[1]
Vinatoru, M.F.; Chemat, T.J.; Mason, T.J. The extraction of natural products using ultrasound or microwaves. COC, 2011, 15, 237-247.
[2]
Guo, Z. Artemisinin anti-malarial drugs in China. Acta Pharm. Sin. B, 2016, 6, 115-124.
[3]
Faurant, C. From bark to weed: The history of artemisinin. Parasite, 2011, 18, 215.
[4]
Khanna, C.; Rosenberg, M.; Vail, D.M. A review of paclitaxel and novel formulations including those suitable for use in dogs. J. Vet. Intern. Med., 2015, 29, 1006-1012.
[5]
Wall, M.; Wani, M.; Cook, C.; Palmer, K.; McPhail, A.; Sim, G. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J. Am. Chem. Soc., 1996, 88, 3888-3890.
[6]
Sriram, D.; Yogeeswari, P.; Thirumurugan, R.; Bal, T.R. Camptothecin and its analogues: A review on their chemotherapeutic potential. Nat. Prod. Res., 2005, 19, 393-412.
[7]
Sun, T.; Zhang, L.; Li, X.; Chen, F.; Li, Y.; Ma, X.Yu.; F., Micro RNA-1 and circulating microvesicles mediate the protective effects of dantonic in acute myocardial infarction rat models. Front. Physiol., 2018, 9.
[8]
Toh, D.F.; Patel, D.N.; Chan, E.C.; Teo, A.; Neo, S.Y.; Koh, H.L. Anti-proliferative effects of raw and steamed extracts of Panax notoginseng and its ginsenoside constituents on human liver cancer cells. Chin. Med. J. , 2011, 6, 1-4.
[9]
Xiong, Y.; Shen, L.; Liu, K.; Tso, P.; Xiong, Y.; Wang, G.; Woods, S.C.; Liu, M. Antiobesity and antihyperglycemic effects of ginsenoside Rb1 in rats. Diabetes, 2010, 59, 2505-2512.
[10]
Wang, X.; Wang, C.; Wang, J.; Zhao, S.; Zhang, K.; Wang, J.; Zhang, W.; Wu, C.; Yang, J. Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs and Akt signaling pathways. Neuropharmacology, 2014, 79, 642-656.
[11]
Xin, X.; Wei, Z.D.; Liu, J. Protection effect of 20(S)-ginsenoside Rg_2 extracted from cultured Panax notoginseng cells on hydrogen peroxide-induced cytotoxity of human umbilical cord vein endothelial cells in vitro. Process Biochem., 2005, 40, 3202-3205.
[12]
Li, J.; Xie, Z.Z.; Tang, Y.B.; Zhou, J.G.; Guan, Y.Y. Ginsenoside-Rd, a purified component from panax notoginseng saponins, prevents atherosclerosis in apoE knockout mice. Eur. J. Pharmacol., 2011, 652, 104-110.
[13]
Sun, B.; Xiao, J.; Sun, X.B.; Wu, Y. Notoginsenoside R1 attenuates cardiac dysfunction in endotoxemic mice: An insight into oestrogen receptor activation and PI3K/Akt signalling. Br. J. Pharmacol., 2013, 168, 1758-1770.
[14]
Pan, C.; Huo, Y.; An, X.; Singh, G.; Chen, M.; Yang, Z.; Pu, J.; Li, J. Panax notoginseng and its components decreased hypertension via stimulation of endothelial-dependent vessel dilatation. Vascul. Pharmacol., 2012, 56, 150-158.
[15]
Lin, M.; Sun, W.; Gong, W.; Ding, Y.; Zhuang, Y.; Hou, Q. Ginsenoside Rg1 protects against transient focal cerebral ischemic injury and suppresses its systemic metabolic changes in cerabral injury rats. Acta Pharm. Sin. B, 2015, 5, 277-284.
[16]
Prasain, J.K.; Kadota, S.; Basnet, P.; Hase, K.; Namba, T. Hepatoprotective effects of Panax notoginseng: Ginsenosides -Re and -Rg(1) as its active constituents in D-galactosamine/lipopolysaccharide-induced liver injury. Phytomedicine, 1996, 2, 297-303.
