X.; Chalya, P.L. Treatment outcome of anti-angiogenesis through VEGF-pathway in the management of gastric cancer: A systematic review of phase II and III clinical trials. BMC Res. Notes, 2018, 11(1), 21.
[20]
Li, X.; Gao, Y.; Li, J.; Zhang, K.; Han, J.; Li, W.; Hao, Q.; Zhang, W.; Wang, S.; Zeng, C.; Zhang, W.; Zhang, Y.; Li, M.; Zhang, C. FOXP3 inhibits angiogenesis by downregulating VEGF in breast cancer. Cell Death Dis., 2018, 9(7), 744.
[21]
Yen, L.; You, X.L.; Al Moustafa, A.E.; Batist, G.; Hynes, N.E.; Mader, S.; Meloche, S.; Alaoui-Jamali, M.A. Heregulin selectively upregulates vascular endothelial growth factor secretion in cancer cells and stimulates angiogenesis. Oncogene, 2000, 19(31), 3460-3469.
[22]
Mashreghi, M.; Azarpara, H.; Bazaz, M.R.; Jafari, A.; Masoudifar, A.; Mirzaei, H.; Jaafari, M.R. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J. Cell. Physiol., 2018, 233(4), 2949-2965.
[23]
Srikrishna, D.; Godugu, C.; Dubey, P.K. A review on pharmacological properties of coumarins. Mini Rev. Med. Chem., 2018, 18(2), 113-141.
[24]
Zhu, J.J.; Jiang, J.G. Pharmacological and nutritional effects of natural coumarins and their structure-activity relationships. Mol. Nutr. Food Res., 2018.e1701073