Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Cellular and Molecular Basis of Osteoblastic and Vascular Niches in the Processes of Hematopoiesis and Bone Remodeling (A Short Review of Modern Views)

Author(s): Kristina A. Yurova, Olga G. Khaziakhmatova, Elena S. Melashchenko, Vladimir V. Malashchenko, Egor O. Shunkin, Valeria V. Shupletsova, Pavel A. Ivanov, Igor A. Khlusov and Larisa S. Litvinova*

Volume 25, Issue 6, 2019

Page: [663 - 669] Pages: 7

DOI: 10.2174/1381612825666190329153626

Price: $65

Abstract

In evolutionary processes, human bone marrow has formed as an organ depot of various types of cells that arise from hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Vital HSC activity is controlled through molecular interactions with the niche microenvironment. The review describes current views on the formation of key molecular and cellular components of the HSC niche, which ensure maintenance of home ostasis in stem cell niches, obtained from studies of their role in regulating the proliferation and differentiation of HSCs, including the physiological, reparative and pathological remodeling of bone tissue. Due to rapid developments in biotechnology, tissue bioengineering, and regenerative medicine, information can be useful for developing biomimetic and bioinspired materials and implants that provide an effective bone/bone marrow recovery process after injuries and, to a greater extent, diseases of various etiologies.

Keywords: Hematopoietic stem cells, mesenchymal stem cells, extracellular matrix, bone marrow, biomaterials, bone marrow niche, tissue remodeling.