[17]
Xie, X.S.; Yang, M.; Liu, H.C.; Zuo, C.; Zi, L.I.; Deng, Y.; Fan, J.M. Influence of ginsenoside Rg1, a panaxatriol saponin from Panax notoginseng, on renal fibrosis in rats with unilateral ureteral obstruction. J. Zhejiang Univ. Sci. B, 2008, 9, 885-894.
[18]
Yang, Z.G.; Ye, Y.P.; Sun, H.X. Immunological adjuvant effect of ginsenoside Rh4 from the roots of Panax notoginseng on specific antibody and cellular response to ovalbumin in mice. Chem. Biodivers., 2010, 4, 232-240.
[19]
Cao, J.; Zhang, X.; Qu, F.; Guo, Z.; Zhao, Y. Dammarane triterpenoids for
pharmaceutical use: Expert Opinion on Therapeutic Patents 2015805-817, A
patent review (2005 - 2014).
[20]
Zeng, X.S.; Zhou, X.S.; Luo, F.C.; Jia, J.J.; Qi, L.; Yang, Z.X.; Bai, J. Comparative analysis of the neuroprotective effects of ginsenosides Rg1 and Rb1 extracted from Panax notoginseng against cerebral ischemia. Can. J. Physiol. Pharmacol., 2014, 92, 102-108.
[21]
Wang, T.; Guo, R.; Zhou, G.; Zhou, X.; Kou, Z.; Sui, F.; Li, C.; Tang, L.; Wang, Z. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: A review. J. Ethnopharmacol., 2016, 188, 234-258.
[22]
Wang, J.; Gao, W-Y.; Zhang, J.; Zuo, B-M.; Zhang, L-M.; Huang, L-Q. Advances in study of ginsenoside biosynthesis pathway in Panax ginseng C. A. Meyer. Acta Physiol. Plant., 2011, 34, 397-403.
[23]
Abe, I.; Rohmer, M.; Prestwich, G.D. Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. J. Cheminform., 1994, 2189-2206.
[24]
Wang, W.; Wang, H.; Rayburn, E.R.; Zhao, Y.; Hill, D.L.; Zhang, R. 20(S)-25-methoxyl-dammarane-3beta, 12beta, 20-triol, a novel natural product for prostate cancer therapy: activity in vitro and in vivo and mechanisms of action. Br. J. Cancer, 2008, 98, 792-802.
[25]
Connolly, J.D.; Hill, R.A. Triterpenoids. Nat. Prod. Rep., 1989, 35, 475-501.
[26]
Connolly, J.D.; Hill, R.A. Triterpenoids. J. Cheminform., 2005, 36, 79-132.
[27]
Hill, R.A.; Connolly, J.D. Triterpenoids. Nat. Prod. Rep., 2012, 30, 780-818.
[28]
Dinda, B.; Debnath, S.; Mohanta, B.C.; Harigaya, Y. Naturally occurring triterpenoid saponins. Chem. Biodivers., 2010, 7, 2327-2580.
[29]
Zhang, Z.; Du, G.J.; Wang, C.Z.; Wen, X.D.; Calway, T.; Li, Z.; He, T.C.; Du, W.; Bissonnette, M.; Musch, M.; Chang, E. Compound K, a ginsenoside metabolite, inhibits colon cancer growth via multiple pathways including p53-p21 interactions. Int. J. Mol. Sci., 2013, 14, 2980-2995.
[30]
Chang, T.L.; Huang, Y.H.; Ou, Y.D. The role of ginsenosides in inhibiting ubiquitin activating enzyme (E1) activity. J. Funct. Foods, 2014, 7, 462-470.
[31]
Gstaiger, M. Jordan, R.; Lim, M.; Catzavelos, C.; Mestan, J.; Slingerland, J.; Krek, W. Skp2 is oncogenic and overexpressed in human cancers. Proc. Natl. Acad. Sci. USA, 2001, 98, 5043-5048.
[32]
Dutto, I.; Tillhon, M.; Cazzalini, O.; Stivala, L.A.; Prosperi, E. Biology of the cell cycle inhibitor p21 CDKN1A: Molecular mechanisms and relevance in chemical toxicology. Arch. Toxicol., 2015, 89, 155-178.
[33]
Wang, J.H.; Nao, J.F.; Zhang, M.; He, P. 20(s)-ginsenoside Rg3 promotes apoptosis in human ovarian cancer HO-8910 cells through PI3K/Akt and XIAP pathways. Tumour Biol., 2014, 35, 11985-11994.
[34]
Kikuchi, Y.; Sasa, H.; Kita, T.; Hirata, J.; Tode, T.; Nagata, I. Inhibition of human ovarian cancer cell proliferation in vitro by ginsenoside Rh2 and adjuvant effects to cisplatin in vivo. Anticancer Drugs, 1991, 2, 63-67.
[35]
Tode, T.; Kikuchi, Y.; Hirata, J.; Kita, T.; Imaizumi, E.; Nagata, I. Inhibitory effects of oral administration of ginsenoside Rh2 on tumor growth in nude mice bearing serous cyst adenocarcinoma of the human ovary. Nippon Shokakibyo Gakkai Zasshi, 1993, 45, 1275-1282.
[36]
Tode, T.; Kikuchi, Y.; Kita, T.; Hirata, J.; Imaizumi, E.; Nagata, I. Inhibitory effects by oral administration of ginsenoside Rh2 on the growth of human ovarian cancer cells in nude mice. J. Cancer Res. Clin. Oncol., 1993, 120, 24-26.
[37]
Nakata, H.; Kikuchi, Y.; Tode, T.; Hirata, J.; Kita, T.; Ishii, K.; Kudoh, K.; Nagata, I. Inhibitory effects of ginsenoside rh2 on tumor growth in nude mice bearing human ovarian cancer cells. Cancer Sci., 1998, 89, 733-740.
[38]
Liul, J.; Shimizu, K.; Yu, H.; Zhang, C.; Jin, F.; Kondo, R. Stereospecificity of hydroxyl group at C-20 in antiproliferative action of ginsenoside Rh2 on prostate cancer cells. Fitoterapia, 2010, 81, 902-905.
[39]
Li, B.; Zhao, J.; Wang, C.Z.; Searle, J.; He, T.C.; Yuan, C.S.; Du, W. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett., 2011, 301, 185-192.
[40]
Oh, M.E.; Choi, Y.H.; Choi, S.; Chung, H.; Kim, K.; Kim, S.I.; Kim, D.K. Anti-proliferating effects of ginsenoside Rh2 on MCF-7 human breast cancer cells. Int. J. Oncol., 1999, 14, 869-875.
[41]
Choi, S.; Kim, T.W.; Singh, S.V. Ginsenoside Rh2-mediated G1 phase cell
cycle arrest in human breast cancer cells is caused by p15 Ink4B and p27
Kip1-dependent inhibition of cyclin-dependent kinases.. Pharm. Res., 2009, 26, 2280-2288.
[42]
Lasserre, R.; Guo, X.J.; Conchonaud, F.; Hamon, Y.; Hawchar, O.; Bernard, A.M.; Soudja, S.M.; Lenne, P.F.; Rigneault, H.; Olive, D.; Bismuth, G. Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat. Chem. Biol., 2008, 4, 538-5347.
[43]
Park, E.K.; Lee, E.J.; Lee, S.H.; Koo, K.H.; Sung, J.Y.; Hwang, E.H.; Park, J.H.; Kim, C.W.; Jeong, K.C.; Park, B.K.; Kim, Y.N. Induction of apoptosis by the ginsenoside Rh2 by internalization of lipid rafts and caveolae and inactivation of Akt. Br. J. Pharmacol., 2010, 160, 1212-1223.
[44]
Zhao, Y.; Wang, W.; Han, L.; Rayburn, E.R.; Hil, D.L.; Wang, H.; Zhang, R. Isolation, structural determination, and evaluation of the biological activity of 20(S)-25-methoxyl-dammarane-3beta, 12beta, 20-triol[20(S)-25-OCH3-PPD], a novel natural product from Panax notoginseng. Med. Chem., 2007, 3, 51-60.
[45]
Wang, W.; Rayburn, E.R.; Zhao, Y.; Wang, H.; Zhang, R. Novel ginsenosides 25-OH-PPD and 25-OCH3-PPD as experimental therapy for pancreatic cancer: Anticancer activity and mechanisms of action. Cancer Lett., 2009, 278, 241-248.
[46]
Wang, W.; Rayburn, E.R.; Hao, M.; Zhao, Y.; Hill, D.L.; Zhang, R.; Wang, H. Experimental therapy of prostate cancer with novel natural product anti-cancer ginsenosides. The Prostate, 2008, 68, 809-819.
[47]
Bi, X.; Zhao, Y.; Fang, W.; Yang, W. Anticancer activity of Panax notoginseng extract 20(S)-25-OCH3-PPD: Targetting beta-catenin signalling. Clin. Exp. Pharmacol. Physiol., 2009, 36, 1074-1078.
[48]
Zhang, L.H.; Jia, Y.L.; Lin, X.X.; Zhang, H.Q.; Dong, X.W.; Zhao, J.; Shen, J.; Shen, H.J.; Li, F.F.; Yan, X.F.; Li, W. AD-1, a novel ginsenoside derivative, shows anti-lung cancer activity via activation of p38 MAPK pathway and generation of reactive oxygen species. Biochim. Biophys. Acta, 2013, 1830, 4148-4159.
[49]
Yoon, J.H.; Choi, Y.J.; Cha, S.W.; Lee, S.G. Anti-metastatic effects of ginsenoside Rd via inactivation of MAPK signaling and induction of focal adhesion formation. Phytomedicine, 2012, 19, 284-292.
[50]
Osman, N.A.; El-Rehim, D.M.; Kamal, I.M. Defective Beclin-1 and elevated hypoxia-inducible factor (HIF)-1α expression are closely linked to tumorigenesis, differentiation, and progression of hepatocellular carcinoma. Tumour Biol., 2015, 36, 4293-4299.
[51]
Liu, T.; Zhao, L.; Hou, H.; Ding, L.; Chen, W.; Li, X. Ginsenoside 20(S)-Rg3 suppresses ovarian cancer migration via hypoxia-inducible factor 1 alpha and nuclear factor-kappa B signals. Tumour Biol., 2017, 39. [doi.org/10.1177/1010428317692225].
[52]
Gao, Q.; Zheng, J. Ginsenoside Rh2 inhibits prostate cancer cell growth through suppression of microRNA-4295 that activates CDKN1A. Cell Prolif., 2018, 51, e12438.
[53]
Zhang, Q.; Hong, B.; Wu, S.; Niu, T. Inhibition of prostatic cancer growth by ginsenoside Rh2. Tumour Biol., 2015, 36, 2377-2381.
[54]
Li, S.; Guo, W.; Gao, Y.; Liu, Y. Ginsenoside Rh2 inhibits growth of glioblastoma multiforme through mTor. Tumour Biol., 2015, 36, 2607-2612.
[55]
Leung, K.W.; Leung, K.W.; Cheung, L.W.; Pon, Y.L.; Wong, R.N.; Mak, N.K.; Fan, T.P.; Au, S.C.; Tombran‐Tink, J. Wong, A.S. Ginsenoside Rb1 inhibits tube-like structure formation of endothelial cells by regulating pigment epithelium-derived factor through the oestrogen beta receptor. Br. J. Pharmacol., 2007, 152, 207-215.
[56]
Bae, E.A.; Han, M.J.; Kim, E.J.; Kim, D.H. Transformation of ginseng saponins to ginsenoside rh 2 by acids and human intestinal bacteria and biological activities of their transformants. Arch. Pharm. Res., 2004, 27, 61-67.
[57]
Hasegawa, H.; Lee, K.S.; Nagaoka, T.; Tezuka, Y.; Uchiyama, M.; Kadota, S.; Saiki, I. Pharmacokinetics of ginsenoside deglycosylated by intestinal bacteria and its transformation to biologically active fatty acid esters. Biol. Pharm. Bull., 2000, 23, 298-304.
[58]
Wakabayashi, C.; Hasegawa, H.; Murata, J.; Saiki, I. In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol. Res., 1997, 9, 411-417.
[59]
Hasegawa, H. Proof of the mysterious efficacy of ginseng: Basic and clinical trials: Metabolic activation of ginsenoside: Deglycosylation by intestinal bacteria and esterification with fatty acid. J. Pharmacol. Sci., 2004, 95, 153-157.
[60]
Wang, P.; Bi, X.L.; Guo, Y.M.; Cao, J.Q.; Zhang, S.J.; Yuan, H.N.; Piao, H.R.; Zhao, Y.Q. Semi-synthesis and anti-tumor evaluation of novel 25-hydroxyprotopanaxadiol derivatives. Eur. J. Med. Chem., 2012, 55, 137-145.
[61]
Liu, Y.F.; Yuan, H.N.; Bi, X.L.; Piao, H.R.; Cao, J.Q.; Li, W.; Wang, P.; Zhao, Y.Q. 25-Methoxylprotopanaxadiol derivatives and their anti-proliferative activities. Steroids, 2013, 78, 1305-1311.
[62]
Liu, X.K.; Ye, B.J.; Wu, Y.; Lin, Z.H.; Zhao, Y.Q.; Piao, H.R. Synthesis and anti-tumor evaluation of panaxadiol derivatives. Eur. J. Med. Chem., 2011, 46, 1997-2002.
[63]
Wang, P.; Bi, X.L.; Xu, J.; Yuan, H.N.; Piao, H.R.; Zhao, Y.Q. Synthesis and anti-tumor evaluation of novel 25-hydroxyprotopanaxadiol analogs incorporating natural amino acids. Steroids, 2013, 78, 203-209.
[64]
Qu, F.; Zhao, C.; Liu, Y.; Cao, J.; Li, W.; Zhao, Y. Semi-synthesis and anti-tumor evaluation of novel 25-hydroxyprotopanaxadiol derivatives as apoptosis inducing agents. MedChemComm, 2015, 6, 2004-2011.
[65]
Yuan, W.; Guo, J.; Wang, X.; Su, G.; Zhao, Y. Non-protein amino acid derivatives of 25-methoxylprotopanaxadiol/25-hydroxyprotopanaxadioland their anti-tumour activity evaluation. Steroids, 2018, 129, 1-8.
[66]
Zhou, W.X.; Cao, J.Q.; Wang, X.D.; Guo, J.H.; Zhao, Y.Q. Sulfamic and succinic acid derivatives of 25-OH-PPD and their activities to MCF-7, A-549, HCT-116, and BGC-823 cell lines. Bioorg. Med. Chem. Lett., 2017, 27, 1076-1080.
[67]
Zhou, W.X.; Sun, Y.Y.; Yuan, W.H.; Zhao, Y.Q. Water-soluble derivatives of 25-OCH3-PPD and their anti-proliferative activities. Steroids, 2017, 121, 32-39.
[68]
Qu, F.Z.; Liu, Y.F.; Cao, J.Q.; Wang, X.D.; Zhang, X.S.; Zhao, C.; Zhao, Y.Q. Novel 25-hydroxyprotopanaxadiol derivatives incorporating chloroacetyl chloride and their anti-tumor evaluation. Bioorg. Med. Chem. Lett., 2014, 24, 5390-5394.
[69]
Qu, F.Z.; Zhao, C.; Cao, J.Q.; Zhang, Y.; Zhao, Y.Q. One-pot synthesis, anti-tumor evaluation and structure-activity relationships of novel 25-OCH3-PPD derivatives. MedChemComm, 2017, 8, 1845-1849.
[70]
Guo, J.; Xu, Z.; Li, Y.; Wang, X.; Zhao, Y. Synthesis of novel 25-hydroxyprotopanaxadiol derivatives by methylation and methoxycarbonylation using dimethyl carbonate as a environment-friendly reagent and their anti-tumor evaluation. Bioorg. Med. Chem. Lett., 2016, 26, 4763-4768.
[71]
De, W. X.; Sun, Y.Y.; Zhao, C.; Qu, F.Z.; Zhao, Y.Q. 12-Chloracetyl-PPD, a novel dammarane derivative, shows anti-cancer activity via delay the progression of cell cycle G2/M phase and reactive oxygen species-mediate cell apoptosis. Eur. J. Pharmacol., 2017, 798, 49-56.
[72]
De Wang, X.; Su, G.Y.; Zhao, C.; Qu, F.Z.; Wang, P.; Zhao, Y.Q. Anticancer activity and potential mechanisms of 1C, a ginseng saponin derivative, on prostate cancer cells. J. Ginseng Res., 2018, 42, 133-143.
[73]
Liao, J.; Sun, J.; Niu, Y.; Yu, B. Synthesis of ginsenoside Rh2 and chikusetsusaponin-LT8 via gold(I)-catalyzed glycosylation with a glycosyl ortho-alkynylbenzoate as donor. Tetrahedron Lett., 2011, 52, 3075-3078.
[74]
Anufriev, V.P.; Malinovskaya, G.V.; Denisenko, V.A.; Uvarova, N.I.; Elyakov, G.B.; Kim, S.I.; Baek, N.I. Synthesis of ginsenoside Rg 3, a minor constituent of Ginseng Radix. Carbohydr. Res., 1997, 304, 179-182.
[75]
Atopkina, L.N.; Denisenko, V.A. Synthesis of 20s-protopanaxadiol beta-d-galactopyranosides. Chem. Nat. Compd., 2011, 47, 79-84.
[76]
Wei, Y.; Ma, C.M.; Hattori, M. Synthesis of dammarane-type triterpene derivatives and their ability to inhibit HIV and HCV proteases. Bioorg. Med. Chem., 2009, 17, 3003-3010.
[77]
Huang, W.; Qi, D. Process for producing dammarane sapogenins and ginsenosides from ginseng and their use as anticancer agents, in US0113316A1.
2005. United States patent application US 10/896,473. May 26. 2005.
[78]
Wang, K.C.; Wang, P.H.; Lee, S.S. Microbial Transformation of Protopanaxadiol and Protopanaxatriol Derivatives with Mycobacterium sp. (NRRL B-3805). J. Nat. Prod., 1997, 60, 1236-1241.
[79]
Yue, C.J.; Zhong, J.J. Purification and characterization of UDPG: Ginsenoside Rd glucosyltransferase from suspended cells of Panax notoginseng. Process Biochem., 2005, 40, 3742-3748.
[80]
Hou, J.; Xue, J.; Wang, C.; Liu, L.; Zhang, D.; Wang, Z.; Li, W.; Zheng, Y.; Sung, C. Microbial transformation of ginsenoside Rg3 to ginsenoside Rh2 by Esteya vermicola CNU 120806. World J. Microbiol. Biotechnol., 2012, 28, 1807-1811.
[81]
Sun, C.; Li, Y.; Wu, Q.; Luo, H.; Sun, Y.; Song, J.; Lui, E.M.; Chen, S. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics, 2010, 11, 262.
[82]
Danieli, B.; Falcone, L.; Monti, D.; Riva, S.; Gebhardt, S.; Schubert-Zsilavecz, M. Regioselective enzymatic glycosylation of natural polyhydroxylated compounds: galactosylation and glucosylation of protopanaxatriol ginsenosides. J. Org. Chem., 2001, 66, 262-269.
[83]
Ding, M.; Xu, L.; Zhang, Y.; Zhao, Y. Polymorphic characterization and bioavailability of 20(R)-25-methoxyl-dammarane-3beta,12beta,20-triol, a novel dammarane triterpenoid saponin, as anticancer agents. J. Pharm. Biomed. Anal., 2017, 145, 773-782.
[84]
Allen, J.A.; Halverson-Tamboli, R.A.; Rasenick, M.M. Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci., 2007, 8, 128-140.
[85]
Korade, Z.; Kenworthy, A.K. Lipid rafts, cholesterol, and the brain. Neuropharmacology, 2008, 55, 1265-1273.
[86]
Pike, L.J. The challenge of lipid rafts. J. Lipid Res., 2009, 50, S323-S328.
[87]
Yun, M.; Keshvara, L.; Park, C.G.; Zhang, Y.M.; Dickerson, J.B.; Zheng, J.; Rock, C.O.; Curran, T.; Park, H.W. Crystal structures of the Dab homology domains of mouse disabled 1 and 2. J. Biol. Chem., 2003, 278, 36572-36581.
[88]
Janes, P.W.; Ley, S.C.; Magee, A.I.; Kabouridis, P.S. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin. Immunol., 2000, 12, 23-34.
[89]
Adam, R.M.; Mukhopadhyay, N.K.; Kim, J.; Di Vizio, D.; Cinar, B.; Boucher, K.; Solomon, K.R.; Freeman, M.R. Cholesterol sensitivity of endogenous and myristoylated Akt. Cancer Res., 2007, 67, 6238-6246.
[90]
Zhuang, L.; Kim, J.; Adam, R.M.; Solomon, K.R.; Freeman, M.R. Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J. Clin. Invest., 2005, 115, 959-968.
[91]
Anchisi, L.; Dessì, S.; Pani, A.; Mandas, A. Cholesterol homeostasis: A key to prevent or slow down neurodegeneration. Front. Physiol., 2012, 3, 486-486.
[92]
Wang, W.; Zhao, Y.; Rayburn, E.R.; Hill, D.L.; Wang, H.; Zhang, R. In vitro anti-cancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemother. Pharmacol., 2007, 59, 589-601.
[93]
Odashima, S.; Ohta, T.; Kohno, H.; Matsuda, T.; Kitagawa, I.; Abe, H.; Arichi, S. Control of phenotypic expression of cultured B16 melanoma cells by plant glycosides. Cancer Res., 1985, 45, 2781-2784.
[94]
Hao, M.; Zhao, Y.; Chen, P.; Huang, H.; Liu, H.; Jiang, H.; Zhang, R.; Wang, H. Structure-activity relationship and substrate-dependent phenomena in effects of ginsenosides on activities of drug-metabolizing P450 enzymes. PLoS One, 2008, 3, e2697.
[95]
Chen, Y.; Wang, H.; Xu, S. Study on the chemical constituents of Panax ginseng and their structure–function relationship anti-arrythmia and anti-tumor. Science Foundation China., 1995, 9, 46-48.
[96]
Popovich, D.G.; Kitts, D.D. Structure-function relationship exists for ginsenosides in reducing cell proliferation and inducing apoptosis in the human leukemia (THP-1) cell line. Arch. Biochem. Biophys., 2002, 406, 1-8.
[97]
Jeong, S.M.; Lee, J.H.; Kim, J.H.; Lee, B.H.; Yoon, I.S.; Lee, J.H.; Kim, D.H.; Rhim, H.; Kim, Y.; Nah, S.Y. Stereospecificity of ginsenoside Rg3 action on ion channels. Mol. Cell, 2004, 18, 383-389.
[98]
Fiske, J.L.; Fomin, V.P.; Brown, M.L.; Duncan, R.L.; Sikes, R.A. Voltage-sensitive ion channels and cancer. Cancer Metastasis Rev., 2006, 25, 493-500.
[99]
Wang, W.; Zhang, X.; Qin, J.J.; Voruganti, S.; Nag, S.A.; Wang, M.H.; Wang, H.; Zhang, R. Natural product ginsenoside 25-OCH3-PPD inhibits breast cancer growth and metastasis through down-regulating MDM2. PLoS One, 2012, 7, 1-11.
[100]
Wang, L.; Sun, J.; Horvat, M.; Koutalistras, N.; Johnston, B.; Sheil, A.R. Evaluation of MTS, XTT, MTT and 3HTdR incorporation for assessing hepatocyte density, viability and proliferation. Methods Cell Biol., 1996, 18, 249-255.
[101]
Park, H.; Kwak, T.H.; Bae, J.H.; Moon, D.G.; Kim, J.J.; Cheon, J. Development of the novel anti-cancer immunotherapy for human prostate cancer: In vivo characterization of an immunotropic and anti-cancer activities of the new polysaccharide from the leaves of panax ginseng C.A. Meyer. Eur. Urol., 2004, 3, 94-94.
[102]
Zhang, Y.; Yuan, W.; Wang, X.; Zhang, H.; Sun, Y.; Zhang, X.; Zhao, Y. Synthesis, characterization and cytotoxic activity evaluation of ginsengdiol oxidation and nitrogen hybrid derivatives. MedChemComm, 2018, 9(11), 1910-1919.
[103]
S. Bhadury P.Pang, J. Anti-Cancer drug design using natural and synthetic pharmacophores. Curr. Org. Chem., 2015, 19, 1460-1490.
[104]
Politis, G.; Catsoulacos, P. Effects of homo-aza-steroidal ester of p-bis(2. J. Steroid Biochem. Mol. Biol., 1978, 9, 599-602.