[1]
Terskikh VV, Vasil’ev AV, Voroteliak EA. [Stem cell niches]. Izv Akad Nauk Ser Biol 2007; 34(3): 261-72.
[2]
Voog J, Jones DL. Stem cells and the niche: A dynamic duo. Cell Stem Cell 2010; 6(2): 103-15.
[3]
Dellatore SM, Garcia AS, Miller WM. Mimicking stem cell niches to increase stem cell expansion. Curr Opin Biotechnol 2008; 19(5): 534-40.
[4]
Bonfini A, Wilkin MB, Baron M. Reversible regulation of stem cell niche size associated with dietary control of Notch signalling. BMC Dev Biol 2015; 15(1): 8.
[5]
Khlusov IA, Litvinova LS, Khlusova MY, Yurova KA. Concept of Hematopoietic and Stromal Niches for Cell-Based Diagnostics and Regenerative Medicine (a Review). Curr Pharm Des 2018; 24(26): 3034-54.
[6]
He N, Zhang L, Cui J, Li Z. Bone marrow vascular niche: home for hematopoietic stem cells. Bone Marrow Res 2014; 2014128436
[7]
Seike M, Omatsu Y, Watanabe H, Kondoh G, Nagasawa T. Stem cell niche-specific Ebf3 maintains the bone marrow cavity. Genes Dev 2018; 32(5-6): 359-72.
[8]
Bourgine PE, Klein T, Paczulla AM, et al. In vitro biomimetic engineering of a human hematopoietic niche with functional properties. Proc Natl Acad Sci USA 2018; 115(25): E5688-95.
[9]
Frisch BJ. The hematopoietic stem cell niche: What's so special about bone? Bone 2018; S8756-3282(18): 30205-9.
[10]
Anthony BA, Link DC. Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol 2014; 35(1): 32-7.
[11]
Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 2014; 20(8): 833-46.
[12]
Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature 2014; 505(7483): 327-34.
[13]
Kaushansky K, Zhan H. The regulation of normal and neoplastic hematopoiesis is dependent on microenvironmental cells. Adv Biol Regul 2018; 69: 11-5.
[14]
Wang W, Majihail G, Lui C, Zhou L. Osteoblast Sorting and Intracellular Staining of CXCL12. Bio Protoc 2018; 8(10)e2858
[15]
Secombes CJ, Wang T. The innate and adaptive immune system of fish.Infectious Disease in Aquaculture: Prevention and Control 2012; 3-68.
[16]
Zaidi M. Skeletal remodeling in health and disease. Nat Med 2007; 13(7): 791-801.
[17]
Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968; 6(2): 230-47.
[18]
Hamasaki K, Imai K, Hayashi T, Nakachi K, Kusunoki Y. Radiation sensitivity and genomic instability in the hematopoietic system: Frequencies of micronucleated reticulocytes in whole-body X-irradiated BALB/c and C57BL/6 mice. Cancer Sci 2007; 98(12): 1840-4.
[19]
McCaffrey JP, Shen H, Downton B, Mainegra-Hing E. Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Med Phys 2007; 34(2): 530-7.
[20]
Tasian SK, Bornhäuser M, Rutella S. Targeting Leukemia Stem Cells in the Bone Marrow Niche. Biomedicines 2018; 6(1)E22
[21]
Pietras EM, Warr MR, Passegué E. Cell cycle regulation in hematopoietic stem cells. J Cell Biol 2011; 195(5): 709-20.
[22]
Liu YF, Zhang SY, Chen YY, et al. ICAM-1 Deficiency in the Bone Marrow Niche Impairs Quiescence and Repopulation of Hematopoietic Stem Cells. Stem Cell Reports 2018; 11(1): 258-73.
[23]
Nguyen TS, Lapidot T, Ruf W. Extravascular coagulation in hematopoietic stem and progenitor cell regulation. Blood 2018; 132(2): 123-31.
[24]
Gao X, Xu C, Asada N, Frenette PS. The hematopoietic stem cell niche: from embryo to adult. Development 2018; 145(2)dev139691
[25]
Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425(6960): 836-41.
[26]
Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425(6960): 841-6.
[27]
Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121(7): 1109-21.
[28]
Kopp HG, Avecilla ST, Hooper AT, Rafii S. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) 2005; 20(5): 349-56.
[29]
Konopleva MY, Jordan CT. Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol 2011; 29(5): 591-9.
[30]
Toscani D, Bolzoni M, Accardi F, Aversa F, Giuliani N. The osteoblastic niche in the context of multiple myeloma. Ann N Y Acad Sci 2015; 1335: 45-62.
[31]
Khlusov IA, Litvinova LS, Khlusova MY, Yurova KA. Concept of Hematopoietic and Stromal Niches for Cell-Based Diagnostics and Regenerative Medicine (a Review). Curr Pharm Des 2018; 24(26): 3034-54.
[32]
Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol 2011; 12(10): 643-55.
[33]
Vandoorne K, Rohde D, Kim HY, et al. Imaging the Vascular Bone Marrow Niche During Inflammatory Stress. Circ Res 2018; 123(4): 415-27.
[34]
Abkowitz JL, Robinson AE, Kale S, Long MW, Chen J. Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood 2003; 102(4): 1249-53.
[35]
Wu JCF, Li Z, Xu L, Giffard R, Wu J, Cooke JP. Transplantation of embryonic stem cells-derived endothelial cells in rat stroke model promotes functional recovery. Circ Res 2006; 99E49
[36]
Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL. Physiological migration of hematopoietic stem and progenitor cells. Science 2001; 294(5548): 1933-6.
[37]
Schepers K, Hsiao EC, Garg T, Scott MJ, Passegué E. Activated Gs signaling in osteoblastic cells alters the hematopoietic stem cell niche in mice. Blood 2012; 120(17): 3425-35.
[38]
Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118(2): 149-61.
[39]
Nagai H, Shin M, Weng W, et al. Early hematopoietic and vascular development in the chick. Int J Dev Biol 2018; 62(1-3): 137-44.
[40]
Hooper AT, Butler JM, Nolan DJ, et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 2009; 4(3): 263-74.
[41]
Winkler IG, Barbier V, Nowlan B, et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med 2012; 18(11): 1651-7.
[42]
Chen S, Lewallen M, Xie T. Adhesion in the stem cell niche: biological roles and regulation. Development 2013; 140(2): 255-65.
[43]
Jeannet R, Cai Q, Liu H, Vu H, Kuo YH. Alcam regulates long-term hematopoietic stem cell engraftment and self-renewal. Stem Cells 2013; 31(3): 560-71.
[44]
Taichman RS, Reilly MJ, Emerson SG. The hematopoietic microenvironment: osteoblasts and the hematopoietic microenvironment. Hematology 2000; 4(5): 421-6.
[45]
Lo Celso C, Fleming HE, Wu JW, et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 2009; 457(7225): 92-6.
[46]
Acar M, Kocherlakota KS, Murphy MM, et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 2015; 526(7571): 126-30.
[47]
Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25(6): 977-88.
[48]
Kobayashi H, Butler JM, O’Donnell R, et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 2010; 12(11): 1046-56.
[49]
Peled A, Kollet O, Ponomaryov T, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 2000; 95(11): 3289-96.
[50]
Kieslinger M, Hiechinger S, Dobreva G, Consalez GG, Grosschedl R. Early B cell factor 2 regulates hematopoietic stem cell homeostasis in a cell-nonautonomous manner. Cell Stem Cell 2010; 7(4): 496-507.
[51]
Omatsu Y, Sugiyama T, Kohara H, et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 2010; 33(3): 387-99.
[52]
Jones DC, Wein MN, Oukka M, Hofstaetter JG, Glimcher MJ, Glimcher LH. Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 2006; 312(5777): 1223-7.
[53]
Wein MN, Jones DC, Shim JH, et al. Control of bone resorption in mice by Schnurri-3. Proc Natl Acad Sci USA 2012; 109(21): 8173-8.
[54]
Duncan AW, Rattis FM, DiMascio LN, et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005; 6(3): 314-22.
[55]
Hilton MJ, Tu X, Wu X, et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 2008; 14(3): 306-14.
[56]
Tu X, Chen J, Lim J, et al. Physiological notch signaling maintains bone homeostasis via RBPjk and Hey upstream of NFATc1. PLoS Genet 2012; 8(3)e1002577
[57]
Weber JM, Calvi LM. Notch signaling and the bone marrow hematopoietic stem cell niche. Bone 2010; 46(2): 281-5.
[58]
Kusumbe AP, Ramasamy SK, Itkin T, et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 2016; 532(7599): 380-4.
[59]
Itkin T, Gur-Cohen S, Spencer JA, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 2016; 532(7599): 323-8.
[60]
Kang S, Lee SP, Kim KE, Kim HZ, Mémet S, Koh GY. Toll-like receptor 4 in lymphatic endothelial cells contributes to LPS-induced lymphangiogenesis by chemotactic recruitment of macrophages. Blood 2009; 113(11): 2605-13.
[61]
Kusumbe AP, Adams RH. Osteoclast progenitors promote bone vascularization and osteogenesis. Nat Med 2014; 20(11): 1238-40.
[62]
Grosso A, Burger MG, Lunger A, Schaefer DJ, Banfi A, Di Maggio N. It Takes Two to Tango: Coupling of Angiogenesis and Osteogenesis for Bone Regeneration. Front Bioeng Biotechnol 2017; 5: 68.
[63]
Liu X, Zheng H, Yu WM, Cooper TM, Bunting KD, Qu CK. Maintenance of mouse hematopoietic stem cells ex vivo by reprogramming cellular metabolism. Blood 2015; 125(10): 1562-5.
[64]
Kunisaki Y, Bruns I, Scheiermann C, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 2013; 502(7473): 637-43.
[65]
Spencer JA, Ferraro F, Roussakis E, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 2014; 508(7495): 269-73.
[66]
Yin T, Li L. The stem cell niches in bone. J Clin Invest 2006; 116(5): 1195-201.
[67]
Takubo K, Goda N, Yamada W, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 2010; 7(3): 391-402.
[68]
Simon MC. Coming up for air: HIF-1 and mitochondrial oxygen consumption. Cell Metab 2006; 3(3): 150-1.
[69]
Gerber HP, Malik AK, Solar GP, et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002; 417(6892): 954-8.
[70]
Kunisaki Y, Bruns I, Scheiermann C, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 2013; 502(7473): 637-43.
[71]
Yoshihara H, Arai F, Hosokawa K, et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 2007; 1(6): 685-97.
[72]
Karlström E, Norgård M, Hultenby K, et al. Localization and expression of prothrombin in rodent osteoclasts and long bones. Calcif Tissue Int 2011; 88(3): 179-88.
[73]
Schaffner F, Yokota N, Carneiro-Lobo T, et al. Endothelial protein C receptor function in murine and human breast cancer development. PLoS One 2013; 8(4)e61071
[74]
Bruns I, Lucas D, Pinho S, et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 2014; 20(11): 1315-20.
[75]
Zhao M, Perry JM, Marshall H, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med 2014; 20(11): 1321-6.
[76]
Nakamura-Ishizu A, Takubo K, Kobayashi H, Suzuki-Inoue K, Suda T. CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow. J Exp Med 2015; 212(12): 2133-46.
[77]
Avecilla ST, Hattori K, Heissig B, et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 2004; 10(1): 64-71.
[78]
Riewald M, Ruf W. Science review: role of coagulation protease cascades in sepsis. Crit Care 2003; 7(2): 123-9.
[79]
Calvi LM, Link DC. The hematopoietic stem cell niche in homeostasis and disease. Blood 2015; 126(22): 2443-51.
[80]
Nagai Y, Garrett KP, Ohta S, et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 2006; 24(6): 801-12.
[81]
Yu VWC, Yusuf RZ, Oki T, et al. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell 2017; 168(5): 944-5.
[82]
Winkler IG, Sims NA, Pettit AR, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 2010; 116(23): 4815-28.
[83]
Christopher MJ, Rao M, Liu F, Woloszynek JR, Link DC. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med 2011; 208(2): 251-60.
[84]
Chow A, Lucas D, Hidalgo A, et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 2011; 208(2): 261-71.
[85]
Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 2002; 30(9): 973-81.
[86]
Albiero M, Poncina N, Ciciliot S, et al. Bone marrow macrophages contribute to diabetic stem cell mobilopathy by producing Oncostatin M. Diabetes 2015; 64(8): 2957-68.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy